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The decay rate of the order-parameter fluctuations in fluids near the critical point can be determined
by measuring the linewidth of the central component in the spectrum of the scattered light, and many
such experiments have been reported in the past eight years. In the past two years the dynamical
theories developed by Kawasaki and Ferrell to describe the decay rate have been modificed to take into
account the anomaly in the shear viscosity and the effect of departures of the correlation function from
the Ornstein-Zernike form, and at the same time new accurate measurements of the parameters which
enter the theory (the correlation length ¢ and the shear viscosity 7),) have been reported. Thus we are
able to present here an absolute comparison of the refined mode-mode coupling and decoupled-mode
theories with the linewidth data for seven fluids: carbon dioxide, xenon, sulfur hexafluoride, isobutyric
acid-water, 3 methylpentane-nitroethane, aniline-cyclohexane, and 2,6 lutidine-water. These linewidth data
were obtained in many different laboratories over the past few years; however, in addition to linewidth
data previously reported, we also include in our analysis new data which we have obtained for carbon
dioxide and xenon and a tabulation and detailed error analysis for all our data for these two fluids.
The theories describe only the “critical part” of the decay rate I'C; hence the nonanomalous
background contributions are first subtracted from the measured linewidths to obtained I'C. Then it is
shown that the resultant values for a quantity we call the “scaled linewidth,” T'* = (6w, I /kTq?),
are described by a single universal curve as a funtion of g¢, for all fluids and every thermodynamic
path that has been investigated near the critical point. This universal curve is described remarkably well
by the modified mode-mode-coupling expression of Kawasaki and Lo and the similar
decoupled-mode-theory expression of Perl and Ferrell. The accuracy of this comparison, which involves
no adjustable parameters, is limited to ~ 10% by the uncertainties in the background corrections,
linewidths, viscosities, and correlation lengths, and by the uncertainties in the various modifications to
the theories. The two theories differ significantly only in the extreme nonhydrodynamic region (q £ >> 1),
where the decoupled-mode values for I'* are ~ 10% smaller than those predicted by the
mode-mode-coupling theory. Although the available data in the extreme nonhydrodynamic region appear
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to be described somewhat better by the decoupled-mode theory than the mode-mode-coupling theory,
this result is suggestive rather than conclusive since the data in this region are sparse and exhibit

considerable scatter.

As a system approaches a critical point the
fluctuations of the order parameter become very
large as a consequence of the divergence of the
generalized susceptibility for the system. For a
simple fluid the order parameter is p —p, (the
difference between the density and the critical
density), and the susceptibility is the isothermal
compressibility, «,=p~*(8p/8P), =p~2(dp/ou),
(where u is the chemical potential and P is the
pressure). For a binary mixture the order pa-
rameter is ¢ - ¢, (the difference between the con-
centration and the critical concentration), and the
susceptibility is given by (8¢c/9A); p, Where A is
the difference between the chemical potentials of
the two components, A=p; - u,. The large fluctua-
tions in the order parameter near the critical
point cause the intense scattering known as critical
opalescence, first observed over 100 years ago.

The spectrum of the light scattered by a fluid
near the critical point contains three components,
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an intense central component known as the Ray-
leigh line or the quasielastic component, and the
Brillouin doublet, two much weaker components
(symmetrically shifted with respect to the incident
frequency), which arise from scattering from
sound waves. In a simple fluid the intense central
component arises from the diffusive decay of
density fluctuations, while in a mixture this com-
ponent is caused primarily by the diffusive decay
of the concentration fluctuations. In either case,
the width of the central component, which is
essentially the decay rate of the order-parameter
fluctuations, is given (for scattering vector q)

by

r=(L/X)q?, 1)

where L is an Onsager kinetic coefficient and X
is a generalized susceptibility. In 1954 Van Hove!
pointed out that since X diverges strongly as the
critical point is approached, while L was pre-
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sumed to be constant near the critical point, the
decay rate I should therefore go to zero as the
critical point is approached. This explained the
“critical slowing down” that had been frequently
reported by experimentalists: as the critical
point is approached, systems require increasingly
longer times to reach equilibrium.

Direct measurements of I" were not possible
until the mid 1960s when the technique of light-
beating or optical-mixing spectroscopy was de-
veloped, using a laser as a light source. This
technique has been utilized to determine the line-
width I of the central component of the scattered
light for many fluid systems, and the experiments
have revealed much new information about the
dynamics of fluids near the critical point. For
example, it is now realized that the kinetic coeffi-
cient L is not well behaved, as previously pre-
sumed, but diverges strongly as the critical point
is approached.?-!° Another result not anticipated
when the first linewidth experiments were per-
formed is that very near the critical point, when
the range £ over which the fluctuations in density
(or concentration) are correlated becomes so large
that g£>>1, then I depends only on g and is inde-
pendent of the temperature.

In the late 1960s Kawasaki and Kadanoff and
Swift developed the “mode-mode-coupling” theory
to describe the dynamics of systems near the
critical point; an alternative approach to the cal-
culation of the dynamical properties was taken by
Ferrell, whose“decoupled-mode” theory yielded
in most cases the same predictions as the mode-
mode-coupling theory. Although these theories
were rather successful in describing the principal
results of the experimental investigations of the
dynamics of critical systems, it was nevertheless
clear that the theoretical expressions derived for
the decay rate were incomplete because the cal-
culations neglected the vertex corrections, the
wave number and frequency dependence of the
viscosity, and also the effects of departures from
Ornstein-Zernike correlations. The extent to
which the various corrections would influence the
theoretical results was unknown. Moreover, the
observed agreement between the Kawasaki-Ferrell
expression for the decay rate and the measured
linewidths was achieved by adjusting two param-
eters in the theory.

Recently the major deficiencies in the theories
have been rectified by new mode-mode calcula-
tions of Lo and Kawasaki and decoupled-mode
calculations of Perl and Ferrell. In addition,
absolute tests of the theories have now become
possible because of new independent measurements
of the parameters which enter the theories, the
correlation length and the shear viscosity. In the

present paper we present a comparison of the
predictions of the refined mode-mode-coupling
and decoupled-mode theories with Rayleigh-line-
width data that have been obtained for seven dif-
ferent fluids in many different laboratories over
the past few years; thus the theories are tested
for a variety systems, using no adjustable param-
eters.

In Sec. I we review briefly the recent theoretical
and experimental developments on the subject of
the decay rate of order-parameter fluctuations
in fluids near the critical point. In Sec. II we
present the results of the new mode-mode calcu-
lations of Lo and Kawasaki and the decoupled-
mode calculations of Perl and Ferrell. In Sec. III
we analyze in detail our CO, and xenon linewidth
data, with particular attention given to sources
of error. In Sec. IV our CO, and xenon linewidth
data and the linewidth data for five other fluids
(obtained in experiments in many laboratories)
are compared with the predictions of the refined
mode-mode-coupling theory, and in Sec. V the
linewidth data are compared with the refined de-
coupled-mode theory. Finally, in Sec. VI we
present the conclusions drawn from our compari-
son of the results of Rayleigh-linewidth measure-
ments with the theories which have been developed
to describe the dynamical behavior of fluids near
the critical point.

I. HISTORICAL BACKGROUND

The subject of Rayleigh-linewidth measurements
in fluids near the critical point has been reviewed
in numerous articles (Benedek,! Cummins and
Swinney,'? Chu,'®* Cummins,!* Swinney, Henry,
and Cummins®) since the first experiments (Alpert
et al.'® Ford and Benedek'®) were reported in
1965. Therefore, this section will be mainly
limited to a brief discussion of recent develop-
ments.

In the hydrodynamic region (where g £<<1) the
spectrum of the light scattered by a fluid can be
obtained from a solution of the linearized equa-
tions of hydrodynamics.!” The theory predicts
that the central component in the spectrum should
have the Lorentzian line shape and a half-width
at half-maximum given by

= [oz/(—i—i—)np] q?> (binary mixture), (2a)

r'=[x/pc,lq? (simple fluid). (2b)

Thus the Onsager coefficients of Eq. (1) are, for
a binary mixture and a simple fluid, respectively,
the concentration conductivity o and the thermal
conductivity A; the appropriate susceptibility for a
simple fluid is the constant-pressure specific
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heat c¢,, which is proportional to k, near the criti-
cal point. The magnitude of the scattering vector
q is given by g =2nK,sin3 6, where n, K,, and 6
are the refractive index, the magnitude of the
wave vector of the incident light in vacuum, and
the scattering angle, respectively.

Linewidth measurements in simple fluids and
mixtures have shown that I" does approach zero
as the critical point is approached, as expected
from the Van Hove theory. The asymptotic be-
havior of the diffusion coefficient D =T/q? of a
simple fluid at the critical density (or a mixture
at the critical concentration) has been found to be
described in the hydrodynamic region by a simple
exponential law,

D~€7-w, (3)

where € =AT/7T, (with AT=|T ~T,|), and y and ¢
are, respectively, the exponents which character-
ize the divergences in X and L.

The linewidths measured in five binary mixtures
(aniline-cyclohexane,'®+1® isobutyric acid-water,2°
n-hexane-nitrobenzene,?' phenol-water,?? and 3
methylpentane -nitroethane 23: 2¢) were found to be
described in the hydrodynamic region by the simple
exponential law (3) with y - ~0.63, but the ex-
ponents that were obtained for the simple fluids
CO,? and xenon* were somewhat higher, y - ¢
~0.74, and for SF, the exponent was markedly
different, y - ¢ ~1.26,'*:2% contrary to the expected
“universality” in critical behavior.

The larger exponents observed for the pure
fluids was a matter of serious concern because
the concept of universality was well established
from numerous measurements of the static proper-
ties of many diverse systems near the critical
point. It was suggested that perhaps the linewidth
measurements were affected by impurities in the
samples, but extensive systematic studies by
Bak and Goldburg,?® (on phenol-water with hypo-
phosphorous acid as an impurity) and by Bak,
Goldburg, and Pusey®” (on bromobenzene-water
with acetone as an impurity) showed that even for
fairly high impurity concentrations the critical
behavior is unchanged, except for a change in T,.

It was also suggested that the hydrodynamic
expression for T [Eq. (1)] might not apply near
the critical point even when g£<<1; however,
there is one fluid, CO,, for which the diffusivity
has been determined in the critical region both
by linewidth measurements and by conventional
thermodynamic techniques, and in the temperature
range common to both sets of data the diffusivities
obtained by the different techniques are in excel-
lent agreement, thus corroborating Eq. (1) (see
Sec. IIC and Ref. 2).

In 1971 Sengers?® suggested that the apparently

|

higher exponents observed for the pure fluids
could be explained by taking into consideration the
nondivergent background contribution to the ther-
mal conductivity. Because of the large contribu-
tion of nonanomalous background terms, the be-
havior of systems in the temperature region
readily accessible to experiment may be very
different from the true asymptotic behavior, which
is presumably describable by the simple exponen-
tial laws. (See the discussion in the 1967 review
by Fisher.?®) Thus the nonsingular background
contributions must first be subtracted if the data
are to be analyzed over extended temperature
ranges.

Sengers and Keyes®® found that when the CO,
data were analyzed with the background thermal
conductivity taken into account, the exponent y -3
was reduced from 0.73 to 0.62, and in a similar
analysis of the xenon data we found that y - ¢ was
reduced from 0.75 to 0.64.° However, Benedek
et al.® found that the thermal-conductivity back-
ground correction did not bring their SF, data
into agreement with the results of other fluids
(see also Refs. 32 and 33). The SF, puzzle has
recently been solved by three new independent
experiments (Langley and co-workers3* 35 Lim
and Swinney?®® and Feke, Hawkins, Lastovka,
and Benedek®®), all in agreement with one another
and in strong disagreement with the previous SFg
data. The new SFq linewidth data, after sub-
traction of the background terms, yield y -
=0.61 +0.04; hence SF, does indeed exhibit the
same critical behavior as other fluids.

The occurrence of critical anomalies in the
transport coefficients was predicted in 1962 by
Fixman from a consideration of the interaction
between transport currents and the spontaneous
density fluctuations.®” This concept of Fixman
was reconsidered in 1966 by Kawasaki, who pro-
posed a different method of calculation, starting
from the correlation-function expressions for the
transport coefficients (Kubo formulas).® The
currents J(¢) in the correlation functions for the
transport coefficients, [(J(0)J(¢))dt, were ex-
panded in a power series in the macroscopic
variables A,, whose equations of motion (as well
as the coefficients in the power-series expansion)
must be deduced from the macroscopic equation
of motion. In 1968 Kadanoff and Swift extended
Kawasaki’s theory and deduced the temperature
dependence of the transport coefficients.*®

In the Kadanoff-Swift-Kawasaki theory the ma-
croscopic normal modes (the “bare propagators”)
are the solutions to the linearized hydrodynamic
equations, and the divergences in the transport
coefficients are calculated by considering the
breakup on one hydrodynamic mode (a heat flow,
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viscous flow, or sound mode) into a multiplicity of
other modes, with coupling constants that are
obtained by an involved projection-operator tech-
nique.%%'4° This approach to the calculation of the
critical behavior of the transport coefficients is
now called the “mode-mode-coupling theory.”

From their mode-mode-coupling calculation,
Kadanoff and Swift predicted that D should exhibit
the same critical behavior as the inverse correla-
tion length: D~ £~!. The divergence of £ on the
critical isochore is described by £=£,€”"; hence
the prediction was that the exponent y -y, which
describes the critical behavior of the linewidth,
should be equal to the exponent v. The value of
v — ¥ determined in linewidth measurements agrees
well with the value v=0.63 obtained from measure-
ments of the angular dependence of the intensity
of the scattered light. Thus both theory and ex-
periment indicate that y — ¢ ~0.63, which, together
with the accepted value of vy, y~1.23, yields the
exponent characterizing the divergence in the
thermal conductivity or concentration conductivity,
$=0,60. This strong divergence in the conductiv-
ity was the first important new result obtained
from linewidth measurements near the critical
point.

In light-scattering experiments very near the
critical point, the range £ of the fluctuations be-
comes comparable to ¢!, and the ordinary laws
of hydrodynamics must be supplanted by a more
general dynamical theory. In 1969 Kawasaki4®
used the mode-mode-coupling approach to derive
an expression for the linewidth that is applicable
over the entire domain from the hydrodynamic
region (g£<<1) to the region very near the critical
point (¢£>>1). The same expression for the
linewidth was subsequently derived by Ferrell,*
whose approach was based on the fluctuation-
dissipation theorem. In the Kawasaki-Ferrell
equation [Eq. (16), Sec. II] the linewidth is ex-
pressed as a function of the shear viscosity 7,
and the correlation length &.

In 1969 Berge, Calmettes, Laj, and Volochine'®
extended their linewidth measurements on aniline-
cyclohexane into the extreme nonhydrodynamic re-
gime, where ¢£>>1, and subsequently this region
has been investigated for other mixtures and simple
fluids. The measured linewidths, after the sub-
traction of the background, have been found to be
described well by the Kawasaki-Ferrell expres-
sion; however, for most systems this comparison
was made taking 7, and £ (or at least £,)as adjust-
able parameters, since they were not known from
independent measurements (see, e.g., Refs, 4, 18,
and 27). On the other hand, in those systems for
which independent measurements of £ and 7, were
performed (see, e.g., Refs. 6, 23, and 42) the theory
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was found to yield linewidth values near 7, larger
than those measured if the background viscosity
were used for n,, but the predicted linewidths
near T, would be too small if the theory was inter-
preted using the full measured macroscopic
values of the shear viscosity for 7,.

In the past two years Kawasaki and Lo** and
also Perl and Ferrell**+4® have considered the
problem of the ambiguity in the interpretation of
the “high-frequency”” shear viscosity that appeared
in the decay-rate equation, and they have derived
expressions relating the decay rate to the macro-
scopic shear viscosity, thus removing the am-
biguity. There have also been two other recent
modifications to the theory: (i) Lo and Kawasaki?’
have considered the effect of vertex corrections,
which were not included in Kawasaki’s original
development of the theory, and (ii) Swinney and
Saleh*®(2) have evaluated the Kawasaki-Ferrell
decay rate integral for more realistic forms of
the correlation function than the Ornstein-Zernike
form.

These recent refinements of the theory and new
correlation-length and viscosity data obtained
within the past year warrant a new analysis of the
linewidth data. In the present paper we analyze
all the linewidth data for fluids for which inde-
pendent 1, and £ data exist, testing particularly
the prediction of the mode-mode-coupling theory
that a particular dimensionless combination of
the measured quantities, 6rn,I'°/k,Tq°, where
T'C is the critical part of the linewidth, should be
described by the same universal function of ¢q&
for all simple fluids and mixtures, for any thermo-
dynamic path.

II. THEORY

A. Background Corrections

The theories recently developed to describe
the critical behavior of transport properties near
the critical point apply only to the “critical” part
of the transport property; therefore, the non-
critical “background” contribution to each trans-
port coefficient (which is termed the “bare” kinetic
coefficient by Kawasaki) must first be subtracted
from the measured properties before the data
can be compared with the theoretical predictions.
Thus we can write any transport property L,(u«)
(where u, for example, could be the temperature
or density) as the sum of two terms,

L (u)=LP(u)+LE(u), @)

where the background part L® is the bare kinetic
coefficient (the value that L would have in the
absence of any critical anomaly), and the critical
part L€ is the quantity treated in recent theoretical
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developments. In the hydrodynamic region (i.e.,
for ¢ =0 and w =0) the critical part diverges to
infinity or converges to zero as the critical point
is approached,

L&(u)=Au® (u-0%),

where ¢ is the exponent that characterizes the
singularity and A is the amplitude of the singular-
ity. As the region very near the critical point
(where g£>1) is approached, L€ will in general
become g dependent; this is indicated explicitly

by the g subscripts in Eq. (4).

The partition of a transport coefficient into
background and critical parts is clearly a crucial
part of the data analysis in any experimental in-
vestigation of the dynamics of a system near the
critical point. In such experiments (which include,
for example, measurements of the spin-diffusion
rate in magnets and the sound velocity and attenua-
tion in fluids, as well as measurements of the
viscosity, conductivity, and diffusivity), a mean-
ingful comparison between theory and experiment
can be made only if a systematic procedure can
be developed for estimating the bare Onsager
kinetic coefficient., For the thermal conductivity
and shear viscosity of a pure fluid, Sengers and
Keyes®® have developed a method for estimating
A% and 7% using data obtained far from the critical
point. The procedure is based on the empirical
result, frequently used in the engineering litera-
ture, that the “excess” thermal conductivity,

x(p)=r(p, T) -1 (0, T) (5)

[where A(p, T) is the thermal conductivity at a
density p and temperature T and A (0, T) is the
thermal conductivity in the dilute gas limit], is
independent of temperature for temperatures and
densities up to approximately twice the critical
temperature and density. The Sengers-Keyes
ansatz is that the background thermal conductivity
in the critical region is given by

A2(p, T)=X(p)+1(0, T), (6)

where X(p) is determined using data obtained away
from the critical region. A similar expression
is assumed to hold for the background viscosity.
Linewidth measurements indicate that the back-
ground contribution to the conductivity is far less
important for mixtures than for pure fluids, and
de Gennes*®® has argued that this is plausible on
physical grounds. It seems reasonable to expect
that expressions analagous to Eqs. (4) and (5)
should apply to the concentration conductivity
a(c,T) as well as to the thermal conductivity; how-
ever, there are no measurements of a(c,T) from
which &(c,T) and a®c,T) can be computed. In the

absence of any means of estimating a®(c, T), the
linewidths measured for mixtures have, with one
exception, all been analyzed, assuming, as we
will assume in our analysis of the linewidth data
for mixtures, that a®(c, T)=0. The only authors
who have considered the effect of a nonzero bare
Onsager kinetic coefficient on linewidth data for
mixtures were Chang et al.,?® who found that if
aB were taken as a free parameter, then the fit
of their linewidth data for 3 methylpentane-ni-
troethane to the mode-mode-coupling theory would
be significantly better with nonzero a® than with
aB=0; however, this conclusion should be revised
because the mode-mode-coupling theory has been
refined subsequent to this analysis.

Now let us consider the form of the decay-rate
equation with the background contributions taken
into account, separating L into background and
critical parts:

T=(L¥X,)q*+(LI/X,) . (7
The susceptibility can also be written as the sum
of background and critical parts,*°

X, =XB+XC.

We will assume that the ¢ dependence of X¢ is
given by the Ornstein-Zernike form,

X°(q)=X°(q=0)/(1 +q*&), (8)

and we further assume, as is indicated by the
susceptibility and correlation-length data for
simple fluids and mixtures, that X% <<X¢ when
gtz 1. Then Eq. (7) becomes

I'=(L%X)q*(1 +4* )+ TXYX), 9)
where
re=(L&/x9)¢?, (10)

and the absence of ¢ subscript on X in (9) indi-
cates the g =0 or thermodynamic quantity.
Equation (9) is our working equation. The mea-
sured linewidth values I together with independent
data for X, L2, and & will be substituted into (9)
to deduce values for I'°, which will then be com-
pared with the theoretical predictions. The parti-
tion of X into critical and background parts is
somewhat arbitrary; however, over the tempera-
ture range of the linewidth data X and X€ are
equal within a few percent (see Sec. IID), so this
is a small correction, unlike the separation of
the thermal conductivity into critical and back-
ground parts. In discussing the full linewidth I
we shall at times refer to the first term on the
right-hand side of (9) as the “background part” of
the linewidth and the second term as the “critical
part,” even though the “critical part” should
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properly refer only to I'° [Eq. (10)].
For future reference we now write (9) separately
in the notation for simple fluids,

I'=(%/pc,)g*(1 +q%£3) +TC(cf/c,), (11a)

and for binary mixtures,
r= JB——) 421 +*8)
(0c/0A)p p

).,/ G8),, o

[As before, the meaning of the 3 C’s is (i) c,,
specific heat; (ii) superscript C, “critical”;
(iii) c in (3c/8A), concentration.]

B. Dynamic Scaling

The static-scaling-law ideas of Widom*® and
Kadanoff5° were extended into the domain of dy-
namics in 1967 by Ferrell et al.,® who treated the
problem of the A transition in superfluid helium.
Subsequently, Halperin and Hohenberg5? general-
ized the dynamic-scaling approach and applied it
to the gas-liquid critical point and other critical
systems. Recently, Hankey and Stanley®® have
shown that both static and dynamic scaling follow
from a generalized homogeneous function hypo-
thesis.

Halperin and Hohenberg assume that the charac-
teristic frequency of a system near the critical
point is described by a homogeneous function of
g and £7!, Near the critical point of a fluid the
dominant collective mode is the diffusive decay
of the order-parameter fluctuations; in this limit
the decay rate I is the characteristic frequency
that is given in the dynamic scaling theory by

I'=f(q,£Y)=q°f(1,1/q%), (12)

where z is the degree of homogeneity of f. The
known form of I in the hydrodynamic region,
I'=(L/X)q? leads to z=2+(y —§)/v where, as
before, v, ¥, and v characterize the divergences
in X, L, and &, respectively, as the critical point
is approached along either side of the coexistence
curve or along the curve corresponding to the
critical density of concentration. (In general, the
exponents could be different for the three paths,
but they are the same if static scaling is assumed.)

In the most general treatment of dynamic scaling
the behavior of the function f is completely un-
specified beyond the statement in Eq. (12). How-
ever, it is frequently assumed that f(q, £%) is
well behaved for all (g, £7!), except at the origin,
an assumption which yields for g£>>1

I'=Bq*, 13)

where the constant B applies both above and below
T,, everywhere within the region g£>>1.

C. Mode-Mode-Coupling Theory

The integral expression for the decay rate de-
rived by Kawasaki*® from a consideration of the
coupling between the different hydrodynamic modes
near the critical point is

re- il fa[(4) -(LE) )80
(14)

where G(§) = dkG (F)e* T, and G(F) is the den-
sity-density (or concentration-concentration)
correlation function; n* is the “high-frequency”
shear viscosity, and kg is Boltzmann’s constant.
Kawasaki evaluated the integral in (14) using the
Ornstein-Zernike (OZ) form for the correlation
function,

Gog(@) < (£72+¢7)72, (15)
obtaining

IC=(kyT/6mn’s £°) Ko(q £), (16a)
where

Ko(x)=%[1 +%% + (3 = x~!) arctanx]. (16b)

[In (15) and in subsequent expressions for the
correlation function, we omit proportionality fac-
tors independent of § or ¥, since they cancel in
(14).]

As mentioned previously, there is an ambiguity
in the interpretation of n* in Egs. (14) and (16).
In the integral expression that Kawasaki originally
derived for the decay rate, the viscosity appears
in the integrand; the simplified expression [Eq.
(14)] was obtained by replacing the wave-vector
and frequency-dependent viscosity by the constant
1%, which is an effective weighted average over
all viscous modes appearing in the intermediate
states.*® The correct interpretation of n’: requires
a self-consistent evaluation of both the viscosity
and the decay rate. Kawasaki and Lo first solved
the simultaneous integral equations involving the
viscosity and decay rate with the frequency de-
pendence of the viscosity neglected, but the non-
locality included.*® Recently Lo and Kawasaki
have extended this calculation, investigating the
importance of the frequency dependence or memory
effects, and they have deduced an expression
which relates n* to the macroscopic shear vis-
cosity n,, thus removing the ambiguity in the
shear viscosity.* They find

n*"t=R(q&)n3?, (17a)
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where
R(x)=[K(x)+ AK(x)] /K (x). (17b)

The term K(q£)/K,(q&), which describes the effect
of nonlocality on the viscosity (K/K,=1 if nonlocal
effects are neglected), is given numerically in
Fig. 3 of Kawasaki and Lo,*® and AK(q£)/K,(q¥),
which describes the effect of the frequency de-
pendence is given in Table I of Lo and Kawasaki.*
The viscosity correction factor R (g¢&) is shown in
Fig. 1, curve (a). Note that n* differs from 7,
even far from 7T,; in that region n* =7,/1.063.

In Kawasaki’s analysis of the order-parameter
fluctuations in a fluid, Dyson-type self-consistent
equations for the time correlations of the critical
fluctuations were derived, and Eq. (14) was then
obtained by evaluating the contributions of the two
lowest-order terms to the decay rate. Recently
Lo and Kawasaki?” have investigated the contribu-
tions of the four next-higher-order terms and have
found that the inclusion of these “vertex-correc-
tion” terms reduces Eq. (14) by 2.44% for g£<<1
and increases (14) by 0.40% for g£>>1. The
vertex correction V(g£), the ratio of the corrected
to the uncorrected decay rate, is shown by curve
(b) in Fig. 1, which was obtained by connecting the
limiting values of V(g£), V(») and V(0), by a
smooth curve. [A calculation of this small modifi-
cation to the theory for intermediate values of
g &£ would require the evaluation of a complicated
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FIG. 1. The ratio of the modified to the unmodified
theoretical decay rate is shown for three modifications
to the mode-mode-coupling theory: (a) R(g¢), the vis-
cosity correction [Kawasaki and Lo (Ref. 44)]; (b) V(q¢),
the vertex correction [Lo and Kawasaki (Ref. 46)]; (c)
C(qt), the effect of departures of the correlation func-
tion from the Ornstein-Zernike form, calculated for the
Fisher-Burford correlation function with 7 =0.1 [Swin-
ney and Saleh (Ref. 48)]; (d) H(gé) = R(q¢) V(g¢)Clgé),
the combined effect of the viscosity, vertex, and cor-
relation-function modifications.

integral expression—Eq. (2.10) in Ref. 47]. The
vertex correction to the decay rate is frequency
dependent, with the above values for g£<<1 and
g&>>1 applying only in the zero-frequency limit.
Because of the frequency dependence of the vertex
correction, the observed spectral line will in
principle deviate from the Lorentzian line shape,
but the correction is so small that the predicted
departures from the Lorentzian shape would be
very difficult to observe.

D. Decoupled-Mode Theory

Ferrell has calculated the critical behavior of
transport properties by factoring the currents
J(¢) in the current correlation functions in the
Kubo formulas, and then the Kubo formulas were
evaluated directly, a procedure which, as Ferrell
has pointed out, is equivalent to the mode-mode-
coupling theory without vertex corrections because
the absence of internal lines (the vertex correc-
tions) between two intermediate-state propagators
allows them to be factored within the Kubo inte-~
gral.®! Ferrell obtained for the critical part of
the decay rate

o  kpTq? f -(l (&-FF) . X
r __B_é__&rn’; @ at pra i G(F)etor,
(18)

where 7% is a constant, wave-number -independent
viscosity.® I the Ornstein-Zernike form is used
for the correlation function,

Goz(F) = [exp(~r/E)] /7, (19)

then Eq. (18) yields the same result [Eq. (16)]
that Kawasaki obtained with the mode-mode-cou-
pling theory.:%(2)

The fluctuation-dissipation or Kubo formulas
for the viscosity and decay rate are a pair of
coupled equations that in principle can be solved
self-consistently to obtain 1,(¢q, w) and I'%(q).
However, since the viscosity is only weakly de-
pendent on ¢, w, and €, a good first approxima-
tion for I'° can be obtained by replacing 7,(q, w)
in the decay-rate integral by a constant, “n*”;
this was the procedure followed in obtaining Eq.
(18).2 A more accurate expression for I'® can
of course be obtained by solving iteratively the
coupled equations for n, and I'. Recently, Perl
and Ferrell*®4® have considered an alternative
to such a direct attack on the coupled equations,
and they have shown that their approach leads to
a self-consistent refined expression for I'C, Perl
and Ferrell began with the observation that the
linewidth data for 3 methylpentane-nitroethane
are fairly accurately described by the empirical
expression
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I'¢=(kyT/167,)q%(q% + £}/, (20a)

where 7, is an adjustable parameter.*'%® This
expression for I'C was then used in evaluating the
Kubo integral for 7,(q, w), which in the hydro-
dynamic limit was found to have a critical part
given by

n€=1f(q =0, w=0)=(87,/157%)In(q, &),  (20b)

where ¢, is a free parameter to k2 determined

by fitting the macroscopic shear-viscosity data to
Eq. (20b). [Equation (20b) was also derived by
Kawasaki.*3] Finally, Perl and Ferrell used their
result for 7,(q, w) to evaluate the decay-rate
integral, obtaining the following refined expression
for T'C:

T = (kpT/6mn"E2) K o(q £), (21a)
where
wt _ply . M (8 dpk
= {1 I (55m) [ (el )”‘"5’}}
(21b)

and 7(q£) is a function given numerically.*® [Some
values of the function 7, which increases montoni-
cally with increasing g&¢, are 7(0)=~7(0.1)=-0.492,
7(1)=-0.357, 7(2)=-0.189, and 7(w)=7(100)
=0.090.]

Equation (21a) can be rewritten as

re= {f,,% la*(q? +£7212] % , (21c)
where

o) =31 +xipe[ L (x

—ia) arctanx]

x X

is Ferrell’s “dynamical scaling function,” * which
increases monotonically with increasing g&,
varying from o(0) =1 to o(e)=37=1.178, and 6(q&)
is the function which describes the g dependence
of neft,

v+ 3 () ) o).

The result of the Perl-Ferrell calculation is that
the effective viscosity has a weak ¢ dependence,
similar to that of o(q&), i.e., o(q£)/6(gq&)=~const.
Thus the refined theory [Eq. (21c)] predicts that
the empirical expression, Eq. (20a), should de-
scribe the linewidth data within a few percent, so
the calculation is self-consistent.

In Sec. V linewidth and viscosity data are used
to deduce 7, and q,,, respectively, and then the
refined decoupled-mode expression [Eq. (21)] is
compared with the results of linewidth measure-
ments for different fluids.
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E. Correlation-Function Modification

The integral expressions (14) and (18) for the
decay rate were evaluated using the Ornstein-
Zernike form for the correlation function, but
scattering experiments and the theoretical investi-
gations of the Ising model by Fisher and Burford®
have shown that there are small departures from
Ornstein-Zernike behavior near the critical point.
The correct asymptotic form for the correlation
function at the critical point is expected to be
r=@*M with 7~0.05 to 0.1, while for the Orn-
stein-Zernike theory 7 =0.

Fisher and Burford® (FB) found that correla-
tions in the Ising model are accurately described
by

Grs< (£72+ ¢2¢2)"2 /1672 + (1 + 3097 2], (22)
where ¢ =0.15+0.01, independent of the type of
lattice. Swinney and Saleh?®® have evaluated the

decay-rate integral using Gy, and the result
for the decay-rate ratio,

C(q8)=T°Gry, 4£)/T%Goz, a£), (23)

is given by curve (c) in Fig. 1 for n=0.1. The
decay-rate integral was also evaluated by Swinney
and Saleh*® and by Chang et al.?* for other forms
of the correlation function which have been used
in the analysis of data from scattering experi-
ments; however, Ggy is more satisfactory theo-
retically since, as explained in Ref. 54, it leads
to the correct asymptotic behavior at large »

both at the critical point and away from the criti-
cal point.

F. Mode-Mode-Coupling Theory
with Modifications

With the viscosity, vertex, and correlation-
function modifications included, the expression
for the decay rate (16) in the mode-mode-cou-
pling theory becomes

TC=(kyT/6mn, £3)K,(q£) H(q ), (24)

where the correction factor H(q&), which most
analyses of linewidth data have heretofore assumed
to be unity, is given by

H(q&)=R(q&)V(gE)C(q¥), (25)

and is plotted as curve (d) in Fig. 1. Although the
vertex correction has not been evaluated for inter-
mediate values of g&, and the correlation-function
correction is somewhat uncertain because the
correct form for the correlation function is not
well established, these two corrections are never-
theless both small, and we will consider them as
well as the nonlocal shear-viscosity correction

in our data analysis.
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In the hydrodynamic limit g £<<1, the function
K, simplifies to K,(x)=x* and (24) becomes

I'¢=1.052(k,T/6m1,£) ¢, (26)

which, if the temperature dependence of 7, is
neglected, is in accord with the Kadanoff and
Swift®® prediction I'C/q? ~ £°1,

In the opposite limit, g£>>1, K, (x)=(Gn)x3,
and (24) becomes

re- (i%,%—) R(48)a". (27)
Although Kawasaki and Lo find that R (¢¢) is in-
creasing fairly rapidly even for q£=20 [where
R(g¢) is equal to 1.38], R(q¢) is expected®® to
approach a constant in the extreme g£>>1 limit.
In the intermediate region where g£<1, K, be-
comes K,(x)=x2(1 +3x?); whence

IC=(kyT/6mn,)q*(1 + 342 E2) H(q£). (28)

This equation has sometimes been used®®-5” in the
past to determine £ from the slope of plots-of
I'°/q® vs %, with H(q&£) implicitly assumed to be
constant; however, it is now clear that this pro-
cedure is not valid, since H(gq¢) is rapidly varying
in this region (see Fig. 1).

In the mode-mode-coupling theory the macro-
scopic shear viscosity n, can exhibit an apparent
logarithmic divergence over some range of tem-
peratures, but 7, is expected to remain finite at
the critical point. It is difficult to distinguish
experimentally between a weak divergence and a
cusp at the critical point; existing viscosity data
can be fit equally well to either a cusp or a weak
divergence.5®~%% If the viscosity does remain
finite at the critical point, then (24) satisfies the
dynamic scaling assumption (12) with the degree
of homogeneity given by z =3.

A cusped behavior for the viscosity is described
by

Neg=Ag+A E%+..., (29)

where a>0. The dynamic scaling expression (12)
presumably describes the decay rate in the limit
in which higher-order terms such as the A, term
in (29) are negligible. Since the A, term in (29)
is clearly important in the temperature range of
existing linewidth data, it is difficult to test a
general functional form such as the dynamic scal-
ing expression (12). On the other hand, since
independent viscosity and correlation-length data
have been obtained for several fluids near the
critical point, the mode-mode-coupling expression
(24) can be tested directly with no adjustable pa-
rameters. (This is a valid test of the theory only
if the assumed form for the background subtrac-
tions is correct.)

loo

The equation for the critical part of the line-
width (24) can be rewritten as

I*=(1/q£PK,(qE)H(q¥), (30a)
where the “scaled” linewidth I'* is defined as
I'*= (6mn,/kpT)(T°/q°). (30b)

Thus the theory predicts that the experimental
data for T'™* [Eq. (30b)] for different temperatures
and scattering angles, obtained for various simple
fluids and binary mixtures, should all fall on a
single universal curve [Eq. (30a)] when the (di-
mensionless) quantity I'* is plotted as a function
of g&. This single curve is predicted to describe
the critical behavior not only along the critical
isochore and the coexistence curve, but also along
any other thermodynamic path in the critical re-
gion. In Sec. IV we test the mode-mode-coupling
prediction for all fluids for which £ and 7, have
been independently determined.

III. XENON AND CO, EXPERIMENTS

In this section we discuss the Rayleigh-line-
width experiments performed in our laboratory
on xenon and carbon dioxide along the critical
isochore and along the coexistence curve. The
experimental details discussed in Sec. IITA apply
to both fluids, except as noted. The experimental
results are reported in Sec. III B, and are com-
pared with other diffusivity and linewidth mea-
surements on xenon and CO, in Sec. IIIC. Sources
of auxiliary data which are used in the linewidth-
data analysis (Secs. IV and V) are discussed in
Sec. IIID.

A. Experimental Details

The lot analyses provided by the suppliers of the
fluids indicated an impurity content of less than
30 ppm for the xenon samples and less than 50 ppm
for the CO, samples.

Each sample cell, formed from 6 X6-mm square-
bore heavy-wall Pyrex tubing with a capillary
attached to one end, was evacuated and then filled
cryogenically with fluid. The capillary was per-
manently sealed with a gas torch. Two samples
of fluid were used in the xenon experiment: the
first was used for most of the data above 7,%:5+¢
and the second for the data along the coexistence
curve,?1° although some measurements were also
performed above T, with the second sample. In
the CO, experiments two samples were also used.
All of the CO, data obtained with the second sample
and much of the data obtained for the second xenon
sample have not been previously reported. For
each fluid there was no detectable dependence of
the results on the sample used.
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The mean density of fluid in the cell relative
to the critical density was determined by observing
the change in height of the meniscus with tempera-
ture over a 20-K range and comparing the results
to the height dependence as a function of relative
mean density calculated from independent density
data.

Using the density data of Garside e? al.* (see
also Cornfield and Carr®), we found from mea-
surements of the meniscus height that the density
of the first xenon sample was 0.3 +0.1% below
the critical density, and the density of the second
sample was 3.2 +0.3% above the critical density.
The mean density of the primary CO, sample was
0.3+0.1% above the critical density, as deter-
mined using the Guggenheim®® corresponding -
states relation. The density of the second CO,
sample was not measured, but this sample was
used only very near T,(T> T,), where the location
of the critical isochore was determined from
linewidth measurements as a function of height.

The sample cell was suspended in a tempera-
ture-controlled oil bath having an index of refrac-
tion matched to the glass cell to 1 part in 10? at
6328 A near the critical temperature of the fluid.
The temperature of the oil bath was maintained
to £0.0005 K for periods of days for measure-
ments on the second xenon sample.

Gravitationally induced density gradients near
the critical temperature made it necessary to
measure the linewidth as a function of height in
the sample cell, and the minimum in the line-
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FIG. 2. I'/g? as a function of the beam height in the
xenon sample cell (9 =90°). The linewidth minimum is
assumed to correspond to the critical isochore. (a) AT
=0.018 K; (b) AT =0.700 K.

width as a function of height (at a fixed tempera-
ture and scattering angle) was taken to be the
value on the critical isochore.? Curve (a) in Fig. 2
shows the height dependence of the linewidth for
xenon at a scattering angle of 90° for AT =0.018 K;
the averaging due to the finite beam diam (0.2 mm)
is small at this temperature but becomes signifi-
cant at temperatures within a few millidegrees
from T,. No height dependence of the linewidth
was observable far from T,, as curve (b) in Fig.

2 illustrates, but height scans were necessary in
all measurements within 0.2 K from 7.

The uncertainties in the mean densities of our
samples had negligible effect on measurements
in the hydrodynamic region, where the linewidth
is only weakly dependent on density (cf. Fig. 8 of
Ref. 67). Furthermore, in the critical region a
minimum in the linewidth as a function of height
could always be located so that the mean density
was unimportant. Hence the uncertainties in the
mean densities had little effect on the linewidth
measurements.

Temperature differences were measured with a
Fenwal ceramic thermistor whose resistance was
measured to 2 parts in 10 with a Wheatstone
bridge; the thermistor was calibrated against a
me