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The decay rate of the order-parameter fluctuations in fluids near the critical point can be determined

by measuring the linewidth of the central component in the spectrum of the scattered light, and many

such experiments have been reported in the past eight years. In the past two years the dynamical

theories developed by Kawasaki and Ferrell to describe the decay rate have been modificed to take into
account the anomaly in the shear viscosity and the efFect of departures of the correlation function from
the Ornstein-Zernike form, and at the same time new accurate measurements of the parameters which

enter the theory (the correlation length f and the shear viscosity g, ) have been reported. Thus we are
able to present here an absolute comparison of the refined mode-mode coupling and decoupled-mode
theories with the linewidth data for seven fluids: carbon dioxide, xenon, sulfur hexafluoride, isobutyric

acid-water, 3 methylpentane-nitroethane, anilinwyclohexane, and 2,6 lutidine-water. These linewidth data
were obtained in many difFerent laboratories over the past few years; however, in addition to linewidth

data previously reported, we also include in our analysis new data which we have obtained for carbon
dioxide and xenon and a tabulation and detailed error analysis for all our data for these two fluids.

The theories describe only the "critical part" of the decay rate I; hence the nonanomalous

background contributions are first subtracted from the measured linewidths to obtained I . Then it is

shown that the resultant values for a quantity we call the "scaled linewidth, " I ~ = (6eq, I"clk~Tq'),
are described by a single universal curve as a funtion of q$, for alj fluids and every thermodynamic

path that has been investigated near the critical point. This universal curve is described remarkably well

by the modified mode-mode-coupling expression of Kawasaki and Lo and the similar

decoupled-mode-theory expression of Perl and Ferrell. The accuracy of this comparison, which involves

no adjustable parameters, is limited to 10% by the uncertainties in the background corrections,
linewidths, viscosities, and correlation lengths, and by the uncertainties in the various modifications to
the theories. The two theories difFer significantly only in the extreme nonhydrodynamic region (q $ &&1),
where the decoupled-mode values for I ~ are 10% smaller than those predicted by the
mode-mode-coupling theory. Although the available data in the extreme nonhydrodynamic region appear
to be described somewhat better by the decoupled-mode theory than the mode-modewupling theory,
this result is suggestive rather than conclusive since the data in this region are sparse and exhibit

considerable scatter.

As a system approaches a critical point the
fluctuations of the order parameter become very
large as a consequence of the divergence of the
generalized susceptibility for the system. For a
simple fluid the order parameter is p —p, (the
difference between the density and the critical
density), and the susceptibility is the isothermal
compressibility, xr =p~(ap/SP)r =p —'(ep/Sp)r
(where p. is the chemical potential and P is the
pressure). For a binary mixture the order pa-
rameter is c —c, (the difference between the con-
centration and the critical concentration), and the
susceptibility is given by (sc/sn. )r ~, where n. is
the difference between the chemical potentials of
the two components, L = p., —p.~. The large fluctua-
tions in the order parameter near the critical
point cause the intense scattering known as critical
opalescence, first observed over 100 years ago.

The spectrum of the light scattered by a fluid
near the critical point contains three components,

an intense central component known as the Bay-
leigh line or the quasielastic component, and the
Brillouin doublet, two much weaker components
(symmetrically shifted with respect to the incident
frequency), which arise from scattering from
sound waves. In a simple fluid the intense central
component arises from the diffusive decay of
density fluctuations, while in a mixture this com-
ponent is caused primarily by the diffusive decay
of the concentration fluctuations. In either case,
the width of the central component, which is
essentially the decay rate of the order-parameter
fluctuations, is given (for scattering vector q)
by

r = (I./x) q',

where I is an Onsager kinetic coefficient and X
is a gyneralized susceptibility. In 1954 Van Hove'
pointed out that since X diverges strongly as the
critical point is approached, while L was pre-
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sumed to be constant near the critical point, the
decay rate I' should therefore go to zero as the
Critical point is approached. This explained the
"critical slowing down" that had been frequently
reported by exyerimentalists: as the cx'itical
point is approached, systems require increasingly
Longer times to reach equilibrium.

Direct measurements of I' mere not possible
until the mid 3.960s when the technique of light-
beating or optical-mixing spectroscopy was de-
veloped, using a laser as a light source. This
technique has been utilized to detex'mine the line-
midth I" of the central comyonent of the scattered
light for many Quid systems, and the experiments
have revealed much new information about the
dynamics of Quids near the cxitieal point. For
example, it is nom realized that the kinetic coeffi-
cient I. is not well behaved, as previously pre-
sumed, but diverges strongly as the critical point
is approached. ' "Another result not anticipated
when the first linewidth experiments were per-
formed is that very near the critical point, when
the range g over which the fluctuations in density
(or concentration) are correlated becomes so large
that q)»1, then I' depends only on q and is inde-
pendent of the temperature.

In the late 1960s Kawasaki and Kadanoff and
Swift deveLoped the "mode-mode-coupling" theory
to describe the dynamics of systems near the
critical point; an alternative approach to the cal-
culation of the dynamical properties was taken by
Ferrell, whose "decoupled-mode" theory yielded
in most cases the same predictions as the mode-
mode-coupling theory. Although these theories
wexe rather successful in describing the principal
results of the experimental investigations of the
dynamics of critical systems, it was nevertheless
clear that the theoretical expressions derived for
the decay rate were incomplete because the cal-
culations neglected the vertex corrections, the
wave number and frequency dependence of the
viscosity, and also the effects of departures from
Ornstein-Zernike correlations. The extent to
which the various corrections would inQuence the
theoretical results was unknown. Moreover, the
observed agreement between the Kawasaki-Ferrell
expression for the decay rate and the measured
Linemidths was achieved by adjusting two param-
etex's in the theory.

Recently the major deficiencies in the theories
have been rectified by new mode-mode calcula-
tions of Lo and Kawasaki and decoupled-mode
calculations of Perl and Ferrell. In addition,
absolute tests of the theories have now become
possible because of new independent measurements
of the parameters which enter the theories, the
correlation length and the shear viscosity. In the

I. HISTORICAL BACKGROUND

The subject of Rayleigh-linewidth measurements
in Quids near the critical yoint has been reviewed
in numerous articles (Benedek, "Cummins and
Swinney, '~ Chu, '3 CumInins, '4 Sminney, Henry,
and Cummins ) since the first experiments (Alpert
et a/. ,"Ford and Benedek") were reported in
1965. Therefore, this section will be mainly
limited to a brief discussion of recent develop-
ments.

In the hydrodynamic region (where q $«1) the
spectrum of the light scattered by a fluid can be
obtained from a solution of the linearized equa-
tions of hydrodynamics. The theory predicts
that the central component in the spectrum should
have the Lorentzian line shape and a half-width
at half-maximum given by

q* (binary mixture),

(simple fluid).

(2a)

(2b)

Thus the Onsager coefficients of Eq. (I) are, for
a binary mixture and a simple Quid, respectively,
the concentration conductivity e and the thermal
conductivity X; the appropriate susceptibility for a
simple Quid ls the constant-pressure speclflc

present paper me present a comparison of the
predictions of the refined mode-mode-coupling
and decoupled-mode theox'ies with Rayleigh-Line-
width data that have been obtained for seven dif-
ferent fLuids in many different laboratories over
the past few years; thus the theories are tested
for a variety systems, using so adjustable param-
eters.

In Sec. I me review briefly the recent theoretical
and experimental developments on the subject of
the decay rate of order-parameter Quctuations
in fluids near the critical point. In Sec. II we
present the resu1ts of the new mode-mode calcu-
lations of Lo and Kawasaki and the decoupled-
mode calculations of Perl and Ferrell. In Sec. ID
we analyze in detail our CO, and xenon linemidth
data, with particular attention given to sources
of exror. In Sec. IV our CO, and xenon linemidth
data and the Linewidth data for five other Quids
(obtained in experiments in many laboratories)
are comyared with the predictions of the refined
mode-mode-coupling theory, and in Sec. V the
linemidth data are compared with the refined de-
coupled-mode theory. Finally, in Sec. VI me

present the conclusions drawn from our compari-
son of the results of Rayleigh-linewidth measure-
ments mith the theories which have been developed
to describe the dynamical behavior of fluids near
the eritieal point.
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heat c~, which is yroyortional to x~ near the criti-
cal point. The magnitude of the scattering vector
q is given by q=2nK~sin-, '8, where n., Ko, and 8
are the refx active index, the magnitude of the
wave vector of the incident light in vacuum, and
the scattering angle, respectively.

Linemidth measurements in simple fluids and
mixtures have shomn that F does approach zero
as the critical point is approached, as expected
from the Van Hove theory. The asymptotic be-
havior of the diffusion coefficient D = I'/q' of a
simple fluid at the critical density (or a mixture
at the critical concentration) has been found to be
described in the hydrodynamic region by a simple
exponential law,

D-e"-~ (3)

where c -=sT/T, (with aT =
~
T - p, ~), and y and p

are, x"espectively, the exponents which chaxacter-
ize the divergences in X and L.

The linemidths measured in five binary mixtures
(aniline-cyclohexane ' "isobutyric acid-water, "
N-hexane-nitrobenzene, ~ phenol-mater, "and 3
methylpentane-nitroethane "~ 2') were found to be
described in the hydrodynamic region by the simple
exponential law (3) with y —P =0.63, but the ex-
ponents that mere obtained for the simyle Quids
Co, ' and xenon4 were somewhat higher, y —P
=0.'74, and for SF6 the exponent was markedly
different, y -p =1.26,"~' contrary to the expected
"universality" in critical behavior.

The larger exponents observed for the pure
Quids mas a matter of serious concern because
the concept of universality was well established
from numerous measurements of the static proper-
ties of many diverse systems near the critical
point. It was suggested that perhaps the linewidth
measurements were affected by impurities in the
samples, but extensive systematic studies by
Bak and Goidburg, ~~ (on phenol-water with hypo-
phosphorous acid as an impurity} and by Bak,
Goldburg, and Pussy ~ (on bromobenzene-water
with acetone as an impurity) showed that even for
fairly high impurity concentrations the critical
behavior is unchanged, except for a change in T, .

It mas also suggested that the hydrodynamic
expression for I' [Eq. (I)] might not apply near
the critical point qven when q & «1; however,
there is one Quid, CO„ for which the diffusivity
has been determined in the critical region both
by linewidth measurements and by conventional
thermodynamic techniques, and in the temperature
range common to both sets of data the diffusivities
obtained by the different techniques are in excel-
lent agreement, thus corroborating Eq. {1}(see
Sec. IIIC and Ref. 2).

In 1971 Sengers~ suggested that the apparently

higher exponents observed for the pure fluids
could be explained by taking into consideration the
nondivergent background contribution to the ther-
mal conductivity. Because of the large contribu-
tion of nonanomalous background terms, the be-
havior of systems in the temperature region
readily accessible to experiment may be very
different from the true asymptotic behavior, which
is presumably describable by the simple exponen-
tial laws. (See the discussion in the 196V review
by Fisher. ~) Thus the nonsingular background
contributions must first be subtracted if the data
are to be analyzed over extended temperature
ranges.

Sengers and Keyes'~ found that when the CO,
data were analyzed with the background thermal
conductivity taken into account, the exponent y —P
mas reduced from O.VS to 0.62, and in a similar
analysis of the xenon data we found that y —P was
reduced from O.V5 to 0.64.6 However, Benedek
et al.~ found that the thermal-conductivity back-
ground correction did not bring their SF, data
into agreement with the results of other Quids
(see also Refs. 33 and 33). The SF, puzzle has
recently been solved by three nem independent
experiments (I.angley and co-workers'4 ";Lim
and Sminney", and Feke, Hawkins, Lastovka,
and Benedek'6), all in agreement with one another
and in strong disagreement with the yx evious SF6
data. The new SF6 linemidth data, after sub-
traction of the background terms, yield y —P
=0.61 +0.04; hence SF, does indeed exhibit the
same critical behavior as other Quids.

The occurrence of critical anomalies in the
transport coefficients mas predicted in 1962 by
Fixman from a consideration of the interaction
between transport currents and the spontaneous
density Quctuations. ~ This concept of Fixman
was reconsidered in 1966 by Kawasaki, who pro-
posed a different method of calculation, starting
from the correlation-function expressions for the
transport coefficients (Kubo formulas). " The
currents Z(t) in the correlation functions for the
transport coefficients, f(&(0)Z(t}}dt, were ex-
panded in a power series in the macroscopic
variables A, , whose equations of motion (as well
as the coefficients in the power-series expansion}
must be deduced from the macroscopic equation
of motion. In 1968 Kadanoff and Swift extended
Kawasaki's theory and deduced the temperature
dependence of the transport coefficients. s'

In the Kadanoff-Swift-Kawasaki theory the ma-
croscopic normal modes {the "bare propagators")
are the solutions to the linearized hydrodynamic
equations, and the divergences in the transport
coefficients are calculated by considering the
breakup on one hydrodynamic mode (a heat Qow,
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viscous flow, or sound mode} into a multiplicity of
other modes, with coupling constants that are
obtained by an involved projection-operator tech-
nique. "~' This approach to the calculation of the
critical behavior of the transport coefficients is
now called the "mode-mode-coupling theory. "

From their mode-mode-coupling calculation,
Kadanoff and Swift predicted that D should exhibit
the same critical behavior as the inverse correla-
tion length: D -

$ '. The divergence of ( on the
critical isochore is described by E = go& '; hence
the prediction was that the exponent y —g, which
describes the critical behavior of the linewidth,
shouM be equal to the exponent v. The value of
y —g determined in linewidth measurements agrees
well vrith the value v =0.63 obtained from measure-
ments of the angular dependence of the intensity
of the scattered light. Thus both theory and ex-
periment indicate that y —P = 0.62, which, together
vrith the accepted value of y, y =1.23, yields the
exponent characterizing the divergence in the
thermal conductivity or concentr ation conductivity,
g =0.60. This strong divergence in the conductiv-
ity was the first important new result obtained
from linewidth measurements near the critical
point.

In light-scattering experiments very near the
critical point, the range g of the Quctuations be-
comes comparable to q ~, and the ordinary lavrs
of hydrodynamics must be supplanted by a more
general dynamical theory. In 1969 Kawasaki '
used the mode-mode-couyling approach to derive
an expression for the linevridth that is applicable
over the entixe domain from the hydrodynamic
region (qg «I) to the region very near the critical
point (q(»1), The same expression for the

newidth vras subsequently dex'ived by Ferrell, 4x

vrhose approach was based on the fluctuation-
dissipation theorem. In the Kawasaki-Ferrell
equation [Eg. (16}, Sec. II] the linewidth is ex-
pressed as a function of the shear viscosity q,
and the correlation length g.

In 1969 Berge, Calmettes, Laj, and Volochine~s
extended their linewidth measurements on aniline-
cyclohexane fi.nto the extreme nonhydrodynamic re-
gime, where q)»1, and subsequently this region
has been investigated for other mixtures and simple
Quids. The measured linewidths, after the sub-
traction of the background, have been found to be
described well by the Kawasaki-Ferrell expres-
sion; hovrever, for most systems this comparison
was made taking q, and ( (or at least Fo) as adjust-
able yax'ameters, since they were not known from
independent measurements (see, e.g. , Refs, 4, 16,
and 2V). On the other hand, in those systems for
which independent measurements of g and q, vrere
performed {see, e.g., Refs. 6, 28, and 42) the theory

vras found to yield linevridth values near T, larger
than those measured if the background viscosity
wex e used for q„but the predicted linewidths
near T,

' would be too small if the theory was inter-
preted using the full measured macroscoyic
values of the shear viscosity for g, .

In the past two years Kavrasaki and Lo" ~ and
also Perl and Ferrell~ ~6 have considered the
problem of the ambiguity in the interpretation of
the "high-frequency" shear viscosity that appeared
in the decay-rate equation, and they have derived
expx'essions relating the decay rate to the macro-
scopic shear viscosity, thus removing the am-
biguity. There have also been two other x'ecent
modifications to the theory: (i}I.o and Kawasaki4'
have considered the effect of vertex corrections,
which were not included in Kawasaki's original
development of the theory, and (ii} Swinney and
Saleh ""have evaluated the Kawasaki-Ferrell
decay rate integral for more realistic forms of
the correlation function than the Ornstein-Zernike
form.

These recent refinements of the theory and new
correlation-length and viscosity data obtained
within the past year warrant a new analysis of the
linevridth data. In the present paper we analyze
all the linewidth data for Quids for which inde-
pendent q, and $ data exist, testing particularly
the prediction of the mode-mode-coupling theory
that a particular dimensionless combination of
the measured quantities, 6wg, I'o/ksTq', where
I'c is the critical part of the linewidth, should be
described by the same universal function of qE
for all simple Quids and mixtures, for any thermo-
dynamic path.

II. THEORY

A. Background Corrections

The theories recently developed to describe
the critical behavior of transport properties near
the critical point ayyly only to the "critical" part
of the transport property; therefore, the non-
critical "background" contribution to each tr ans-
port coefficient (which is termed the "bare" kinetic
coefficient by Kawasaki) must first be subtracted
from the measured properties before the data
can be comyared with the theoretical predictions.
Thus we can write any transport property t,,(u)
{where u, for example, could be the temperature
or density} as the sum of two terms,

t.,{u)=t s(u)+t, c(u), (4)

where the background part L~ is the bare kinetic
coefficient (the value that t. would have in the
absence of any critical anomaly), and the critical
part L~ is the quantity treated in recent theoretical
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X(p) =X(p, T)-A(0, T) (5)

[where A(p, T) is the thermal conductivity at a
density p and temperature T and X(0, T) is the
thermal conductivity in the dilute gas limit], is
independent of temperature for temperatures and
densities up to approximately twice the critical
temperature and density. The Sengers-Keyes
ansatz is that the background thermal conductivity
in the critical region is given by

~'(p, T) =i(p)+~(0, T), (6)

where A. (p) is determined using data obtained au ay
from the critical region. A similar expression
is assumed to hold for the background viscosity.

Linewidth measurements indicate that the back-
ground contribution to the conductivity is far less
important for mixtures than for pure fluids, and
de Gennes ""'has argued that this is plausible on
physical grounds. It seems reasonable to expect
that expressions analagous to Egs. (4) and (5}
should apply to the concentration conductivity
a(c,T) as well as to the thermal conductivity; how-
ever, there are no measurements of a(c, T) from
which a(c,T) and age, T) can be computed In the.

developments. In the hydrodynamic region (i.e.,
for q =0 and ar =0}the critical part diverges to
infinity or converges to zero as the critical point
is approached,

L(u) -Au ~ (u -0'),
where P is the exponent that characterizes the
singularity and A is the amplitude of the singular-
ity. As the region very near the critical point
(where q(&1) is approached, Lc will in general
become q dependent; this is indicated explicitly
by the q subscripts in Eq. (4).

The partition of a transport coefficient into
background and critical parts is clearly a crucial
part of the data analysis in any experimental in-
vestigation of the dynamics of a system near the
critical point. In such experiments (which include,
for example, measurements of the spin-diffusion
rate in magnets and the sound velocity and attenua-
tion in fluids, as well as measurements of the
viscosity, conductivity, and diffusivity), a mean-
ingful comparison between theory and experiment
can be made only if a systematic procedure can
be developed for estimating the bare Onsager
kinetic coefficient. For the thermal conductivity
and shear viscosity of a pure fluid, Sengers and
Keyes' have developed a method for estimating
As and qf using data obtained far from the critical
point. The procedure is based on the empirical
result, frequently used in the engineering litera-
ture, that the "excess" thermal conductivity,

absence of any means of estimating as(c, T), the
linewidths measured for mixtures have, with one
exception, all been analyzed, assuming, as we
will assume in our analysis of the linewidth data
for mixtures, that ns(c, T) =0. The only authors
who have considered the effect of a nonzero bare
Onsager kinetic coefficient on linewidth data for
mixtures were Chang et al. ,"who found that if
n~ were taken as a free parameter, then the fit
of their linewidth data for 3 methylpentane-ni-
troethane to the mode-mode-coupling theory would
be significantly better with nonzero u~ than with
a~=0;however, this conclusion should be revised
because the mode-mode-coupling theory has been
refined subsequent to this analysis.

Now let us consider the form of the decay-rate
equation with the background contributions taken
into account, separating L into background and
critical parts:

I"= (Ls/X, ) q + (Lc/X, )qm. (7)

The susceptibility can also be written as the sum
of background and critical parts, '

X =X~+Xa'

We will assume that the q dependence of X~ is
given by the Ornstein-Zernike form,

X'(q) =X'(q =0)/(1+q'~'), (8)

and we further assume, as is indicated by the
susceptibility and correlation-length data for
simple fluids and mixtures, that X «X, when
q$R 1. Then Eq. (7}becomes

I'= (L /X)q'(1 +q'~')+ I'(X'/X),
where

I.c= (L /'X )qa

(9)

(10)

and the absence of q subscript on X in (9) indi-
cates the q =0 or thermodynamic quantity.

Equation (9) is our working equation. The mea-
sured linewidth values I' together with independent
data for X, L~, and $ will be substituted into (9}
to deduce values for I'~, which will then be com-
pared with the theoretical predictions. The parti-
tion of X into critical and background parts is
somewhat arbitrary; however, over the tempera-
ture range of the linewidth data X and X~ are
equal within a few percent (see Sec. III9}, so this
is a small correction, unlike the separation of
the thermal conductivity into critical and back-
ground parts. In discussing the full linewidth I'
we shall at times refer to the first term on the
right-hand side of (9) as the "background part" of
the linewidth and the second term as the "critical
part, " even though the critical part" should
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properly refer only to I'c [Eq. (10)].
For future reference we now write {9)separately

in the notation for simple Quids,

mhere the constant 8 applies both above and below
T„everywhere within the region qg»1.

C. Mode-Mode-Coupling Theory
I'=(& /W' )q*(1+q'0)+I' (& /& ),

and for binary mixtures,

(11a)
The integral expression for the decay rate de-

rived by Kawasaki4 from a consideration of the
coupling between the different hydrodynamic modes
near the critical point is

(lib)

[As before, the meaning of the 3 C's is (i) c»
specific heat; (ii) superscript C, "critical";
(iii) c in (sc/sa), concentration. ]

8. Dynamic Scaling

The static-scaling-law Meas of Widom4' and
KadanofP mere extended into the domain of dy-
namics in 196V by Ferrell et al. ,

s~ who treated the
problem of the ~ transition in superfluid helium.
Subsequently, Halperin and Hohenberg" general-
ized the dynamic-scaling approach and applied it
to the gas-liquid eritieal point and other critical
systems. Recently, Hankey and Stanleys' have
shown that both static and dynamic scaling follow
from a genera1ized homogeneous function hypo-
thesis.

Halperin and Hohenberg assume that the charae-
teristie frequency of a system near the critical
point is described by a homogeneous function of
q and $ '. Near the critical point of a Quid the
dominant collective mode is the diffusive decay
of the order-parameter fluctuations; in this limit
the decay rate I' is the characteristic frequency
that is given in the dynamic scaling theory by

I'=f(q, &
')=q'f(1, 1/q(),-

where z is the degree of homogeneity of f. The
known form of l in the hydrodynamic region,
I'=(L,/X)q*, leads to z = 2+(y f) /v w-here, as
before, y, g, and v characterize the divergences
inX, I., and E, respectively, as the critical point
is approached along either side of the coexistence
curve or along the curve corresponding to the
critical density of concentration. In general, the
exponents could be different for the three paths,
but they are the same if static scaling is assumed. }

In the most general treatment of dynamic scaling
the behavior of the function f is completely un-
specified beyond the statement in Eg. (12}. How-
ever, it is frequently assumed that f (q, g ') is
well behaved for all (q, $ ')„except at the origin,
an assumption mhich yields for qg»1

&„(q)"(( '+q*) ',

obtaining

I'c = (Oar/6zq*, g') K,(q $), (16a)

K,(z) =-,'[I+a'+(x'-x ') arctanx]. (16b)

[In (15}and in subsequent expressions for the
correlation function, we omit proportionality fac-
tors independent of q or r, since they cancel in
{14}.]

As mentioned previously, there is an ambiguity
in the interpretation of q~ in Eqs. (14}and (16}.
In the integral expression that Kawasaki originally
derived for the decay rate, the viscosity appears
in the integrand; the simplified expression [Eq.
(14)] WRS obtained by 1'eplRcing the wave-vector
and frequency-dependent viscosity by the constant
q*, , mhich is an effective weighted average over
all viscous modes appearing in the intermediate
states. 40 The correct interpretation of q*, requires
a self-consistent, evaluation of both the viscosity
and the decay rate. Kamasaki and Lo first solved
the simultaneous integral equations involving the
viscosity and decay rate with the frequency de-
pendence of the viscosity neglected, but the non-
loeality included. 4S Recently Lo and Kawasaki
have extended this calculation, investigating the
importance of the frequency dependence or memory
effects, and they have deduced an expression
which relates q*, to the macroscopic shear vis-
cosity q, , thus removing the ambiguity in the
shear viscosity. ~ They find

n" '=&(q5)n. ',

a.r y„„- (q)' (q i)' c(i-i)

(14)

where G(g) = Jdka{r)e"', and G(r) is the den-
sity-density (or concentration-concentration)
correlation function; q*, is the "high-frequency"
shear viscosity, and kz is Boltzmann's constant.
Kawasaki evaluated the integral in (14) using the
Ornstein-Zernike (OZ) form for the correlation
function,
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FIG. 1. The. ratio of the modified to the unmodified
theoretical decay rate is shown for three modifications
to the mode-mode-coupling theory: (a) R (q$), the vis-
cosity correction [Kawasaki and Lo (Ref. 44)]; (b) V(qg),
the vertex correction tLo and Kawasaki (Ref. 46)]; (c)
C(qg), the effect of departures of the correlation func-
tion from the Ornstein-Zernike form, calculated for the
Fisher-Burford correlation function with g =0.1 [Swin-
ney and Saleh (Ref. 48)]; (d) H(q() = R(qg) V(q() C(qg),
the combined effect of the viscosity, vertex, and cor-
relation-function modifications.

where

R(x}=[K(x)+ nK(x)] /K, (x). (IVb)

The term K(qg)/K, (qg), which describes the effect
of nonlocality on the viscosity (K/K, =1 if nonlocal
effects are neglected), is given numerically in
Fig. 3 of Kawasaki and Lo,4S and AK(q()/Ko(q (),
which describes the effect of the frequency de-
pendence is given in Table I of Lo and Kawasaki. ~
The viscosity correction factor R (qg) is shown in
Fig. 1, curve (a). Note that g*, differs from q,
even far from T„ in that region g*, = q, /1.063.

In Kawasaki's analysis of the order-parameter
fluctuations in a fluid, Dyson-type self-consistent
equations for the time correlations of the critical
fluctuations were derived, and Eq. (14) was then
obtained by evaluating the contributions of the two
lowest-order terms to the decay rate. Recently
Lo and Kawasaki4~ have investigated the contribu-
tions of the four next-higher-order terms and have
found that the inclusion of these "vertex-correc-
tion" terms reduces Eq. (14) by 2.44% for q)«1
and increases (14) by 0.40% for qt'»1. The
vertex correction V(qg), the ratio of the corrected
to the uncorrected decay rate, is shown by curve
(b) in Fig. 1, which was obtained by connecting the
limiting values of V(q $}, V(~} and V(0}, by a
smooth curve. [A calculation of this small modifi-
cation to the theory for intermediate values of
q$ would require the evaluation of a complicated

(18)

where q*, is a constant, wave-number-independent
viscosity ~ If the Ornstein-Zernike form is used
for the correlation function,

Gox(r) ~ [exp(~/$)]/r, (19)

then Eq. (18) yields the same result [Eq. (16)]
that Kawasaki obtained with the mode-mode-cou-
pling theory. "'""

The Quctuation-dissipation or Kubo formulas
for the viscosity and decay rate are a pair of
coupled equations that in principle can be solved
self-consistently to obtain q, (q, u&} and I'c(q}.
However, since the viscosity is only weakly de-
pendent on q, (d, and e, a good first approxima-
tion for I'c can be obtained by replacing g, (q, &u)

in the decay-rate integral by a constant, "g*,";
this was the procedure followed in obtaining Eq.
(18).~ A more accurate expression for I'c can
of course be obtained by solving iteratively the
coupled equations for g, and I'~. Recently, Perl
and Ferrell~ ' have considered an alternative
to such a direct attack on the coupled equations,
and they have shown that their approach leads to
a self-consistent refined expression for 1 ~. Perl
and Ferrell began with the observation that the
linewidth data for 3 methylpentane-nitroethane
are fairly accurately described by the empirical
expression

integral expression —Eq. . (2.10) in Ref. 4V]. The
vertex correction to the decay rate is frequency
dependent, with the above values for q$ «1 and
qg»1 applying only in the zero-frequency limit.
Because of the frequency dependence of the vertex
correction, the observed spectral line will in
principle deviate from the Lorentzian line shape,
but the correction is so small that the predicted
departures from the Lorentzian shape would be
very difficult to observe.

D. Decoupled-Mode Theory

Ferrell has calculated the critical behavior of
transport properties by factoring the currents
J(t) in the current correlation functions in the
Kubo formulas, and then the Kubo formulas were
evaluated directly, a procedure which, as Ferrell
has pointed out, is equivalent to the mode-mode-
coupling theory without vertex corrections because
the absence of internal lines (the vertex correc-
tions) between two intermediate-state propagators
allows them to be factored within the Kubo inte-
gral. ~ Ferrell obtained for the critical part of
the decay rate
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I'c = (hB T/16', )q*(q*+ g ')('", (20a) E. Correlation-Function Modification

whexe q, is an adjustable parameter ~ ~e Thi
expression for I'c was then used in evaluating the
Kubo integral for q, (q, (d), which in the hydro-
dynamic limit was found to have a critical part
given by

q
c-=pc(q = 0, &u = 0) = (8(//, /16v') In(qB t'), (aob)

where q~ is a free parameter to h. determined
by fitting the macroscopic shear-viscosity data to
E(I. (aob). [Equation (20b) was also derived by
Kawasaki. ~'] Finally, Perl and Ferrell used their
result for q, (q, &o) to evaluate the decay r-ate

integral, obtaining the following refined expression
for I'~.

The integral expressions (14) and (18}for the
decay rate were evaluated using the Ornstein-
Zernike form for the correlation function, but
scattering experiments and the theox etical investi-
gations of the Ising model by Fisher and Burford''
have shown that there are small departures from
Ornstein-Zerrdke behavior near the critical point.
The correct asymptotic form for the correlation
function at the critical point is expected to be
r &"')', with q ~ 0.05 to 0.1, while for the Orn-
stein-Zernike theory q =0.

Fisher and Burford~ (FB) found that correla-
tions in the Ising model are accurately described
by

I' = (u, rj6rq."P)Z,(q g), (21a) Gps" ($ '+ 0'q'}B'*/[t *+(I+Bey*)q*l, (22)

where

pC B~ [ B( B
p O'P/B] +(q'k)

8(q()
(21c)

o'(x) =~(1+xB) ~ —+ ———arcta~1 1
XR X XR

is Ferrell's "dynamical scaling function, "~ which
increases monotonically with increasing q(,
varying from o(0) =1 to (x(~) =-',v =1.1VS, and 8(qt')
is the function which describes the q dependence
of pe

e(x(=1+ (, la ( . ..) +r(x('g~ 8 XqB/q

The result of the Perl-Ferrell calculation is that
the effective viscosity has a weak q dependence,
similar to that of c(q&), i.e., c(q()/8(q))~const.
Thus the refined theory [E(I. (21c)] predicts that
the empirical expression, E(I. (20a}, should de-
scribe the linewidth data within a few percent, so
the calculation is self-consistent.

In Sec. V linewidth and viscosity data are used
to deduce g, and q~, respectively, and then the
refined decoupled-mode expression [E(I. (21)] is
compared with the results of linewidth measure-
ments for different fluids.

eff B ~& qD ~
q', =q, 1+ B 18, ln, ,„„„,+ r(q()

'g~ s ( +q

(21b)

and r(q g) is a function given numerically. ~B [Some
values of the function r, which increases montoni-
cally with increasing qt', are v (0)= r (0.1)= -0.492,
T(1) = -0.357, v(2) = -0.189, and 7'(~)= v'(100)
=O.O9O. ]

Equation (21a) can be rewritten as

where p =0.15 +0.01, independent of the type of
lattice. Swinney and Saleh4' have evaluated the
decay-rate integral using Q~, and the result
for the decay-rate ratio,

C(q t) = r'(G„„q])/I'(io„q[), (23)

is given by curve (c}in Fig. 1 for q =0.1. The
decay-rate integral was also evaluated by Swinney
and Saleh4 and by Chang et gE.~ for other forms
of the correlation function which have been used
in the analysis of data from scattering experi-
ments; however, G„s is more satisfactory theo-
retically since, as explained in Ref. 54, it leads
to the correct asymptotic behavior at large r
both at the critical point and away from the criti-
cal point.

H(q~)= ft(q&)~(qOC(q~-), (26)

and is plotted as curve (d) in Fig. 1. Although the
vertex correction has not been evaluated for inter-
mediate values of q 8, and the correlation-function
corx ection is somewhat uncertain because the
correct form for the correlation function is not
well established, these two corrections are never-
theless both small, and we will consider them as
well as the nonlocal shear-viscosity correction
in our data analysis.

F, Mode-Mode&ouplinl Theory

mth Modifications

With the viscosity, vertex, and correlation-
function modifications included, the expression
for the decay rate (16}in the mode-mode-cou-
pling theory becomes

I'= (&BT/«n. V)&.(q $) H(q $),

where the correction factor H(q ]), which most
analyses of linewidth data have heretofore assumed
to be unity, is given by
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In the hydrodynamic limit q)«1, the function
Ko simplifies to Ko(x) =x and (24) becomes

The equation for the critical part of the line-
width (24) can be rewritten as

r' =1.062(l, r/6vq, t) qm, (26} I * =(I/q&)'K. (q&)H(q&), (30a)

which, if the temperature dependence of q, is
neglected, is in accord with the Kadanoff and
Swift" prediction I'c/q' -

$ '.
In the opposite limit, q)»1, K,(x) =(Bm)x',

and (24}becomes

R (q 5)q'.c k~T
(27)

Although Kawasaki and Lo find that R (q$} is in-
creasing fairly rapidly even for q$ =20 [where
R (q $) is equal to 1.38], R(q $) is expected" to
approach a constant in the extreme q)»1 limit.
In the intermediate region where q)-1, K, be-
comes K,(x) =x'(1 + —,'x'); whence

I'=(I.T/6vn. )q'(I+ .'q'&')H(q-&). (26)

This equation has sometimes been used"'~ in the
past to determine $ from the slope of plots-of
I'c/q' vs q', with H(q)} implicitly assumed to be
constant; however, it is now clear that this pro-
cedure is not valid, since H(q)} is rapidly varying
in this region (see Fig. 1).

In the mode-mode-coupling theory the macro-
scopic shear viscosity q, can exhibit an aPParent
logarithmic divergence over some range of tem-
peratures, but q, is expected to remain finite at
the critical point. It is difficult to distinguish
experimentally between a weak divergence and a
cusp at the critical point; existing viscosity data
can be fit equally well to either a cusp or a weak
divergence. "" If the viscosity does remain
finite at the critical point, then (24) satisfies the
dynamic scaling assumption (12) with the degree
of homogeneity given by z = 3.

A cusped behavior for the viscosity is described
by

g, =AD+A~) '+. . . ,

where a&0. The dynamic scaling expression (12)
presumably describes the decay rate in the limit
in which higher-order terms such as the A, term
in (29) are negligible. Since the A, term in (29)
is clearly important in the temperature range of
existing linewidth data, it is difficult to test a
general functional form such as the dynamic scal-
ing expression (12). On the other hand, since
independent viscosity and correlation-length data
have been obtained for several fluids near the
critical point, the mode-mode-coupling expression
(24) can be tested directly with no adjustable pa-
rameters (This is a .valid test of the theory only
if the assumed form for the background subtrac-
tions is correct. }

where the "scaled" linewidth I'* is defined as
r*= (6m', /u, r)( r'/q'}. (30b)

Thus the theory predicts that the experimental
data for I'* [Eq. (30b}] for different temperatures
and scattering angles, obtained for various simple
fluids and binary mixtures, should all fall on a
single universal curve [Eq. (30a)] when the (di-
mensionless) quantity I'* is plotted as a function
of q$. This single curve is predicted to describe
the critical behavior not only along the critical
isochore and the coexistence curve, but also along
any other thermodynamic path in the critical re-
gion. In Sec. IV we test the mode-mode-coupling
prediction for all fluids for which $ and q, have
been independently deter mined.

III. XENON AND CO2 EXPERIMENTS

In this section we discuss the Rayleigh-line-
width experiments performed in our laboratory
on xenon and carbon dioxide along the critical
isochore and along the coexistence curve. The
experimental details discussed in Sec. IIIA apply
to both fluids, except as noted. The experimental
results are reported in Sec. III B, and are com-
pared with other diffusivity and linewidth mea-
surements on xenon and CO, in Sec. IIIC. Sources
of auxiliary data which are used in the linewidth-
data analysis (Secs. IV and V) are discussed in
Sec. IIID.

A. Experimental Details

The lot analyses provided by the suppliers of the
fluids indicated an impurity content of less than
30 ppm for the xenon samples and less than 50 ppm
for the CO, samples.

Each sample cell, formed from 6X6-mm square-
bore heavy-wall Pyrex tubing with a capillary
attached to one end, was evacuated and then filled
cryogenically with fluid. The capillary was per-
manently sealed with a gas torch. Two samples
of fluid were used in the xenon experiment: the
first was used for most of the data above T,"'
and the second for the data along the coexistence
curve, " although some measurements were also
performed above T, with the second sample. In
the CO, experiments two samples were also used.
All of the CO, data obtained with the second sample
and much of the data obtained for the second xenon
sample have not been previously reported. For
each fluid there was no detectable dependence of
the results on the sample used.
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FIG. 2. r/q as a function of the beam height in the
xenon sample cell (8 =90'). The linevridth minimum is
assumed to correspond to the critical isochore. (a) AT
=0.018 K (b) ET =0.700 K.

The mean density of fluid in the cell relative
to the critical density was determined by observing
the change in height of the meniscus with tempera-
ture over a 20-K range and comparing the results
to the height dependence as a function of relative
mean density calculated from independent density
data.

Using the density data of Garside et al.~ (see
also Cornfield and Carr" ), we found from mea-
surements of the meniscus height that the density
of the first xenon sample was 0.3 +0.1 k below
the critical density, and the density of the second
sample was 3.2 +0.3@ above the critical density.
The mean density of the primary CO, sample was
0.3+0.1% above the critical density, as deter-
mined using the Guggenheim" corresponding-
states relation. The density of the second CO,
sample was not measured, but this sample was
used only very near T,( T) T,), where the location
of the critical isochore was determined from
linewidth measurements as a function of height.

The sample cell was suspended in a tempera-
ture-controlled oil bath having an index of refrac-
tion matched to the glass cell to 1 part in 10' at
6328 A near the critical temperature of the fluid.
The temperature of the oil bath was maintained
to ~0.0005 K for periods of days for measure-
ments on the second xenon sample.

Gravitationally induced density gradients near
the critical temperature made it necessary to
measure the linewidth as a function of height in
the sample cell, and the minimum in the line-

width as a function of height (at a fixed tempera-
ture and scattering angle} was taken to be the
value on the critical isochore. ' Curve (a} in Fig. 2

shows the height dependence of the linewidth for
xenon at a scattering angle of 90' for aT =0.018 K;
the averaging due to the finite beam diam (0.2 mm}
is small at this temperature but becomes signifi-
cant at temperatures within a few mQlidegrees
from T, . No height dependence of the linewidth
was observable far from T„as curve (b} in Fig.
2 illustrates, but height scans were necessary in
all measurements within 0.2 K from T, .

The uncertainties in the mean densities of our
samples had negligible effect on measurements
in the hydrodynamic region, where the linewidth
is only weakly dependent on density (cf. Fig. 8 of
Ref. 6V). Furthermore, in the critical region a
minimum in the linewidth as a function of height
could always be located so that the mean density
was unimportant. Hence the uncertainties in the
mean densities had little effect on the linewidth
measurements.

Temperature differences were measured with a
Fenwal ceramic thermistor whose resistance was
measured to 2 parts in 10 with a Wheatstone
bridge; the thermistor was calibrated against a
mercury thermometer having 0.01-K divisions.
The precision of the temperature measurements
was +0.0005 K and the absolute accuracy was
+0.02 K. The critical temperature was periodi-
cally checked by observing the formation of a
meniscus as the temperature was very slowly
(over periods of several days) lowered to the criti-
cal point, and this value was reproducible to
+0.0005 K. The critical temperature of the first
xenon sample, as determined by the mercury
thermometer, was 289.'T56 + 0.020 K; for the
second xenon sample, T, =289.760 ~ 0.020 K. For
both of the carbon dioxide samples T, was mea-
sured to be 304.23 ~ 0.02 K. We want to emphasize
that although there is an uncertainty of +0.02 K in
the absolute value of T, for our samples, the im-
portant quantity LT was measured with an accuracy
of +0.0005 K.

The primary source of uncertainty in the scat-
tering angle was the goniometer; alignment of the
goniometer with the forward-scattered laser beam
(at 6 =0'}was hindered by the spreading of the
transmitted beam by the oil bath, which acted as
a cylindrical lens. The un6ertainty in q ranged
from 0.9% at the smallest angle used in the ex-
periments to 0.2% at the largest angle.

We used the data of Smith and co-workers~ ~
for the refractive index of xenon along the critical
isochore and along the coexistence curve; they
found n, =1.1366 at 6328 A. For CO2, Levelt
Sengers, Straub, and Vicentini-Missoni~ reported
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measurements of the refractive index at 5893 A
as a function of density near the critical point;
those data, corrected for dispersion using the
data of Michels and Hamers, "yield n, =1.1074
at 6328 A.

The linewidths were measured using the light-
beating technique. """ Light from a He-Ne laser
was focused onto the sample cell, and the light
scattered at an angle 8 was collected through a
slit immediately in front of a lens that focused the
light onto a pinhole aperture in front of a photo-
multiplier. The amplified photocurrent was pro-
cessed with a spectrum analyzer, whose output
was recorded on a strip chart recorder. For a
description of the data-reduction techniques used
in these experiments, see Refs. 3 and 5.

Some of the xenon measurements above T, were
made with a 6O-channel digital-pulse autocorrela-
tor, ~ which gave results in agreement with the
spectrum-analyzer measurements within the ex-
perimental uncertainty. 'o With favorable signal
conditions the linewidths measured with our spec-
trum-analyzer system are reproducible to within
+3%, while linewidths determined with the cor-
relator are repeatable within+1% or better.

At the beginning of the xenon work it was dis-
covered that a significant amount of light scat-
tered elastically from the inside walls of the
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FIG. 3. 1 /q2 as a function of the horizontal position of
the xenon sample cell for 9 =30.4' and AT =1.5 K. The
linewidth decreases sharply for scattering volumes near
the cell walls (at the horizontal positions 0 and 6 mm)
as a consequence of the intense scattering from the walls.
The horizontal dashed line shows the value of I'/q2 mea-
sured at the same temperature for 9 =90'.

sample cells was acting as a "local-oscillator"
signal, mixing with the light scattered from the
Quid and producing a "beat" spectrum with a
linewidth less than the true "self-beat" linewidth.
Figure 3 shows the linewidth as a function of hori-
zontal distance along the scattering volume at a
30.4' scattering angle for b, T =1.5 K. The scat-
tering volume was 6 mm long and the optical-
collection apertures selected a portion 0.2 mm
long. Near the center of the cell the scattering
from the cell walls is negligible and F/q' has the
same value as measured at 8=90', as the hori-
zontal dashed line indicates. (The cell-wall scat-
tering problem is minimized for 8=90', but mea-
surements at this angle were limited by signal-to-
noise problems to the region &Ts2 K.) For scat-
tering volumes near the cell walls the intensity
of the local oscillator signal was much greater
than the sample scattering intensity, and hence
the linewidth should become equal there to one-
half the self-beat value"; the data in Fig. 3 ex-
hibit this behavior. Although there is a plateau
region in the center portion of this graph where
cell-wall scattering is negligible, the width of
the plateau decreases as hT is increased, and
this imposes an upper bound on the range of AT
that can be studied by the self-beat technique using
our sample cells. For the xenon measurements
made with the second sample above hT =1 K, hori-
zontal scans were made at each temperature, and
data were selected only from the region of the
plateau.

Although in principle one can detect the presence
of cell-wall scattering by testing the goodness of
the fit of the spectra to a single Lorentzian (or
the correlation function to a single exponential),
we find from measurements such as those illus-
trated in Fig. 3, and also from tests with compu-
ter-synthesized data, that the wall scattering can
be intense enough to produce an error of several
percent or more in the linewidths and yet a spec-
trum will still fit a single Lorentzian within the
experimental uncertainty. 72 In general, all line-
width measurements should be carefully examined
to determine whether or not scattering from the
cell walls or from large dust particles in the
sample has resulted in measured linewidths which
are smaller than the true linewidths.

B. Experimental Results

Our linewidth data for xenon and CO, are listed
in Tables I and II, respectively, and I'/q' is
plotted as a function of aT in Fig. 4 (xenon) and
Fig. 5 (CO, ). Table I and Fig. 4 include the xenon
data for T(T, obtained by Lim and Swinney. "
Also shown in Figs. 4 and 5 are a few representa-
tive data points obtained in other experiments;
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TABLE I. Rayleigh linewidth I for xenon as a function of the temperature difference b,T and the magnitude of the
scattering vector q.

r

rad/sec

6T

(K) cm~/sec rad/sec

ET q
105

(K) cm~/sec rad/sec

AT

(K) cm /sec rad/sec

b, T q
105

(K) cm~/sec

2.474
2.387
2.351
2.211
2.220
1.911
1.943
8.884 a

1.855
1.851

5.836
5.569
5.569
5.051
5.051
4.541
4.541
4.430
4.277
4.277

0.809
0.809
0.809
0.809
0.809
0.809
0.809
1.596
0.809
0.809

A. Critical isochore

0.246
0.903
0.817
0.208
0.658
0.654
0.162
0.159
0.172
0.941

0.276
0.256
0.217
0.217
0.159
0.159
0.159
0.159
0.147
0.147

0.809
1.596
1.596
0.809
1.596
1.596
0.809
0.809
0.809
1.917

0.390
2.762
1.517
0.878
0.417
2.605
2.138
1.513
1.548
0.809

0.544
0.540
0.540
0.540
0.540
0.520
0.520
0.520
0.520
0,520

0.809
2.107
1.596
1.191
0.809
2.107
1.917
1.596
1.596
1.191

0.440
0.229
0.095
0.216
0.090
0.210
0.079
0.503
0.167
0.068

0.076
0.076
0.071
0.071
0.062
0.062
0.051
0.050
0.049
0.048

1.596
1.191
0.809
1.191
0.809
1.191
0.809
1.917
1.191
0.809

7.523 a

1.588
1.552
5.888 a

1.327
5.844 a

1.317
4.873 a

1.121
1.127

4.427 a

1.108
4 350a
4.028 a

3.540
0.876
0.816
3.268 a

3.116
0.753

2.843 a

3.108'
2.661
1.432
0.665
2.384
0.606
3.040
1.784
1.787

0.460
1.807
1.837
0.473
2.602
2.292
1.857
1.605
1.159
0.862

3.345
3.305
3.305
2.810
2.780
2.750
2.474
2.265
2.134
2.134

2.075
1.982
1.960
1,645
1.568
1.568
1.366
1.360
1.280
1.280

1.215
1.210
1.029
1.029
1.029
0.965
0.965
0.654
0.654
0.654

0.654
0.651
0.651
0.651
0.544
0.544
0.544
0.544
0.544
0.544

1.596
0.809
0.809
1.596
0.809
1.596
0.809
1.596
0.809
0,809

1.596
0.809
1.596
1.596
1.596
0.809
0.809
1.596
1.596
0.809

1.596
1.596
1.596
1.191
0.809
1.596
0.809
2.107
1.596
1.596

0.809
1.596
1.596
0.809
2.107
1.917
1.763
1.596
1.409
1.191

1.149
1.136
0.165
0.622
0.602
0.148
0.147
0.145
1.032
1.021

0.974
0.567
0.549
0.311
0.144
0.147
1.002
1.022
0.838
0.533

0.282
0.122
0.940
0.273
0.119
0.925
0.763
0.495
0.247
0.246

0.109
0.865
0.880
0.711
0.701
0.458
0.458
0.103
0.812
0.661

0.147
0.147
0.147
0.134
0.134
0.134
0.127
0.127
0.127
0.127

0.126
0.124
0.124
0.124
0.124
0.124
0.124
0.124
0.124
0.102

0.102
0.102
0.102
0.095
0.095
0.095
0.095
0.095
0.084
0.084

0.084
0.084
0.084
0.084
0.084
0.084
0.084
0.076
0.076
0.076

2.107
2.107
0.809
1.596
1,596
0.809
0.809
0.809
2.107
2.107

2.107
1.596
1.596
1.191
0.809
0.809
2.107
2.107
1.917
1.596

1.191
0.809
2.107
1.191
0.809
2.107
1.917
1.596
1.191
1.191

0.809
2.107
2.107
1.917
1.917
1.596
1.596
0.809
2.107
1.917

0.419
2.613
2,064
0.776
1.417
1.444
0.362
2.622
2.595
0.380

0.520
0.476
0.476
0.476
0.476
0.476
0.476
0.453
0.453
0.453

0.809
2.107
1.917
1.191
1.596
1,596
0.809
2.107
2.107
0.809

0.330
0.622
0.575
0.057
0.534
0.054
0.518
0.503
0.042
0.041

0.364
1.226
2.005
1.210
1.228
0.428
1.122
0.297
1.107
0.282

0.998
0.270
1.711

0.453
0.412
0.398
0.398
0.398
0.398
0.369
0.369
0.339
0.339

0.303
0.303
0.276

0.809
1.596
2.049
1.596
1,596
0.947
1.596
0.809
1.596
0.809

1.596
0.809
2.107

0.228'
0.041
0.468
0.474
0.031
0.412
0.441
0.452
0 195a
0.031

0.028
0.415
0.460

2.015
1.809
1.456
1.451
1.235
1.243
1.234
0.948
0.781

0.272
0.208
0.183
0.183
0.176
0.158
0.158
0.092
0.078

1.633
1.630
1.629
1.629
1.628
1.627
1.627
1.623
1.621

0.381
0.365
0.312
0.252
0.231
0.244
0.223
0.205
0.192

0.612
0.722
0.622
0.620
0.550
0.557
0.370
0.370

0.066
0.066
0.061
0.056
0.046
0.046
0.029
0.029

1.620
1.620
1.620
1.619
1.618
1.618
1.615
1.615

0.210
0.183
0.184
0.180
0.189
0.173
0.188

B. Coexistence curve: liquid

0.048
0.048
0.036
0.030
0.030
0.029
0.024
0.023
0.023
0.018

0.018
0.016
0.013
0.012
0.010
0.009
0.008
0.007
0.007
0.006

0.004
0.004
0.003

0.026
0.023
0.021
0.012
0.011
0.011
0.009
0.009
0.007

0.006
0.005
0.005
0.004
0.002
0.002
0.001

1.596
2.107
2.107
0.809
2.107
0.809
2.107
2.107
0.809
0.809

1.596
0.809
2.107
2.107
0.809
2.107
2.107
2.107
1.596
0.809

0.809
2.107
2.107

1.614
1.614
1.613
1.611
1.611
1.611
1.610
1.610
1.609

1.608
1.608
1.608
1.607
1.606
1.605
1.604
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TABLE I (Contt'nued)

I' bT q 6T q
1p5 10 105 1P5

rad/sec (K) cm /sec rad/sec (K) cm /sec

I' AT q Z ET q
10' 105 10' 10'

rad/sec (K) cm /sec rad/sec (K) cm /sec

2.487
2.229
1.931
1.656
1.476
1.187
1.062
0.948
0.955
0.803

0.327
0.322
0.272
0.208
0.182
0.158
0.110
0.092
0.092
0.078

1.561
1.562
1.563
1.566
1.567
1.569
1.572
1.573
1.573
1.574

0.300
0.307
0.275
0.271
0.238
0.223
0.217
0.201
0.203
0.203

C. Coexistence curve: vapor

0.018
0.018
0.014
0.014
0.011
0.009
0.009
0.007
0.006
0.006

1.583
1.583
1.584
1.584
1.585
1.586
1.586
1.587
1.587
1.587

0.793
0.725
0.580
0.647
0.518
0.455
0.415
0.412
0.386
0.352
0.352

0.066
0.066
0.051
0.046
0.044
0.034
0.030
0.029
0.027
0.023
0.022

1.575
1.575
1.577
1.578
l.578
1.580
1.580
1.580
1.581
1.582
1.582

0.207
0.198
0.197
0.194
0.188
0.193
0.189
0.198
0.190
0.189

0.005
0.005
0.004
0.004
0.003
0.002
0.002
0.002
0.001
0.001

1.588
1.588
1.588
1.588
1.589
1.590
1.590
1.590
1.591
1.592

Obtained with a pulse autocorrelator.

these will be discussed in Sec. IIIC. The error
bars indicate the estimated uncertainty in our
values for I'/q' and hT.

A few measurements above T, at 8=90'were
made with a digital-pulse autocorrelator and are
indicated in Fig. 4; all other data were obtained
with a spectrum analyzer. The new data, obtained
for the second sample using the correlator, agree
very well with the older data for hT & 2.5 K but
are consistently higher for AT &2.5 K, although
the differences are comparable to the experimental
uncertainty. It is quite likely that the older data
at AT & 2.5 K were affected by cell-wall scattering.
It was not possible to completely avoid the cell-
wall-scattering problem for temperatures greater
than about 5 K from the critical temperature.
The carbon-dioxide data for large hT were likely
also affected by the cell-wall-scattering problem,
since the same type of cell was used.

In Figs. 4 and 5 the curves are drawn through
the data to guide the eye; the linewidth data will
be compared with the theoretical predictions in
Secs. IV and V. Both for xenon and for CO, we
find that the measured linewidths are nearly equal
for the liquid and vapor phases on the coexistence
curve; also we find that in the hydrodynamic region
at a given value of AT the linewidth measured on
the coexistence curve is twice as large as that
measured on the critical isochore.

For the values of q used in the present experi-
ments the data for I'/q~ are independent of q for
b, Ta 0.1; in this region we have q $ «1 and the
fluid is adequately described by the laws of hydro-
dynamics, with the thermal diffusivity given by

y = I'/q'. On the other hand, it is clear from Figs.
4 and 5 that very near the critical point, I'/q'
becomes independent of temperature but dependent

on q. Note that in order to study this extreme
nonhydrodynamic region for these fluids (q $» 1),
the light-scattering measurements must be per-
formed at temperatures of the order of 1 mK from
Tc '

C. Comparison with Other CO~ and Xenon
Linewidth and Diffusivity Measurements

As mentioned previously, CO, is the only fluid
for which the diffusivity has been determined in
the critical region both by linewidth measure-
ments and by conventional thermodynamic tech-
niques. Although susceptibility data [pc~ or
(sc/sn)~ r] have been obtained for several fluids
near T„ the thermal conductivity has been mea-
sured only for CO2 and the concentration con-
ductivity has not been determined for any mixture
in the critical region. Combining Sengers's CO,
thermal-conductivity data" with pc~ values from
the sources discussed in Sec. IIID yields for the
thermal diffusivity the values plotted on curve (b)
of Fig. 5. This calculation differs from the back-
ground calculations described later in that here
the actual thermal-conductivity values are used,
in contrast with values for the background ob-
tained from an analysis of the excess thermal
conductivity. The thermodynamic point at ~T
=0.2 K probably suffers from convection problems,
which plague all conventional ther mal-conductivity
measurements near a critical point. The thermo-
dynamic value at ~T =1.1 K is in very good agree-
ment with the light-scattering results, and the
systematic departure of the linewidth data from
the thermodynamic calculations at higher tem-
peratures is probably due to the ce11-wall scat-
tering problem.

Smith and Benedak have measured the linewidth
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TABLE II. Rayleigh linemidth r for carbon dioxide as a function of the temperature difference AT and the magnitude
of the scattering vector q.

r 6T q r AT q'

(
1O' 105 10 1O'

rad/sec (K) cm /sec rad/sec (K) cm /sec

r ~T 6T q
1O' 1O' 1O' 1OS

rad/sec gg cm2/sec rad/sec (K) cm2/sec

1.137
0.999
0.876
0.757
0.710
0.591
0.548
0.456
0.425
0.371

5.273
4.830
4.126
3.473
2,924
2.415
2.001
1.690
1.410
1.179

0.414
0.414
0.414
0.414
Q.414
Q.414
0.414
D ~ 414
0.414
0.414

0.325
0.282
3.761
0.270
0.202
0.155
0.157
1.979
0.134
0.113

Q.965
0.830
0.820
0.814
0.545
0.370
0.353
0.306
0.302
0.245

0.414
0.414
1.555
0.414
0.414
0.414
0.414
1.555
0.414
0.414

A. Critical isochore

D.044
0.691
0.660
0.660
0.547
0.512
0.432
0.446
0.427
0.415

Q.419
0.440
0.402
0.408
0.410
0.383
0.361
0.396
0.339
0,349

0.030
0.029
0.026
0.026
0.024
0.023
0.020
0.019
0.019
0.018

1.555
1.555
1.555
1.555
1.555
1.555
1.555
1.555
1.555
1.555

0.063 0.414
0.063 1.555
0.061 1.555
0.061 1,555
0.054 1,555
0.047 1.555
O.Q35 1.555
0.034 1.555
0.032 1.555
0.031 1.555

0,880
0.880
0,060
0.060
0.060
0.644
0.045

0.111
0.099
0.094
0.094
0.093
0.071
0.068

1.555
1.555
0.414
0.414
0.414
1.555
0.414

0.308
0.308
0.308
0.308
0.308
0.308
0.308

2.450
2.626
1,963
2,042
2.067
1.571
1.539
1.587
1.590
1.674
1.508
1,420

0.192
0.185
0.151
0.143
0.125
0.106
0.105
0.104
0.102
0.101
0.096
0.089

1,577
1.577
1.575
1.575
1.574
1,573
1.573
1.573
1.573
1.573
1.572
1.572

1.539
1.354
1.049
1.250
0.817
0.983
0.974
0.543
0.500
0.402
0.408

B. Coexistence curve: liquid

0.006
0.006
O.Q06

0.006
0.006
0.006
0.006

0.089
0.076
0,067
0.057
0.046
0.044
0.037
0.027
0.018
0.014
0.008

1.555
1.555
1.555
1.555
1.555
1.555
1.555

1.572
1.571
1.570
1.569
1.568
1,568
1.567
1.566
1.564
1.563
1.561

0.112
1.574
1.599
0.095
0.092
1,367
1.140
1.147
0.084
1.068

0.071
0.867

0.245
0.245
0.239
0.198
0,198
0.196
0.168
0.163
0.154
0.136

0.129
0.113

0.414
1.555
1.555
0.414
0,414
1.555
1.555
1.555
0.414
1.555

0.414
1.555

0.361
0.338
0.365
0.355
0.336
0.324
0.328
0.325
0.286
0.291

0.309
0.308

0.016
O.Q16
0.014
0.011
Q.oil
0.011
0.010
0.008
0.007
0.006

1.555
1.555
1.555
1.555
1.555
1.555
1.555
1.555
1.555
1.555

0.006 1.555
0.006 1.555

2.853
2.937
2.199
2.450
2.331
1.797
1.766
1.876
1.816
1,901
1.674

0.192
0.185
0.151
0,143
0.125
0.106
0.105
0.104
0.102
0.101
0.096

1.530
1.531
1,532
1.532
1.533
1.535
1.535
1.535
1.535
1,535
1.535

1.634
1.769
1.458
1.238
1.455
0.974
1.169
1.144
0.679
0.556

C. Coexistence curve: vapor

0.089
0.089
0.076
0.067
0.057
0.046
0.044
0.037
0.027
0.018

1.536
1.536
1.537
1.537
1.538
1.539
1.540
1.540
1.542
1.543

for xenon along both sides of the coexistence curve
in the hydrodynamic region (0.026~aT~O 9K) at.
a scattering angle of 8 =26'; in addition, the line-
width was determined at several angles at AT
=0.006 in the vapor phase." The Smith and
Benedek data are in very good agreement with oux

data; a few representative points of their data are
plotted in Fig. 4(a).

Maccabee and White' have reported linewidth
measurements along the critical isochore in the
hydrodynamic region of CO» and they found their
values to be in agreement with ours. A few rep-
resentative points taken from Fig. 1 of Maceabee
and White are shown in Fig. 5(h).

D. Auxiliary Data

The parameters required for a comparison of
the linewidth data with the predictions of the mode-

mode-coupling and decoupled-mode theories are
listed in Table III: the critical point is specified
in Sec. IIIA; the parameter s needed to calculate
the linewidth background are given in Table III 8-
III F; and the parameters needed to calculate the
eritieal part of the linewidth are given in Sec.
IIIG-IIIJ.

The critical-point parameters tabulated in Table
IIIA are taken from Refs. 64, 65, 68, 69, 70, 73,
74, 75, and 80. References 64, 68, 69, and 70
were also used for the refractive index below T„
needed in order to calculate q along the coexistence
curve.

The constant-pressure specific heat was deter-
mined using the thermodynamic relation

BI
pc@ =pc~ + T KgqBT p
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where ~r is the isothermal compressibility. The
pressure derivative (sP/BT)q varies slowly along
the critical isochore but varies rapidly as the
critical point is approached from below T, in either
the liquid or vapor phase. Below T„(sP/ST)~
was determined for each phase from its relation
to the vapor-pressure derivative (sP/a T)„

(32)

where the cx subscript indicates the coexistence
curve.

We assume that the isothermal compressibility
is described by the critical part alone in the tem-
perature region of interest:

~ ~5
Vl

Ol

E
O

~, =(r,/P, ) ~-~

along the critical isochore, and

(pip,)', = (r', /P, ) ~- '

(33)

along both sides of the coexistence curve, where
the exponent y is assumed to be the same for the
three paths, as theory and experiment indicate.

For CO, the results of Levelt Sengers and Chen'4
were used for (SP/ST)~ [T& T] and (SP/ST),„
[T&T,]. Those authors fit their high-precision
pressure-temperature data from the critical iso-
chore and the coexistence curve to a form of the
extended scaling-law equation of Green, Cooper,
and Levelt Sengers, "

(P-P)/P =c,e+P, 'e* ~+p H'e' '~ '

(35}

where the + and —superscripts indicate the criti-
cal isochore and the coexistence curve, respec-
tively. The parameters in (35) determined by
Levelt Sengers and Chen (Table X of Ref. 74) are
given in Table IIIB.

For xenon on the critical isochore we obtained
(sP/sT)z from a least-squares fit of the pressure-

e~
Cool

IPA

—IO5
CP
4l

E

Xe

(b)

I

0.01

I

O.l

bT (K)
lp

D
0)

E~ 105—
OJ
U

C

IO6
0.001

IO4

COp

(o)

+
~Ao

I

OQI

0

I

O.l

aT (K)
10

8~158

8~424
I

0.01
I

O.l

hT (K}
10

0)
lh

~ 10-5-
E
O

C4
Cf

COp

(b)

FIG. 4. I'/q2 as a function of ET for xenon. The line-
width I' is the measured value with no background sub-
tractions. (a) Coexistence curve: ~, 0, 8 =90, data of
Lim and Swinney (Refs. 8 and 10); L, 6, 8 =22.4, data
of Smith and Benedek (Refs. 8 and 9). An open symbol
represents the vapor phase and a closed symbol the
liquid phase. (b) Critical isochore: +, 8 =138'; ~, 8
=42'; &, 8 =90; 0, 8 =90', data obtained by Lim (Ref.
10) using a pulse correlator. The error bars represent
the uncertainties in I'/q2 and DT at extreme and inter-
mediate values of AT.

0.001 0.01 O, I

aT'(K)

FIG. 5. I'/q2 as a function of AT for CO2. The line-
width I' is the measured value with no background sub-
tractions. (a) Coexistence curve: ~, 8 = 90 (liquid);
0, 8 =90' (vapor). (b) Critical isochore: ~, 8 =90';
A, 8 =21.8'; ~, data of Maccabee and White (Ref. 82);
0, thermodynamic values of Aq2/pc& [see Sengers (Ref.
67) and text]. The error bars represent the uncertain-
ties in I'/q and LQ'.

10
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TABLE III. Parameters from other experiments used in the analysis of the xenon and carbon dioxide linewidth data.
Reference numbers are given in parentheses.

Parameter Xenon Carbon dioxide

A. Critical-point parameters

P 58.402x108 dyne cm 2 (73)
pc 1.11 g cm (65, 73)
Tc 289.757 K (so)
n (A. o

——6328 A) 1.13665 (64, 68)

73.860x 106 dyne cm
0.464 g cm 3

304.18 K
1.1074

(74)
(v4, v5)
(v4)
(69, vo)

B. Pressure-temperature relation on the critical isochore [Eq. (35)]

P
Cg

P+
1

Pg
p, HR+

p HR

std. dev.

0.08

0.35
5.925 384

2.635 562

-2.616 886

~ ~ ~

5.4x10 3%

(73, 77, present
analysis)

(75)
(73, 77, present

analysis)
(73, 77, present

analysis)
(See text)
(73, 77, present

analysis)
(See text)
(Present analysis)

0.09

0.35
6.992 153

6.561 674

24.857 95
-8.489 391

-16.739 76
1.8x10 3%

(74)

(74)
(74)

(74)

(74)
(74)

(74)
(74)

C. Compressibility [Eqs. (33) and (34)]

0.067 78
0.016 40

1.21

(80)
(80)

(80)

0.0573
0.013 64

1.219

(81)
(S1, v5,
see text)
(81)

pc ~v

D. Constant-volume specific heat on the critical isochore [units: 10 erg cm 3 K

[2.2922'' ' 8 —1.6928] (83-85) -[0.0973+1.458 ln~] (87)

E. Dilute-gas thermal conductivity near T, [units: erg cm sec,K ]

x(o, T) [1614+522&] (e2, e3) [4353+2521~] (94)

F. Excess thermal conductivity: A, (p) = X&p+A, p +X3p +A, 4p [Kin erg cm sec K and p in g cm ]

A, R

A3
A, 4

590.5
381.7

-107.0
59.04

(62, 96)
(62, 96)
(62, 96)
(62, 96)

3411
2825
4876

0

(62, 95)
(62, 95)
(62, 95)
(62, 95)

[525 +219'] (60) [327 + 125m]

G. Shear vicosity on the critical isochore: gs = gs + qs [units: pP]

~S -[16.35 inc + 68.66] (60) (a) gc/f =-[0.03418 lnz+0. 1519]
sc [23 in~+164

(See text)
(60, 99,100,
see text)
(60, 100)

H. Dilute-gas shear viscosity near Tc [units: pP]

8 (O, T) [24V+ 219~] (98) [152+125m] (100)

I. Excess shear viscosity: gs(p) =g&p+g2p2+g3p +g4p [gin p.P and p in g cm ]

Qf

n2

n3

g4

35.96
415.78

-33V.56
123.68

(97, 98)
(97, 98)
(97, 98)
(ev, es)

42.58
661.70
82.89

0

(100)
(100)
(100)
(100)
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TABLE III (Continued)

Parameter Xenon Carbon dioxide

J. Correlation length

0.63

(80)
(79)
(8, 9)

1.50 A

0.714 }(
0.633

(81)
(81, see text)
(81)

temperature data of Habgood and Schneider"
(eight points, 0 &d,T &1.8 K} and Michels et al. '~

(four points, 8.4&6,T&33.4 K} to Eq. (35), and the
results of this analysis are shown in Table IIIB.
The results of the vapor-pressure measurements
of Theeuves and Bearman [Eq. (1), Ref. 78] were
used for (aP/ST), „for xenon.

The slope of the coexistence curve (Sp/0T), „
was obtained for CO, from Vicentini-Missoni
et al."and for xenon from Qarside et al.~

Vicentini-Missoni, Levelt Sengers, and Green"
have reported values of y, I~, and l ~ for xenon
determined from a scaling-law equation-of-state
analysis of the PVT data of Habgood and Schnei-
der." They found y =1.26, I~ =0.05870, and I"~
=0.0143, while Smith, Giglio, and Benedek""
found that measurements of the absolute scat-
tering intensity yielded y =1.21, I'r =0.6778, and
I"~=0.01640. Although the temperature depen-
dence of the relative scattering intensity can be
accurately measured to obtain the exponent y, the
determination of the coefficients I~ and I"~ re-
quires an absolute measurement of the scattering
intensity, which is quite difficult. Therefore, the
values of I'~ and F~ are probably best obtained
from the PVT data. We have repeated the PVT
analysis of Vicentini-Missoni et al. ,

"with y fixed
at 1.21 and have obtained I'~ =0.07325 and I'~
=0.01779, about 8% and 8.5%, respectively, higher
than the values found by Smith, Giglio, and Bene-
dek."'" The parameters y and l~ for CO„deter-
mined by Lunacek and Cannell" from extensive
turbidity measurements, are given in Table IIIC.
(White and Maccabee" have also determined y for
CO, from measurements of the scattering inten-
sity. ) The value of I"r for CO, (cf. Table III C}
was obtained by combining I~ with the Ir/I"r ratio
reported by Vicentini-Missoni et al."

The xenon c„data of Edwards et al. ,
"which are

uncertain by +3 J/mole K in absolute value, were
decreased by 2 J/mole K to agree with the data
of Schmidt et al. ,' Habgood and Schneider, "and
Michels et al.~' Combining these four sets of data
then yields for c„on the critical isochore of xenon
the result given in Table IIID. For the critical
isochore of CO~ the data of Liya et al.'6 have a
+10 J/mole K (=6%) uncertainty; therefore, we
have used the c„values derived by Feke, Fritsch,

and Carome" from their low-frequency (= 1 kHz)
sound-velocity data.

Equation (31) together with the relation between
the specific heats and low-frequency velocity,
u' = c~/(pc„~r), yields

pc„=T(5P/0T)'p ~r/(pu'~r -1). (36}

cpc= C~ —cy ~

and (ii}using

cg= lim (c~) = (P,c,'/p, T,)l c

(37)

(38)

which follows from (31), (33), and (35). The dif-
ference between c~c calculated from (37) and (38)
is insignificant in the temperature range of our
data, as Table IV illustrates. In addition, Table
IV shows that c~c/c~ differs from unity by at most
a few percent.

The background thermal conductivity is given
by the sum of two terms [Eq. (6}]: the dilute gas
thermal conductivity, given in Table IIIE," ~
and the excess thermal conductivity, tabulated in
Table III F.~ The excess thermal conductivity
was obtained by Sengers~ from an analysis of the
data of Le Neindre et al."for CO, and the data
of Tufeu'6 for xenon.

Recently Strumpf, Collings, and Pings' have
completed extensive measurements of the shear
viscosity of xenon as a function of temperature
along 10 isochores near the critical isochore.
These data, obtained from measurements of the

Sound velocities determined in ultrasonic experi-
ments were substituted into (36) to calculate pc„
along the two sides of the coexistence curve; the
data of Mueller et al."were used for xenon and
the data of Herget, "Parbrook and Richardson, '
and Tielsch and Tanneberger" were used for CO, .
For both fluids the contribution of the pc„ to pc~
in (31}is less than 3% in the temperature range
of our linewidth data below T„hence high accuracy
is not required for the pc„values used below T„
so these are not included in Table III.

The separation of c~ into critical background
parts is somewhat ambiguous. We have calculated
c~ in two different ways for xenon on the critical
isochore: (i}using the expression suggested by
Sengers,
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damping of a torsionally oscillating quartz cylin-
der, show a small increase in the viscosity very
near the critical point (e.g. , 1"Q at aT =0.02 and

p =p,). For sT& 2 K, the viscosity values of
Strumpf et al. are in reasonable agreement with
the values calculated for the background viscosity
using the data of Reynes and Thodos" and Dame
and Smith. "

The result for the viscosity of xenon obtained by
Strumpf et cl. for the critical isochore is given
in Table IGG. The data for the nine near-critical
isochores studied by Strumpf et a/. mere extrap-
olated to the coexistence curve to obtain the vis-
cosity values along this path that me used in our
linemidth-data analysis; however, since the ex-
trapolated viscosities differ from the background
viscosity by only a few percent (e.g., 1&q at
T =0.01 K for either side of the coexistence curve),
we give in Table HI only the background viscosity
for the coexistence curve [q~(p, T) =q, (p)+q, (0, T);
see parts H and I of Table III].

For CO, the background viscosity q~(p, T) is
accurately known from the extensive measure-
ments that have been performed outside of the
critical region~'I; the results for q, (0, T) and

q, (p) are listed in Table III, parts H and I, re-
spectively. In the critical region, however, there
have been fem measurements of the viscosity of
COB, so me have supplemented those few data with
estimates of the critical part of the viscosity based
on the results obtained for other systems. As
will be shown in Sec. V, the ratio q~/q, is nearly
the same for all those systems for which exten-
sive measurements have been made. Vfe have
taken an average value for this ratio [which is
given in Table III G(a)] to use in estimating qc
for CO„and the results are in reasonable agree-
ment with the values obtained from an extrapola-
tion of the available CO, viscosity data [Table
IIIG(b)].60'' Since qc is only a small fraction of
the total viscosity in the region of interest, the
uncertainty in I'* from this estimation should be
small.

Independent measurements of the correlation
length have been performed for xenon by Smith,
Giglio, and Benedek'80 for T & T, and by Giglio and
Benedek" for T & T, . In CG, Lunacek and Cannell"
have measured $ along the critical isochore (see
also White and Maccabee"). Below T, we have
calculated E fox CO, from the Ornstein-Zernike
relatio nate

where p„ is the number density and 8 is the direct
correlation length; it was assumed that ft has the
same value below T, as along the critical isochore.
The correlation-length parameters for xenon and

CG, are listed in Table IIIJ, where g, and $,' are
the correlation-length coefficients above and below

T„respectively.

IV. COMPARISON OF EXPERIMENTS
WITH MODE-MODE COUPI. ING THEORY

A. Carbon Dioxide

We now compare the measured linewidths with
the theoretical expression for the total, linewidth
[Eq. (11)] evaluated using the mode-mode-cou-
pling-theory result [Eq. (24)] for I'c.

The data for I /g for carbon dioxide on the
critical isochore are plotted as a function of hT
in Fig. 6. Included in Fig. 6 are theoretical curves

CP
4)
40

C4

E o-6-

Xenon
b, T cg{10 erg/g K)

0,) (ii)

C arbon dioxide
eg(108 erg/g K) cg (ii)

(i) (ii) ep

5.000
1.000
0.500
0.050
0.005

0.0635 Q.eeo
4.45 4.49

10,30 10.35
167 167

2710 2710

0.935
0.984
0.992
0.999
1.000

2.12 2.15
15.05 15.16
35.0 35.2

580 580
9600 9600

0.935
0.983
0.991
0.999
1.000

TABLE IV. A comparison of the critical part of the
specific heat (c&~) with the full specific heat g&), with
c& calculated in bvo different ways: (i) c&c ——c&-c„, and

(ii) c& lim cp (Pcc&/p T )FztE
F~Tg

~o8
0.00l

I

O.OI

I

O.l

QT (K)
IO

FIG. 6. I'/q2 as a function of AT along the critical
isochore of C02. The theoreticai curves represent (for
8 =90'): (a) the background contribution; (b) the contri-
bution of the critical part of the linewidth {I'cc&c/qmc&),
calculated using the mode-mode-coupling theory; (c) the
sum of the critical and background contributions. The
symbols represent the measured values of 1 /q2.
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showing the total linewidth [curve (c)] and the
separate contributions of the background part
[curve (a)],

(I'/q') =(X /pc )(1+q*t'),

and the critical part [curve (b}],

(40)

I' cp I' cq k~ T

[See Eqs. (11) and (24).] The evaluation of the
theoretical expressions (40}and (41) involves no
adjustable parameters, all parameters having
been obtained from independent measurements
(Table III). As can be seen, the data are in good
agreement with the theory.

Note that the background contribution is large
at temperatures several degrees above T„
amounting to one-half the total linewidth at AT
= 3.5 K. The background and critical parts of the
linewidth are both proportional to q' in the hydro-
dynamic region, but in the extreme nonhydro-
dynamic region (qg»1), where the background
and critical parts both become independent of
temperature, the two contributions have a dif-
ferent q dependence: I ~~q4 and I'~~q'. Thus
in the q g» 1 limit, the background contribution
is negligible for sufficiently small angles. The
data in the q $»1 region in Fig. 6 were obtained
at a scattering angle of SO ~ for these data the
background contribution is 6% of the total Iine-
width.

The background contribution to the linewidth is
even larger for xenon and SF, than it is for CQ„.
for example, for these three fluids on the critical
isochore at c =10 ', the ratio I'~/I'c is 0.8V for
CO~, 1.00 for xenon, and 2.i for SFe. Neverthe-
less, as we shall show for xenon and SFO as well
as for CO„when the background contribution is
subtracted from the linewidths measured for these
fluids, the resultant values for the critical part of
the linewidth are in reasonably good agreement
with the theory. This agreement supports the
form assumed for the background contribution
[see Eq. (11)], which is based on the Sengers-
Keyes ansatzw for the thermal conductivity back-
ground [Eg. (6)] and our assumptione'~ that c~
can be separated into background and critical
parts, with the q dependence of c~ given in Eg.
(6)

%Ye have included Fig. 6 to show the separate
contributions of the background and critical parts
of the linewidth (similar plots have been previously
presented for xenon' "and for SF,~ "). However,
as discussed in Sec. II F, in comparing linewidth
data with the mode-mode-coupling theory, it is

more appropriate to consider dimensionless plots
of the scaled linewidth I' [Eq. (30)] as a function
of q$; hence our subsequent graphs will be of this
form. Such a plot is shown for COI in Fig. V(a),
which includes data along the coexistence curve
as well as the data for the critical isochore. The
deviation of the measured -linewidths on the criti-
cal isochore from the theoretical values for the
total linewidth is shown in Fig. V(b).

The measured linewidth values in the far hydro-
dynamic region (ques 0.02) are systematically
smaller than the theoretical linewidths. This de-
parture from the theory, which has been pre-
viously noted for xenon' and SF„"can probably
be explained by the sample cell-wall-scattering
problem discussed in Sec. IIIA.

The uncertainty in I'*= (6vq, i'c/ks Tq'} and in

qE is indicated for the data on the critical iso-
chore by the error bars in Fig. V(a). The uncer-
tainty in the value of the total linewidth at any
temperature within the range of the measurements
is only a few percent; however, the uncertainty
in the scaled linesoidth I'* increases with increas-
ing hT for CO„and for other pure fluids as well,

IOO

COp
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IO
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FIG. 7. (a) 1 * as a function of q$ for CO2. The curve
represents the mode-mode-coupling theory with all mod-
ifications. The error bars xepresent the uncex'tainties
in I'4' and q$ at extreme and intermediate values of q(.
~, critical isochore; L, coexistence curve pinguid); 6,
coexistence curve (vapor). P) Percent deviation of the
measly ed linewidths on the critical isochore from the
theoretical values for the total linewidth. ~, with all
corrections to the theory Q with vertex and correla-
tion-function corrections omitted.
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because of the increasing importance of the back-
ground term which must be subtracted from the
measured linewidths to obtain the quantity I'~,
which is used in calculating I'*. In the region
where q$& 2 the uncertainty in I'* is primarily
due to the uncertainty in the values of the macro-
scopic shear viscosity 17, very near T, (see Sec.
IIID). In this region the uncertainty in q $ arises
primarily from the uncertainty in b, T at the tem-
peratures of these measurements, a few milli-
degrees from T„far from T, the uncertainty in

q $ is primarily due to the reported uncertainty
of the measured values of the correlation length.

Below T, the uncertainty in the measured line-
widths is larger and the background contribution
to the linewidth is more important than for the
data above T„also, the shear viscosity, which is
strongly density dependent, is not as well known

along the coexistence curve as it is along the
critical isochore. Moreover, since $ has not been
directly measured below T„we have had to deduce
values of E along the coexistence curve from the
values measured for the critical isochore. For
the reasons just stated the uncertainties in I'*
and q $ are much larger below T, than above T„

IOO

hence the data for T & T, are not included in Fig.
7(b) even though those data agree with the theory
within the experimental uncertainty.

Figure 7(b) shows the deviation of the linewidth
data from the theory for two cases: (i) when the
modifications to the mode-mode-coupling theory
considered in Sec. III F are included, in which

case the rms difference between theory and ex-
periment is 10.6%, and (ii) when the vertex and
correlation-function corrections are omitted, in
which case the rms difference between theory and
experiment is 12.7%. The vertex and correlation-
function corrections are not more than 5% (cf.
Fig. 1), which is less than the rms difference
between theory and experiment. More-accurate
measurements of both the linewidth and the pa-
rameters which enter the theory are required
before definitive conclusions can be drawn con-
cerning the vertex- and correlation-function modi-

ficationss.

B. Xenon

Figure 8(a) is a plot of I' as a function of qf,
for all our xenon data, with the curve again rep-
resenting the mode-mode-coupling theory with
corrections and the error bars indicating the un-
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FIG. 8. (a) I'* as a function of q$ for xenon (with param-
eters taken from Table III). The curve represents the
mode-mode-coupling theory with all modifications, and
the error bars represent the uncertainties in I'* and q$
at extreme and intermediate values of q$. (b) Percent
deviation of the ~ggggygd linewidths from the theoretical
values for the gotg) linewidth. Critical isochore: ~,
data obtained with a spectrum analyzer; 0, data obtained
with a pulse autocorrelator. Coexistence curve: L, liq-
uid; L, vapor.

FIG. 9. Percent deviation of the measured linewidths
from the theoretical values for the total linewidth for
xenon on the critical isochore, with the compressibility
coefficient given by I z, =0.07325, as determined from an
analysis of PVT data (Ref. 73). (a) $ =2.(k 3 A. , mea-
sured by Smith (Ref. 9). (b) $ =2.32' ' A, obtained by
fitting the theoretical curve to the data (excluding those
data for which q$ & 0.03) with the correlation-length co-
efficient $0 and exponent ~ allowed to vary freely.
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certainties in I'* and q$ for the data on the critical
isochore. This comparison with the theory, like
that in, Figs. 6 and V, involves no adjustable pa-
rameters, all quantities having been determined
in independent experiments (cf. Table III}. The
agreement between the measured linewidths and
the theoretical values for the total linewidth is
reasonably good, as the deviation plot in Fig.
8(b} shows. However, although the linewidths
measured for the extreme nonhydrodynamic region
above T, and along the two sides of the coexistence
curve below T, agree with the theory within the
experimental uncertainty, our most extensive
xenon linewidth data are in the hydrodynamic
region above T„and these linewidths are sys-
tematically higher than the theoretical linewidths
by about 14/0 (except for the data corresponding
to q$ S 0.03, which subsequent measurements have
shown to be affected by the cell-wall-scattering
problem —see Sec. IIIA).

We have considered all sources of error in the
measured linewidths and in the parameters which
enter the theory to determine whether or not the
14/p difference between theory and experiment,
observed only for the data in the hydrodynamic
region on the critical isochore, is significant.
The major sources of error are the errors in

c~, X~, I', $, and g, ; we now consider the uncer-
tainties in each of these quantities.

The uncertainty in c~ arises primarily from the
uncertainty in the compressibility coefficients
I'~ and I'~. As discussed in Sec. IIID, our analy-
sis of the Habgood and Schneider PVT data yields
values for the compressibility coefficients which
are 8% larger than those of Smith et al. 80 The
data for the critical isochore in Fig. 8, analyzed
using the Smith e~ al. value for I'~, were reanal-
yzed using the value of I~ deduced from the PVT
data, and Fig. 9(a) shows the deviation of the
measured linewidths from the resultant theoretical
values of the total linewidth. For the data in Fig.
8 the rms difference between theory and experi-
ment for the data on the critical isochore is 14/0,
while in Fig. 9(a) the corresponding number is
15@;hence an 8% change in c~ changes the rms
difference between theory and experiment by only

The background thermal conductivity is essen-
tially constant on the critical isochore; therefore,
an error in this quantity would introduce a tem-
perature-dependent error in the background term
in the linewidth [Eq. (40}]. The estimated uncer-
tainty in the total theoretical linewidth due to the
uncertainty in I's varies from 1.0% for q $ =0.8 to
3.5% for q) =0.05.

The uncertainty in our measured average values
for the total linewidth is 3%; the scatter in the

individual data points is of course larger. Our
values for the linewidth are corroborated by the
measurements of Smith and Benedek, "who ob-
tained values for the linewidth which agree with
ours well within the combined uncertainty (8+) of
the two experiments.

The critical part of the linewidth is inversely
proportional to the viscosity, so uncertainties in
the viscosity are an especially important contribu-
tion to the uncertainty in I' near T, . The xenon
viscosity data of Strumpf et al.eo exhibit a critical
behavior similar to that observed for the viscosity
of other systems (see Sec. VA), and far from the
critical point the Strumpf et al. viscosity data are
corroborated by the independent measurements
of Reynes and Thodos. " The estimated uncertain-
ty in the values for the viscosity is 3%."

In comparison of the linewidth data with the
theory, the primary source of uncertainty in the
independent variable q$ is the uncertainty in g.
The uncertainty in the correlation lengths mea-
sured by Smith, Giglio, and Benedek is 5 /p. ' In
order to see if slightly different values for the
correlation length could bring the theory and ex-
periment into agreement, we have fit the line-
widths to the theory using a nonlinear least-
squares fitting routine in which the correlation
length parameters v and $0 were allowed to vary
freely. (Since the linewidths at high temperatures
are known to be affected by the cell-wall-scat-
tering problem, those data are not included in
this and other least-squares analyses of the data. )
The best fit was achieved with v =0.58 and $0
=2.32 A, with an rms difference between theory
and experiment of 4.6Q. The percent difference
between theory and experiment is shown as a

4p

(A)

rms
deviation

0.53
0.55
0.58
0.60
0.62
0.63

3.40
2.93
2.32
2.06
1.79
1.67

6.1
5.2
4.6
4.8
5.5
5.9

TABLE V. Results obtained from a nonlinear least-
squares fitting of the mode-mode-coupling theory (in-
cluding the modifications in Fig. 1) to the linewidth data
for xenon, with the correlation-length exponent v fixed
at different values and the coefficient (p allowed to vary
freely. The third column shows the rms deviation be-
tween theory and experiment for different values of v

with the best-fit values of $p, Data for which q$ S 0.03
were omitted from the analysis, since they were affected
by the cell-wall-scattering problem.
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v 5 methylpentane-nitroethane
+ isobutyric acid-water
O aniline-cyclohexane
+ 2,6 lutidine-water
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~C02 (coex. curve)
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FIG. 10. 1 * as a function of q( for several systems. The curve represents the mode-mode-coupling theory including
the modifications in Fig. 1. Background subtractions have been made for only the pure fluids. +, isobutyric acid water;
V', 3 methylpentane-nitroethane; +, 2,6 lutidine-water; C, aniline-cyclohexane; 0, SF6, ~, xenon, critical isochore;
0, xenon, coexistence curve; &, CO2, critical isochore; 2, CO2, coexistence curve.

function of qf, in Fig. 9(b}.
In another least-squares analysis of the same

data, the exponent v was fixed at different values
and $0 was allowed to vary freely to achieve the
best fit of the scaled linewidths to the theory;
the results of this analysis are presented in Table
V. The linewidth data are fairly insensitive to the
value of the exponent v as Table V illustrates;
the rms difference between theory and experiment
increases from 4.6%%up to 6.0%%uz as v changes by
~0.05 from the value which gives the best fit,
v =0.58. The values of v and $, are highly cor-
related; although $, varies considerably as v in-
creases from 0.53 to 0.63, the actual variation of
the correlation length $ (at a fixed temperature)
is much smaller for the temperature range of our
data.

Our best fit value of $0 corresponding to v =0.63
is 1.67 A, which is 16%%uq smaller than the value
(2 A) obtained by Smith et al.'" for the same v.
Smith et al. give an uncertainty in their values of
$ of only 5%%uo, considerably less than the 16%%up

change required in order to bring the data into
agreement with the theory.

We conclude, finally, that the 14/ difference
between theory and experiment for the xenon line-
width data on the critical isochore in the hydro-
dynamic region is slightly greater than the com-
bined stated uncertainties in our linewidth data
and in the parameters which enter the theory;
however, this difference may not be significant
because any one of the several quantities used in
calculating the linewidth or q$ could be in error

by an amount slightly larger than the reported
uncertainties. Clearly more viscosity, correla-
tion-length, and linewidth measurements are
needed.

C. Other Fluids

There are five other fluid systems for which all
quantities in Eq. (30}have been directly deter-
mined or can be accurately estimated: SF„""
isobutyric acid-water, " 3 methylpentane-nitro-
ethane, "' 2, 6 lutidine-water, "and aniline-
cyclohexane. "" Figure 10 is a plot of I'* as a
function of q$ for these systems and for xenon

Fluid
n.'(~. , T.)

i, (0~T, ) Reference

Xe
CO2
Ar
Kr
N2

CH4

C2H6

C3H8

2.34
2.22
2.34
2.34
2.11

2.11
2.17
2.27
2.29

(60, 97, 98)
(99, 100)
(102)
(97, 98)
(103)

(103)
(104)
(104)
(104)

Average: 2.24 + 0.09 (std. dev. )

TABLE VI. Values for the ratio of the background
viscosity at the critical point g&~(p~, T~) to the dilute-
gas viscosity at the critical temperature g~(0, T, ), for
several single component fluids. Background viscosities
were calculated from values for the excessviscosities.
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and carbon dioxide. (For clarity, only a repre-
sentative sample of the data for a given system is
plotted. ) According to the mode-mode-coupling
theory, all the data for I * should be described by
the same function of q$, which is given by Eq.
(30) and is shown as the solid curve in Fig. 10.
The pure fluid data have been corrected for back-
ground contributions, but for the binary-mixture
data no background corrections have been made.
That is, we assume that the background concen-
tration conductivity is negligible compared to the
critical part of the concentration conductivity,
and we also assume that the susceptibility back-
ground is negligible for the mixtures (thus X =Xc).

For SF„since there have been no direct mea-
surements of the density dependence of the vis-
cosity, we have estimated the background vis-
cosity at the critical point using the corresponding
states relation qs(p„T,)/q, (0, T,) = 2.24+0.09,
which we have found to hold for several other
fluids: xenon, '0'~'" CO„~'~ argon, '~ krypton, "~
nitrogen os oxygen ios ethane '~ methan
propane. '~ The value of the viscosity ratio for
each of these fluids is indicated in Table VI. Com-
bining the corresponding states relation with di-
lute-gas viscosity data for SF„'~ we find qs(p„T)
=374+131m p. P. Since there have been no mea-
surements of the critical part of the viscosity re-
ported for SF6, we can only make an estimate of
g, for SFe based on the measurements for other
fluids. As will be shown in Sec. V, qcjq, is nearly
the same for all those systems for which extensive
viscosity measurements have been made. The
result for this ratio [given in Table III G (a)] was

used to calculate q, for SF,. Since g, is a small
fraction of the total viscosity in the region of
interest, the uncertainty in I'* from this estima-
tion procedure should be small.

The other parameters used in calculating the
theoretical linewidth and the correlation length
for SF, were taken from Refs. 10 and 35. As can
be seen in Fig. 10, the SF, data agree quite well
with the theoretical curve except for q8 & 0.05,
where the deviation from theory is probably due
to the cell-wall-scattering problem.

The 2, 6 lutidine-water mixture was studied ex-
tensively by Gulari et al. ,

"who measured line-
widths, intensities, and viscosities. Over most
of the range of qg studied these data fall about
20% below the theoretical curve; however, as can
be seen in Fig. 10, the scatter in these data is
quite large.

In contrast with the 2, 6 lutidine-water system,
the mixtures 3 methylpentane-nitroethane" "and
isobutyric acid-water ' show good agreement with
the theory over the entire range of Fig. 10 except
for a small, systematic departure near q$ =1.

For the mixture aniline-cyclohexane Bergs,
Calmettes, Laj, and Volochine"' have obtained
extensive linewidth data; Calmettes, Lague, and
Laj'~ have determined correlation lengths from
intensity measurements; and Arcovito et al. '~
and Yang and Meeks" have measured the shear
viscosity As ca.n be seen in Fig. 10, the aniline-
cyclohexane results for I'* are in good agreement
with the theory.

In spite of the considerable scatter in the data
for I * in Fig. 10, it is clear that the data for

TABLE VII. Parameters for the shear viscosity for pure fluids at the critical density and
binary mixtures at the critical concentration. First the linewidth were fit to Eq. (20a) to de-
termine q; the uncertainty shown is one standard deviation. Then the data for the macro-
scopic shear viscosity were fit to g, fg~ =(8/15m ) ln(qzg) to determine q&, which is a free
parameter in the theory. In this analysis we used only those viscosity data sufficiently far
from T~ (e~ 5& 10 ) such that the density-gradient problem was not serious, and sufficiently
close to T~ (e% 2X 10 ) so that the results for g~ are not seriously affected by the uncertainty
in the background viscosity g~~. References for the linewidth and shear-viscosity data used in
this analysis are given in Secs. IV C and V A.

System ((A.) (Ref.) g~ (cP) ln(q~)(})

Xenon
C02
SFe
3 methylpentane-

nitroethane
2, 6 lutidine-

water
Isobutyric acid-

water
Aniline-

cyclohexane

2.00m ' [8, 9]
0& 0 e33 [81]

1.50~-"' [114]
2.56' ' 8 [23,24]

2.00~-0.6' [57]

3 62&-0.818 [61]

2.20' ~ [106]

0.0542 + 0.0040
0.0377 + 0.0029
0.0490+ 0.0077
0.520 + 0.030

3.65 + 0.72

2.96 + 0.72

1.50+ 0.90

1.03
1.15
1.31
1.30

0.99

1.28

1.17

-2.87
-2.8 ~

-2.8 ~

-1.53

-3.14

-2.46

-1.97

' Assumed.
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the seven different fluid systems exhibit quite
similar behavior on this "universal" plot. The
systematic departure of the xenon, CO„and SF,
data from the theory at small q$ could be due to
failure of the mode-mode-coupling theory, in-
correct background subtraction, or errors in the
linewidth measurements; however, as we have
mentioned, it is likely that the cell-wall-scat-
tering problem is responsible for this departure
from the theory.

On the whole, the measured values of F* agree
within the experimental uncertainty with the mode-
mode-coupling-theory prediction that the data for
I'* for any system for any thermodynamic path
should all fall in a single universal curve which
is given by Eq. (30). Note that Fig. 10 includes
data not only for seven different systems, but also
data for three different thermodynamic paths for
xenon and carbon dioxide (the critical isochore
and the two sides of the coexistence curve). Al-
though we have included the vertex and correla-
tion-function modifications to the theory, the data
are not yet sufficiently accurate to determine
whether or not these refinements of the theory are
important.

V. COMPARISON OF EXPERIMENTS
WITH DECOUPLED-MODE THEORY

We first examine the validity of the theoretical
expression for the macroscopic shear viscosity,
Eq. (20b). In this analysis q, is determined by
fitting the linewidth data to Eq. (20a), and then
the viscosity data are fit to Eq. (20b), yielding
the Debye cutoff parameter q~. Then in Sec. VB
we compare the results of linewidth measurements

We have determined the constant q, for different
fluids from a least-squares fit of the linewidth
data to Eq. (20a}, and the results, including the
standard deviation in g, , are given in Table VII.
Equation (20a) was found to be a reasonable rep-
resentation of the linewidth data, as Fig. 11 illus-
trates for CO, and Fig. 2 of Ref. 45(b} illustrates
for 3 methylpentane-nitroethane.

The experimental results for the ratio qc/q, ,
where q~ is the critical part of the macroscopic
viscosity, are shown in Fig. 12 for six fluids.
The points plotted in Fig. 12 are, except for CO„
values calculated from the reported best-fit ex-
pressions to the viscosity data. We least-squares
fit the data for qc/q, to Eq. (20b), which can be
rewritten

qc/q, = (8/15m')(Inq~ $0 —v inc), (42)

where q~ is taken as a free parameter, and g„v,
and q, are known from other measurements. The
results of this analysis are given in Table VII,
which also includes the ratio q, /qs that enters the
expression for q,'" [Eq. (21b)]. In the semi-log
plot in Fig. 12 the adjustable parameter qn deter-
mines the vertical position of the line, while the
slope of the line is given by -v(8/15m'} = -0.034.
As can be seen in Fig. 12, all the data for q~ are
described reasonably well by the predicted loga-
rithmic temperature dependence.

with the Perl and Ferrell refined decoupled-mode
expression for the decay rate, Eq. (21), evaluated
using the parameters q, and q~ obtained in Sec.
VA.

A. Viscosity
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F&G. 11. The qzantity Z /q (q + ( ) is shown as a function of q$ for CO2. (Data for which q(60.035 have been
omitted due to the cell-wall-scattering problem. ) The mean value of the data gives g =377 +29 p, P, where the uncer-
tainty is one standard deviation. The horizontal line represents the mean value of the data, and the error bar indicates
+ two standard deviations from the mean value.
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FIG. 12. Experimental results for the ratio g, /g~, where g, is the critical part of the measured macroscopic visco-
sity, and g is a parameter (given in Table VII) obtained by fitting linewidth data to Eq. (20a). The critical part of the
viscosity was calculated for the different fluids using the best-fit equations from the original papers: Cl, aniline-cyclo-
hexane data of Arcovito et al, . (Ref. 107); ~, aniline-cyclohexane data of Yang and Meeks (Ref. 59); +, 3 methylpentane-
nitroethane (Ref. 58); ~, isobutyric acid-water (Ref. 108); 4, 2,6 lutidine-water (Ref. 57); ~, xenon (Refs. 60, 97, and

98); +, extrapolated CO2 data (Refs. 60, 99, and 100). The straight lines show the results of fitting the viscosity data
to g /g, = (8/15m ) [lnq~(o-vine], with qD taken as an adjustable parameter and g and ( given by the values in Table
VD. For clarity, the curves are shown only for four fluids: (a) aniline-cyclohexane, (b) 3 methylpentane-nitroethane,
(c) 2,6 lutidine-water, and (d) xenon.

For pure Quids there is an established systema-
tic procedure for calculating the background vis-
cosity using data obtained outside the critical
region, as we have discussed in Sec. IIA, but the
same approach cannot be applied to most binary
mixtures because extensive data as a function of
concentration and temperature do not exist. There-
fore, the reported values for the background vis-
cosity for mixtures were deduced either by fitting
viscosity data obtained in the critical region to an
expression which includes both the background
and critical parts or by extrapolating into the
critical region data obtained far from the critical
point. As several authors have discussed, the
same viscosity data can appear to exhibit a cusp
or a weak divergence at the critical point, de-
pending on the particular procedure used to deduce
71s (see Sec. II F and the recent review by Sen-
gers108) 57.58

Included in Fig. 12 are a few points for CO, ob-
tained in independent experiments by Strumpf
et al.~ and Kestin et al." These data, which were
obtained by extrapolation to the critical isochore
of data obtained off the critical isochore, agree
fairly well with the values of ((4c/71, measured for
other Quids; therefore, in our analysis of the CO,

B. Decay Rate

The decoupled-mode-theory expression for the
decay rate is

r =c(,(}( («})("' ) (43)

where we have included the correlation-function
correction term C( q$), which increases mono-
tonically from C(0) =1.014 to C(~) =1.056 (see
Sec. IIE). We could compare E(I. (43) directly
with the experimental values for I'~; however,
since I'~ is quite different for different fluids,
the comparison between theory and experiment
and the comparison between the decoupled-mode
theory and the mode-mode-coupling theory is
facilitated by again considering the scaled line-
width

r* =- (6571.r'/u, Tq5),

which in the decoupled-mode theory is given by

linewidth data we have used an expression, shown
by curve (c) in Fig. 12 and given in Table III G(a),
which describes reasonably well the viscosity
ratio for different Quids.

K,(q t') 1 + (71,A/718) ln(q~ ()
(qq} 1+(q},AA, }(}q(q q} ——,'1 (1+q'q'}+ (q(}})' (44)

where A =8/15v8. Here the scaled linewidth is not a universal function of the single variable qt', as it is
in the mode-mode-coupling theory. However, if we rewrite E(I. (44) as
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I'* =C(q() ', 1+ 's [-,' ln(1 +q'$') -r(q$)]

2

+- 's [in(qo()-2ln(l+q'P)+v(qt')][-, 'in(1+q'P)- r(q$)]+. . .
~S

(45)

then it is clear that I * is a function only of q $ if
the second- and higher-order terms in A can be
neglected. In the hydrodynamic region the con-
tribution of the higher-order terms is less than
0.5% for e & 3x10 ', while in the nonhydrodynamic
region the contribution of the higher-order terms
is larger, but still typically less than 3+, for the
data which we analyze in this paper. The decou-
pled-mode expression [Eq. (45)] for I'* with the
second and higher terms in A neglected is com-
pared with the mode-mode-coupling theory [Eq.
(30)] in Fig. 13. The upper and lower curves
shown for the decoupled-mode theory correspond,
respectively, to the values of q, /qs obtained for
3 methylpentane-nitroethane (q,/qs =1.30) and

2,6 lutidine-water (q, /qs =0.99); for the other
fluids considered here the ratio q, /us falls be-
tween 1.30 and 0.99.

In the hydrodynamic region the mode-mode-
coupling theory (with vertex corrections included}
yields

far too small to explain the difference between the
two theories in this region.

In Fig. 14 we compare the data for I'* for four
fluids with the decoupled-mode and mode-mode-
coupling theories. In Fig. 14, only the region for
which qE&0.1 is shown, since the two theories
are essentially in agreement in the hydrodynamic
region. Although the amount of data in the non-
hydrodynamic region is limited, the available
data can be seen (Fig. 14) to be in somewhat better
agreement with the decoupled-mode theory than
with the mode-mode-coupling theory. Additional
data in the nonhydrodynamic region are clearly
needed; however, this is a region in which defini-
tive experiments are quite difficult, because of
the density-gradient, concentration-gradient, and
temperature-control problems.

I'* =1.053/q (, (46)

while the decoupled-mode theory (including higher-
order terms in A} yields

I'* = (1.050 +0.003)/q $, (4'?) 2-
where the +0.003 in Eq. (4V) is due to the small,
qg-dependent contribution of the higher-order
terms. Thus the two theories are in excellent
agreement in the hydrodynamic region. However,
as noted in Sec. IID, the decoupling approximation
is equivalent to the neglect of vertex corrections;
if the comparison of the decoupled-. mode theory
with the mode-mode-coupling theory is made with
the vertex corrections omitted from the latter
theory, then the mode-mode-coupling values for
I'* are 2.7% instead of 0.3/0 higher than the de-
coupled-mode values for I'* in the hydrodynamic
region.

The difference between the mode-mode-coupling
and decoupled-mode theories is much larger in the
extreme nonhydrodynamic region; e.g. , at qg =10
the difference between the two theories (with the
higher-order terms in the decoupled-mode theory
neglected) is 8.3%, for q, /ps=1. 30 and 12.5% for
q, /qs =0.99. In the extreme nonhydrodynamic
region the omission of vertex corrections would
lower the mode-mode-coupling-theory values for
I'* by only 0.4@; thus the vertex corrections are

IO O.l

FIG. 13. The theoretical predictions for the scaled
linewidth, I'*=6ngs I' /k&Tq, in the mode-mode-cou-
pling and the decoupled-mode theories. The mode-mode-
coupling calculation of Lo and Kawasaki yields a single,
universal curve for I'*, which is shown by the upper
curve (Refs. 43 and 44). Perl and Ferrell found that the
decoupled-mode approach leads to a result for I'* that
is slightly different for different fluids, depending on
the ratio g, /gs (see Table VII) (Refs. 45 and 46). How-
ever, for the fluids we consider in this paper the ratio
gs/g, falls within the range between 1.30 and 0.99,
which are the values used in drawing the upper and lower
dashed curves, respectively. The curves for the decou-
pled-mode theory represent the theory to lowest order
in A =8/15~2; if higher-order terms in A were included,
the theoretical values for 1"*would be changed typically
by 3% or less, but would depend not only on q$ but also
on qD [see Eq. (44)j. The curves for both the mode-mode
and decoupled-mode theori6s include the correlation-
function modification C(qg) (see Sec. IIE).
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VI. CONCLUSIONS

We have shown that within the experimental
uncertainty the data for the dimensionless quantity
I'* =6vq, i'c/ksTq', the "scaled linewidth, " are all
described by the same universal function of the
variable q$, independent of the particular thermo-
dynamic path or fluid system (see Fig. 10). We
have also shown that the mode-mode-coupling-
theory and decoupled-mode-theory predictions for
the scaled linewidth are essentially the same,
except in the extreme nonhydrodynamic region
(q(»1), where the decoupled-mode values for
I'~ are -103'o smaller than those predicted by the
mode-mode-coupling theory. Furthermore, the
experimental results for F* agree with the theo-
retical predictions within the combined uncer-
tainties (-10%) of theory and experiment. "' This
remarkable result is illustrated in Figs. 10 and
14; it should be emphasized that this comparison
between theory and experiment involves no ad-
justable parameters, since the theoretical ex-
pressions were evaluated using independently
determined shear-viscosity and correlation-length
data. Although the theoretical predictions of the
mode-mode-coupling and decoupled-mode theories
differ by -10% in the extreme nonhydrodynamic

region, the data in this region are sparse and have
too much scatter to distinguish clearly between
the two theories.

The accuracy of -10@ in the present comparison
of the theory with the experimental data for dif-
ferent systems could be improved to approach
-1% if currently available techniques for mea-
suring and controlling temperature and for mea-
suring I', $, and q, were fully exploited. We will
now summarize some of the principal experimen-
tal and theoretical difficulties which arise in
attempting to achieve an accuracy of 1% in an
absolute comparison of the theoretical and ex-
perimental values of the decay rate.

A. Experimental Problems

With the recently developed digital autocorrela-
tion technique, it is now possible to perform in-
dividual measurements of the decay rate with a
statistical uncertainty of less than 1%"'; how-
ever, the Quctuations in the individual values of
I' measured for a Quid at a particular temperature
and density (or concentration} in all of the reported
experiments is much larger, typically - +6% (see
the graphs of I' in the original papers for any of
the fluids that have been investigated}. These

(e)
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(b)
3 methylpentone-
nitroethane

/
4

I
IO
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FIG. 14. A comparison of the experimental results for I'* with the decoupled-mode and mode-mode-coupling theories:
(a) xenon, (b) 3 methylpentane-nitroethane, (c) aniline-cyclohexane, (c) isobutyric acid-water. For each Quid the solid
curve represents the mode-mode-coupling theory (Refs. 40, 44, and 47) with viscosity, vertex, and correlation-function
modifications included, and the dashed curve represents the decoupled-mode theory (Refs. 41, 45, and 46) with the vis-
cosity and correlation-function modifications included. In the decoupled-mode theory there is a small variation in I'* at
a given value of q$ due to the higher-order terms in Eq. (45); however, this variation is typically less than 2% for the
range of q and g investigated in the experiments considered here, which is too small to show on the scale of these
graphs.
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Quctuations are due in part to insufficient long-
term temperature stability and equilibration. In
recent measurements on xenon in our laboratory
Lim' has maintained the sample temperature
within 0.5 mK for periods of days, and the tem-
perature gradients in the thermostat oil bath have
been reduced to less than 0.5 mK by vigorous
stirring; with these precautions the individual
measurements of the linewidth performed with a
digital autocorrelator over periods of months for
a particular temperature and beam height in the
sample cell reproduce to within 1$.

In the reported investigations of the linewidth
for binary mhrtures near the critical point, in-
sufficient attention has been paid to the problem
of the gravitationally produced density and con-
centration gradients. As Mistura has pointed out,
the density gradient in a binary mixture is pro-
portional to the thermodynamic derivative
(ap/SP)r ~, which corresponds to the isothermal
compressibility of a pure substance and is strongly
divergent at the critical point ua. us Moreover
the concentration gradient near the critical point
is proportional to the density gradient, although
the proportionality constant may be small for
some mixtures (the coefficient of proportionality
is zero if the critical point happens to fall on the
azeotropic line. "~ Our linewidth measurements
in CO„xenon, and SF, have all been performed
as a function of beam height in the sample cell,
and we have found that the dependence of the line-
width on height is large near T, (see Fig. 2),' "'0
and unless the thermostat temperature is ex-
tremely stable and uniform, the height corre-
sponding to the minimum I' varies with time. Al-
though the dependence of I' on height may well
be small even very near T, for some mixtures,
in general it will not be negligible; hence future
linewidth measurements for mixtures near the
critical point should explore the height depen-
dence of F.

Shear-viscosity and correlation-length data are
needed in order to compare the results of line-
width measurements with the theories. The most
extensive measurements of the correlation length
for a fluid near a critical point have been per-
formed for CO„ for this Quid Lunacek and Cannell
obtained accurate values for $ by using a differ-
ential technique to determine the angular depen-
dence of the scattering intensity for temperatures
ranging over three orders of magnitude in AT.s""~
More measurements of this type are clearly needed
for other systems.

Extensive measurements of the shear viscosity
near the critical point have been reported for
many binary mixts""- sad f~r xenon, CO„and
ethane (see the review by Sengers'~). Most of

these measurements were performed with capil-
lary-flow viscometers, which actually determine
the kinematic viscosity q,/p. In the capillary
viscometers there is a pressure gradient across
a tube several centimeters long; hence the accu-
racy of this method is seriously limited very near
T, by the density and composition gradients. In
an alternative technique, which has the advantage
that it does not produce a macroscopic pressure
difference in the sample, the viscosity is deter-
mined from measurements of the damping con-
stant of a small torsionally oscillating cylinder
or disc; however, the interpretation of a charac-
teristic damping time in terms of a viscosity is
not entirely straightforward, especially near T, .

A very interesting different approach to the
study of the viscosity of fluids near the critical
point was used recently by Lyons, Mockler, and
O' Sullivan, "who used light-beating spectroscopy
to determine the diffusion coefficient D of Brownian
particles in the mixture nitroethane-iso-octane
near the critical point. Measurements of D for
the Teflon microspheres (diam d =0.31 pm) in
their mixture yielded a value for the effective
viscosity through the Stokes-Einstein relation,
D =ksT/Svq, d. There are no macroscopic dis-
turbances of the sample for this technique, and
the region probed is only -0.1 mm high (the diam-
eter of the focused laser beam). Thus this tech-
nique can potentially yield information on the vis-
cosity very near T„a region in which accurate
measurements are needed if the nonhydrodynamic
(qua 1) behavior of the decay rate is to be com-
pared with the theoretical predictions. The pro-
mise of this technique hinges on a better under-
standing of the relation between D and g, , espe-
cially very near T„where g-d.

B. Theoretical Problems

The effect of the large, relatively slow, long-
wavelength order-parameter fluctuations on dy-
namical behavior near the critical point was con-
sidered in Ferrell's decoupled-mode calculation
and in Kawasaki's mode-mode-coupling calcula-
tion, but in both approaches to the calculation of
the critical behavior of transport coefficients,
the effect of the high-frequency fluctuations which
give rise to the "background part" of the transport
coefficients, was neglected. """'Since the theo-
ries neglect the background contributions to the
decay rate, any comparison of theory and experi-
ment must include a well-reasoned systematic
method for extracting the critical part of the decay
rate I ~ from the measured values I'. For the
single-component fluids we have used a modified
Sengers-Keyes ansatz in making the background
correction, a procedure which seems to be sys-
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tematic and self-consistent {see Sec. HA}. On
the other hand, me have not been able to make any
quantitative estimate of the background contribu-
tions for the binary mixtures, so that the rather
good agreement between theory and experiment
illustrated for the binary mixtures in Fig. 10 must
be regarded as yerhays in part fortuitous, es-
pecially for small qg, where the background con-
tribution may well be significant.

The mode-mode-coupling expression [Eg. (24}]
that me have used for the decay rate cannot rep-
resent the full mode-mode-coupling theory since,
in addition to the absence of background correc-
tions, intermediate states with three or more
modes (representing higher-order nonlinearities)
were not included in the derivation. ~o 4'~' Also,
only the four lowest-order vertex-correction
terms mere considered in the derivation of Eq.
(24), and these vertex corrections were evaluated
only in the limits qf«1 and qg»1; however, the
vertex corrections were found to be only 2.44&
or less for the eases considered.

The refined decoupled-mode expression of Perl
and Ferrell mas derived starting with an ansatz
for I'c, Eg. (20a), which was found to give a good
fit to the experimental data. 4' ' This ansatz in-
volves an adjustable parameter g, (to be deter-
mined by fitting the linewidth data}, which then
appears in the final expression for the decay rate.
Another adjustable parameter in the Perl-Ferrell
theory is q~, the "Debye cutoff, "which is to be
determined by fitting the critical part of the vis-
cosity of Eq. (20b}. Thus the decoupled-mode-
theory predictions for F*, unlike those of the
mode-mode-couyUng theory, are different for
different fluids, depending on the values of q, and

qD. However, the decoupled-mode predictions
for I' for different Quids differ by only a fem
tenths of a percent in the hydrodynamic region and
by not more than a few percent in the nonhydro-
dynamie region. Another difference between the
mode-mode-coupling and the decoupled-mode
theories is that while the mode-mode-coupling
value of I'* depends only on the product of q and
E, in the decoupled-mode theory the value of I"*
depends not only on qg but also [due to the higher-
order terms in Eq. (45)] on the individual values
of q and E. Yet another difference between the
mode-mode-coupling and decoupled-mode theories
is that the decoupling approximation necessarily
excludes vertex corrections, as was discussed in
Sec. IID.

The effect of departures from Ornstein-Zernike
correlations mas discussed in Sec. IIE, where the
correlations were assumed to be described by the
function Q„~ obtained by Fisher and Burford for
the Ising model. However, the amount of exyeri-

mental evidence on the proper functional form for
the correlation function for real Quids and magnets
is quite limited, and, as has been shown in Ref.
48, the correction of I' calculated using 6» is
qualitatively different from the correction calcu-
lated using other forms for G that have sometimes
been used to describe deyartures from Ornstein-
Zer nike behavior in scattering experiments. With
the correlations described by 6» the correction
to l ~ increases with increasing q F„while for the
other correlation functions considered in Ref. 48
the correction decreases with increasing qg. The
magnitude of the correction is typically several
percent, depending, of course, not only on the
form of G but also on the value of the exponent q,
which is not well established.

C. Summary

Vie have compared the results of Rayleigh-line-
midth measurements on pure Quids and binary
mixtures near the critical point mith the specific
predictions of the mode-mode-coupling and de-
coupled-mode theories. These theories constitute
more complete theories of dynamical behavior
than the dynamic-scaling theory, in which the
function f(q, $ ') in Eg. (12) is any homogeneous
function of q and $

' of degree z; nevertheless it
should be noted that the data in Fig. 10 are con-
sistent with the dynamic-scaling prediction.

The agreement of the linemidth data with the
theoretical predictions is remarkably good, con-
sidering the experimental and theoretical diffi-
culties enumerated above in Secs. VIA and VIB.
The predictions of the mode-mode and decoupled-
mode theories do not differ significantly, except
in the extreme nonhydrodynamic region, mhere
the difference is -10%; there, the scaled line-
widths appear to be described somemhat better
by the decoupled-mode theory than the mode-mode-
coupling theory, as Fig. 14 illustrates, but this
result is at most suggestive rather than conclusive,
since the available data in the extreme nonhydro-
dynamic region are sparse and exhibit considerable
scatter.

More-accurate linemidth, viscosity, and corre-
lation-length data are requiz ed, especially near
T„ if the theories are to be tested further. If
the theories with all significant corrections can
be established from measurements of the line-
midth, viscosity, and the sound velocity and at-
tenuation, the linewidth measurements should
yield information on the proper form of the corre-
lation function for Quids near the critical point. 48
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