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The thermodynamics of fermions in one dimension with a repulsive 5-function interaction is analyzed

in some detail. The excitation spectrum at finite temperature is also derived. It is shown that the

spectrum can be classified into two types of excitation.

I. INTRODUCTION

In a previous paper' [which we shall call I, and

whose equations we shall refer to as (1.1}, etc.]
we have obtained the thermodynamics of fermions
with repulsive 5-function interaction in one dimen-
sion. The difficulty with this problem lies in
finding all the solutions of Eg. (I.2} and the cor-
responding quantum numbers. It turns out that
the ansats (I.S) resolves this difficulty. The A' s
lie in strings in the complex plane, and they are
fermionlike, so that the quantum numbers can be
assigned to them by a continuity argument with

respect to the interaction strength. In this paper,
we will show that the ansatz is indeed consistent
with the integral equations thus obtained. Special
cases of these equations are worked out in greater
detail, since they can be used to make the Ansgtg
plausible. The excitation spectrum at finite
temperature is also derived, so that the meaning
of the ~ and @'s will become clear.

form

C(t', n): A= $„&+w&'pc+5„,

p = -(n —1), . . . , (n -1),
(4)

(5b}

where 8(x) 2t=an (2x'/c) In. the limit L,,N- ~
proportionally, Egs. (5) become integral equations,
as in (I.V):

0(e- iiI )

From Egs. (2)-(4), we derive the following

equations:

g e(k -0)

„ei. -4s) (i~)n-l

II. FORMULATION p
' dp=2K o' +0'

~
+ g

The Hamiltonian for the system is the same
as in I,

N

H = —P, +2c g 5(x, -x&}, c &0,
i= 1 i k&f

and the energy levels are determined by the
algebraic equations

1 = 2w(p+ p„)—Q 8' o„(t')dt'., P-&'

The Fourier transform of Eg. (6a} is

(Sa)

(~b)

-p +A' —i@ (2) p(&u)e " ~ ~ =v +e„„+gn, sgn(n-l)5 e "~~ '~ ~

ii (
0'+A —ic') ll (-A'+A--ic)

(s)

We again make the cuneate as in (I.S}~at the A' s
are located in strings in the complex plane. Fur-
thermore, the strings are fermionlike, by which
we mean the A's in a string C(t', m) are of the

This can easily be converted into

(o„+o „)2cosh'~ = c „„+c (8)

where g,~ is defined as p. The Fourier transform
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of Eq. 6(b) is

5 (()))}
p+ pa —Z e " &I

=p+p„--,'coshtt&u(e "} tp —5„), (9)

where (8}has been used to obtain the final result.
From Eqs. (8) and (9) one can easily obtain the
integral equations (I.10):

~o

P= — ln(l+e 't ) dk
27r

(13)

limT ' t()„/n =A, &0, (12)

the G's are operators as defined in (I.ll}. The
thermodynamic quantities can finally be expressed
in terms of the e and (t)'s (I.17}. In particular,
the pressure P is given by

1/2w=p+p, -(1/))f (:,() -k)pdk

+((/2)f G.(( -)t)v, , ,~, (10)

It will be seen in Sec. V that the e and (t)'s can be
interpreted as elementary excitations.

HI. CONSISTENCY OF ANSA TZ

o„+o„„=(1/2)G, (p —k)(o„„„+o„,„)dt, n ~ 2.
a

A =P —e ——G, ln(1+e ) ——G,
1 1

2T 2T '
xln(1+e &t ),

o, =—G,[ln(l+e ~/ ) -ln(1+e ' )],
1

o =—G [In(1+e'~-& )+In(1+e'"+~ )].n 2T0
With an asymptotic condition

(1la)

(1lb)

(1lc)

Now if one defines 5„/p=e'~y o /o =ee~O'~"
and minimizes the free energy in the standard way,
one obtains (I.15) for the e amd (t)'s:

It is not easy to solve Eqs. (2)-(3) exactly
when N is very large, but asymptotically (L» 1)
the Ansatz (4} seems to be a correct one. An
Ansatz of this kind was first used by Bethe' in
the antiferromagnetic chain problem. A similar
assumption was also used by us in obtaining the
ground-state energy of the attractive case of the
present problem. In this paper, we would like to
show that the ansatz is indeed compatible with
the equations derived in (6).

Let A be in a string C(g, m),

A = g+iP. g+5v '

Substitute the above into Eq. (3) and take the
absolute value of both sides. One then obtains

~ (5 —P}'+(I—I)*e' 5.-5.—. ' TT(h —5'}'+(v' — A+In)' (t —5')'+(v' —p —I)'n'~ (5 p)'+(u—+I)'q' 5„-5„,~
~L, ($ —$'}'+(v'+ p —I)Y (h —(')'+(v'+V+1)V

2 g H($, t', v', p, —1)H (t', (', v', p, +1) .5„-5„2 (14)

(Here we assume p, &m -1; for g =m -1 the procedure is similar. } When L is very large, the logarithm
of the above can be written

2 1„5u-5 2 I„($-p)'+(p-I)'(7'
( )d

(5 —p)'+ (p + I)')7'

—g f ()~((.(.",~-() ~(&( (' ~' v ~ ())s((') d(
V

=2& —e """~ -e " ' "~
p ~ e'~~d~

e-l&v+ ~-»~~l +e-I 6+ ~»n~l e-I~a-I » n~l e-I &]'-~»n~l o. ~ e&~td~

Now by Eq. (9), the right-hand side of Eq. (15) can be simplified to

(15)

L ln 5" 5
= — —

h [& )( x))(~) +&)( ~)),(&)]e,5g —5~2 27K Sinhg+
~ coshgu) ~+"

= -2 lncoth [ „„o„($')+a~,„($')]d$'=-2m&0.
4g
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This is consistent with the ansatz that 5„is of the
order O(e ~}. It can be proven that the number
of solutions is given by Cg Cg y This is just the
dimension of the irreducible representation
(N -M, M), as if all solutions are to be obtained.
The proof will not be given here since it has been
presented by others" in similar cases. In the
following, we will solve Eq. (11) for special cases;
the results will confirm the ansatz in all cases.

N —2M = lim g „d
1

fI i (-A+0 —
B)

(-A B B)'+

(23)

IV. SPECIAL CASES

A. c=O

Equations (22) and (23) are precisely the distribu-
tion function and magnetization for a free fermion
gas in a magnetic field.

Q, c~(oo

A =p' —~ ——ln(l+e ' r)- —ln(1+ee~~ ),2T 2T
(16a)

As c-0 one has G(p)-5(p), and (ll) becomes As c- ~, the integrals J G, ln(1+e '~r) dk and

J Gln(1 +e ' r}dk in (11a) and (lib) do not contri-
bute, allowing tp„to be a constant. This leads to

1
Q, =—In(1+e~'~ ) ——ln(1+e ' r),2T 2T

and

Q„=—In(l+e~B+~ )+—In(1+eeB ~~ ),1 $ 1
2T 2T

(16b)

5& 2.
(16c)

and

(1+e'er) = sinh'[(n +1)A]/sinh'X,

e =p' -A —T ln(2

cosh'�}

p=(1/2w)(1+eB~ ) '

(24)

(25)

(26)

One can easily show that (16c}has the solutions I. 2mT SX

1+ee~r= sinh'(M+ p, )/sinhBA, , (17) tanks(1+e'~ ) 'dk
2m 3

(27)

with

limp„/n =AT =B.

Then by (16a) and (16b):

sinh'p, /sinh'z = (I +e '~r)

and

sinhg/sinh(A, —y, }= e' "+~~~r

which determine p, by

sinhp,
cosh'. coshg+e " ~

Now (I.16) gives

1 e" ~ ~sinhA.

w [cosh' +e'" ~' ]' —sinh'A.

(18)

(19)

(20)

Equations (26) and (27) are precisely the distribu-
tion function for free fermions where each energy
level can only be occupied by either a spin-up or
a spin-down particle. In fact, as the interaction
strength c- ~, the exchange force due to the
symmetry of the wave function becomes unim-
portant and both species behave the same.

C. Limit T=O

From Eq. (11},wehave p„~0for s&2. Assume
that e and P, are monotonic increasing functions
such that e has zeros at p' =Q' and qh, has zeros

This implies that T 0:

p=0 for p'&Q',

p„=0 for p'&Q'

and

X
cosh(sa + p )
sinh(s X + g ) '

p =— 1+exp

-A +P2+B
+ 1+exp

(21)
and

0 =0 for g2)g2

0,„=0for ('&R',
o„—=0 for n~ 2.

Then Eq. (8}would give

mh 9 m+ &A m-&A &

which has solutions

m&~23

(28)

(29)
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g —Z (ee 2)2)le)t g (m ) 2}nth 1h

For m =1, Eq. (8) gives

(o, +g,„)2cosh'(A) =g»+ p=e "~~~g2„+p

or

(, +e-~l~lp e-~nl~l~
&h 1 1'

(30)

(31a)

=A(~)(f f e (&-+»l)2)e)l f f e-v)e)2)()

+&(~)(f.f. 2e'"-'"" -f,f.„z"t "~(). (38)

The initial condition c,/b, = -A, gives

(Z
e l))(e)l f e 12)()l

)e

and finally from (35a) one obtains

(31b)

Substituting the above into Eq. (9), one obtains

5((u)/2z = p +p„-e "~ ~g .
A, =f2 e", A, edf=K,e A "dd. (39}

Equations (31a) and (31b) are integral equations
of the form

For simplicity, let I3=0 (A. =0), then the pressure
is given by

t R

g, =~I K,pdP — K,g, dt' (t'&It'),

p= —+ E,g, d) (p &Q'),
2Ã

where E is defined as

1 2mc
z m'c'+4(p -q)' '

(32a)

(32b)

(33)

K = (2'l22) fA,e+ (A, ——,'A', )2'+

a
=[(ZT))I /2Z] 2Z +Ze 2)Ie+2-2Ie

d „z(g'+P')

xe '~~ dp + ~ ~ 40

This agrees with results obtained by standard
methods.

Equations (32a) and (32b) are just the equations
obtained by Yang4 for the ground state.

V. EXCITATION SPECTRUM AT FINITE
'IKMPERATURE

A. Excitations

D. Second Virial Coefficient

The fugacity expansion can be obtained as
follows. Let

~o

e KIr= p A (k T}z)2 z =e&Ir
n=1 (34)

In the following pages, we shall derive the
excitations at finite temperature. The result
to be obtained in Eq. (69) shows that the e and
(t)'s in (ll) can be regarded as the energy of these
excitations. Let us first consider a state with
primed I's and J's satisfying Eq. (5):

e~&I =b„(k,T)+c„(k,T)z+d„(k,T)z'+ ~ ~ ~ . gp l
2zI) + g 8 see P(

(41)

Substituting the above into (11) yields

lnA, +p'/T = ', Glnb„—

A, /A, = aG,A, +—,'G(c, /b, )

and

(35a)

I& =I&, except j=y.
(42}

y. e ".-A' =2.2 eg'P ~ e(2-'. ")
n

but with

(35b)

1 G n-1 n+1

b„, b„,
= -A, , (35c)

0

Equation (35b) has the solutions

b„=f„'= [sinh'(s + 1)X]/sinh'A. . (36)

ln(b„—1) =-', G(lnb„,+lnb„„),b, =1,
We may call such a state a p-type excitation
as only the quantum number for a particular p
is changed in (5). To find the momentum difference
and energy difference between the two states
(5) and (41), one may proceed as follows': Assume
that I'z, $„~and I'&, g' are approximately the
same (except j=y}. Write

The the Fourier transform of (34c) will be the
difference equation (p,

' —p, )L =f(p,), j~ r

(t;.—t..)L=g.(g..), (43}

whose general solution is and subtract (5) from (41), obtaining, as L- ~,
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Similarly, we may consider a state whose primed
I's and J's satisfy

5-Py 8 5-Pv

=p 4.„,fe (,') [4)„(4)-4„(4')]4„((')«'.
(44)

II -Ij y

~~a =~ma y

for a specific m. The X's and o. s satisfy the
integral equation

(50)

Now define

X.(p}=(p+pA}f(p), c (()=(c +o,)g (, 5),
and use (6) to evaluate the coefficient of f(p) and
g (t') in (43). Writing our equations in operator
form, we have

0
~&«y &N)

0
. (51}

Or more generally, we may consider a state
where say, two of the &,'s become a string of
order 2. That is, the J,'s are p, -2 in number,
and the J,'s are v, +1 in number, and

+Go i', a =J,a except e = y, y',

J,' =J, except u=P.
In this case, the X and a's satisfy

(52}

where G(p, (f) = G, (p -q}4)((f),

Q0

0 X, Z,
1 1, 1 12

0 ~ I g
~ ~ ~

1
0 ~ ~ ~ i ~

—))„„)
where

+

r
(1 +e4/r) I

(1 +e [)l/r) 1

(l +8~))/r}

ls a block flinc'tloll,
hyke

q~, (p) = 1 for p ~ jp, p„'j
= 0 otherwise .

Note that X„=K„.Now the momentum dif-
ference and energy difference between the states
(5) and (41) are given by

4p= Z (4[ Pi) 4( py+ f A')4(4)4-4 =(44)-

Q (p24 p2)

z P =R,(p„')-a,(p„),
~= g(p,'}-r(p„),

where

(55)

(55)

(['

2v«e e(tll -p}-e(hl„-p),
(54)

e (4-4)
2

e(4-( ') 8(4
—4 )".

Excitations for strings of other orders can be
written down similarly. One may call states
(50} and (52) $-type excitations as only quantum
numbers for t's are changed in (5). Equation
(4S) may be designated as t' type and Eq. (52)
as $,-$, type. In Sec. VB, we are going to prove
that for the p-type excitation,

g(P) = E(P}+44 —2 ill(2 coshBT) .
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(B is the magnetic field. }' For the ] -type excita-
tion of (50}, we will show

(58)

p+p„12m

&h —(1 +f ) (65}

where
Also it can be readily shown that e and f3e)'s satisfy
integral equations of the same form as (63) [if
one uses E(l. (63} in minimizing the free energy
rather than using (1.10)]. One may thus obtain

(59)

(60)

Similarly, for the excitations of (52}, we will show

(61)

(62)

86

BP

B41
B)

B@„
Bg

BE y

BP

By,
8$

+

2p

(66)

B. Momentum Difference and Energy Difference

To prove E(ls. (55)-(62), we rewrite (4} as
Now let us prove (61). E(luation (53) gives

p+pa
+1 ~1$

p+pa
~l ~1$

((/R~
= (1+1,) (67)

n +~ma

Let L be the resolvent

(1+L)(1—G) =1.
Then E(l. (63) gives

(63)

(64)

As Go is symmetric, one can easily show that

4(p)&(p, q)q '(q) =&(q, p), (68}

where L is the transpose of L. Then by use of
(48), (67), (68}, and (65}, we have

( 1+e'~') ' g, + Q f„(P,q)g, ,(q) &
N ~ QQ

(1+e' ) 'g, dqg+J f.„(q,P)@,,'(q)g, ,(q)dq

go(1+e' ) 'dq+ [2s(p+p„)—1](1+e' ) 'g d'qo
a ~o

+ g ~) 2v(o, g+»)(1 e+s ) 'g, dq

~0

2wpgodf + Q 2woggg(fq )
a f ~ ee

which yields E(l. (61) by the definitions of (54) and (59). The other equations (55)-(62) can be derived in
the same manner. Now it is easy to see that for a finite number of simultaneous excitation, one has

nE = g [e(p' ) - e(p )]+g y (t. ) - g y ((.„),
(69)

with Dn' =Dn.
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C. Limit T=O

We go to the limit T =0 to obtain a qualitative
picture of the excitations. From (1.15), we have
p„~0for n~ 2. Thus &r„=0(n&2) in the limit
T =0. Thus, in the ground state, there are no
strings of order higher than or equal to 2. How-
ever, for low-lying excited states, such higher-
order strings will be present. Then from (66)-
(68), we will have

p =—+ Kp'g A (p' ~ Q')2r

u, =
I K,pg —f R,v, d( (('&R')
-o -R

0g„„= K pdp
-Q

R

(K„„+K,,)o, dt' (n &2),

(70)

where K, are the kernels defined by (46). Similarly
(45) becomes

1 2 2 2 -,2'
( c' +4 v'r') tan '

jr C

-(2 c'+2w'r') tan '—gy
C

2 a i &r err M+- g' tan '——, , +p-
g2 +g~r (V4)

Eliminating g, ~ is of the form

~=a+b(~)', (75)

where a, b are constants. Thus Eq. (75) corres-
ponds to collective excitations. If one recalls
that when c ~, (5) is identical to the algebraic
equations of the Heisenberg chain, ' then it is
reasonable to identify these as spin waves.

excitations near the Fermi level. For the excita-
tions of Eq. (52), let us take ], =-],„=R,and

$, g
= g = 0. One then obtains2,my 2n'y I—tan ' — +0

7T L

K,o.,d),

o R
a, = K,X,dp — K,o.,d)+(2s} '

-Q -R

(V1)

x[e(p,' -g) -e(p„-g)j,etc.
Let us assume that R = 0 so that M/L is propor-
tional to R. For a p-type excitation near the
fermi level (p'=Q+k, p =Q), Eqs. (70) and (71)
yield, to the lowest order in ~,

M Seer, 2'wy- —.. . + an '
c'+4&'r' c

(72)

where r=N/L. Similarly for the (,-type excitation
near the Fermi level )=R($,„=R+k,(,„=R},one
readily obtains, to order O(zP),

M 2, 2n'r 2wcr t,2'

(V3}

Equations (V2) and (73}are quasi-particle-like

VI. CONCLUSION

We have shown that the Ansatz used to derive
the integral equations are compatible with these
equations. Special cases of these equations are
solved and they all give the correct results. Thus,
it is very likely that the Ansatz is a correct one.
We have also computed the excitation spectrum
of the repulsive fermion gas at finite temperature.
We may classify an excitation as either of two
types: p type and $ type. Then ho 6 and

h„p,(k ~ 1}can be regarded as the momentum
and energy of these excitations, respectively. At
T =0, the p-type and g, -type excitations are like
quasiparticle excitations while $,-], type are like
collective excitations, analogous to spin waves
in antiferromagnetic chains. One can apply the
same procedure to the attractive case; the result
will be published elsewhere.
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