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The Jastrow wave function with relative angular-momentum-dependent correlation functions, is shown

to give the back flow of 'He around the 'He impurity. Variational calculations with these wave

functions and the Lennard-Jones (6, 12), and Bruch-McGee-2 potentials respectively give m ~
=. 2. lm3 and

2.25m, . A simple density dependence of m ~ is discussed.

I. INTRODUCTION

Within the Jastrow approximation "that correla-
tions between more than two particles can be rep-
resented by a product of two-particle correlation
functions, " the wave function

body term in the cluster expansion of (1.2). The
healing distance d is subsequently taken to be so
large that the effects of the constraint are negli-
gible. PB have shown that with these f the two-
body term dominates. Its contribution from the
correlation volume (r & d) is

&e'(k~) l&l~ (k ) &

ak, (e(k, )lg(k, )& m* '

where

(1.2)

4'(k ) = g f g f„„e'&' '~

«e f«&n

describes the state of one 'He quasiparticle (de-
noted by j) in liquid 4He. The effective mass of
'He is then given by

~d

v ——(k' vv')) ll d'r,
Q„p m

where

k = k) m4/(m, + m, ),
m = m, m, /(m, + m, ),

and formally

y=fA=fe' ''.

(2.1)

(2.2)

(2.3)

(2.4)
-k2 V„'+- g v., (1.2}

(subscripts a, p refer to all particles}.
Previous calculations" of m* initially assume

that f& is real, spherically symmetric, and in-
dependent of k&. In this case the V~ P&' V& f&„ term,

el(i(J 2j (1.4}

is zero, and k~P'/2m, is the only term in energy
expectation value that depends on k&. This term
is obtained by operating V& on P~, and gives m"
= m, . It was then argued that (1.1) is too simple,
and does not incorporate the backflow of 4He; the
authors" improved upon it by perturbative meth-
ods in first order.

Pandharipande' has calculated the f& varia-
tionally, including the Vzp&

~
V& f& term.

fz„are complex and k dependent. In Sec. 11 we
show that (i) they incorporate the backflow of 4He,

and (ii) at small kz the V& pz
~ Vzf&„ term gives an

attractive contribution proportional to A&2. Section
III reports a calculation of m* with the methods
developed by Pandharipande and Bethe' (PB) to
calculate the expectation values in (1.2).

The (I) is decomposed into partial waves,

with

ad= &2(r}r.

S2
= —6' +1'(2)) II, , (2.6)

The A'(k) are determined from the boundary con-
ditions on f.

It is convenient here to define l-dependent cor-
relation functions ft .

fd = &i/~i (2 'I)

where 4, are spherical Bessel functions in the
expansion of ft),

P = g i'(21+I)J(kr)P, (cose). (2.8)

(() = g i'(2l+1) U, (r)P, (cose), (2.5)
~ p

where 8 is the angle between r and k. The contri-
bution of each partial wave is minimized separate-
ly to obtain the "Schrodinger equation"

II. PROPERTIES OF f
The f are calculated with the constraint f=1

for r &d and Vf (d) = 0, by minimizing the two-

g ~p

The f is complex:

f =f, +if' (2.9)
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f.= &c &)+ &.&.

f] = ~'~ 4.—&» &. .
(2.10)

The P, and P, have odd parity, while that of (}')„

and g„ is even. Thus we obtain

(we use subscripts r and i to denote the real and
imaginary parts) and

In the limit of small k the J, can be expanded
in powers of kr, and only l = 0 and 1 need be con-
sidered. This gives

f„=f,(r}+ terms involving k'

f„(r)=f„( r)- f, =kr co.s8[f, (r) —f,(r) ] + ~ ~ ~ . (2.12)

f, (r) = —f,(-r).
(2.11) The f, and f, —f, at small k are shown in Fig. 1.

The wave function (1.1) is now

r(k~)=e'"i"e n (f (r~ )rike r [fe(r~ )-f (r~ )] '
) n f (2.13)

@a= II fas
a&8

(2.15)

and the exponential in (2.14) is expanded using the
smallness of k&. The '.maginary part of f~„gives
a current corresponding to the backflow of 4He

atoms around the 3He impurity with a velocity
proportional to kz.

The first term of

-(I'/m}p"f *Vftf Vf =(ks/m}[-ik (f„Vf„+f& Vy;)

+~ '(f,Vf( —fg Vf.H
(2.16)

and it resembles the Feynman-Cohen' wave func-
tion

kre(ke)=ex ike re+i+ k, rex(r~„))r, ,

(2.14)

provided that

1 ~ S~
ga ~ 2m gs(r e ray)m

a~ as a ay ds& ds&V,~ 'V

(3.3)
The notation here is identical to that in PB, g &

being the pair-correlation function and 0 the nor-
malization volume. The g is calculated by a
hypernetted-chain equation which is shown to be
fairly accurate when used with the present corre-
lation functions and the energy expression (3.1).
It is noted that the angle average of fs~(k, r} is
relatively insensitive to k, and hence to the con-
tribution of the chains, and the U can be calcu-
lated from f,(r). This corresponds to neglecting
terms with (f, -fs}' in many-body (&3) clusters
In this approximation the only terms depending on
k& are

E(k, )=(h'/2ms)ks&+ .p V& gf dsrf + const,
4

gives zero contribution, while that of the second
is attractive and proportional to k'. Thus this
term increases the effective mass of the 'He im-
purity.

The effect of the mass difference in 'He and 'He
is automatically included inthese f. The f„„
(4He-4He correlation functions) are calculated with
reduced mass —s'ms instead of that given by (2.3).

where p is the 'He density,

V,„(r&d }=~'(k)P',

Vf (r & d ) = v(r),

(3.4)

(3.5)

E(kf) = W+ U+(K /2ms)kf r (3.1)

III. CALCULATIONS AND RESULTS

PB write the energy expectation value in (1.1)

g, (r)=hf', (k, r)P' . (3.6)

The P' are angular-momentum projection opera-
tors, and (h —1}is the contribution of the chains.
The integral in (3.4} can be expanded in powers of
k

W = —Q I V ]]g„sdsr,1

a&S"
(3.2) V& g& dr& =a+bk + ~ ~ ~

(note that there is no term linear in k), and

(3 'I)
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If the effect of the chains is neglected the b is
independent of p, and the m~ obeys the approxi-
mate relation

0.8—
m*/m, =1/(1+cp), (3.10}
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FIG. 1.f 0 and f~-fo at d =2.6 xo.

m+ g'/2m,
ma (h '/2ms) + [bm~4 p/(m, + m4)~]

The m* is calculated at various values of cif

ranging from 2r, to Sro, where ro is the unit
radius,

&Ipr,' =1.

(3 6)

(3.9)

It is very insensitive to d for d &2.4 r~ and in-
creases by a few percent as d is increased from
2 to 2.4ro.

The dominant contribution to m* comes from
the lowest-order two-body clusters (g,„=f';„). .

The chains reduce m* by only =10%, and hence
they are calculated by neglecting the difference
in f,(r) between 'He-~He and 4He-4He pairs.

where c is a negative constant. Such a relation
could also be suggested from the observed rapid
increase of the effective mass of 'He in liquid
'He from 3.1m3 to 5.8m, with a density change
from 0.27 to 0.36/o~. However, there are ex-
change contributions in 'He (also, the relative k
are not small due to Fermi momentum), and
hence Eq. (3.7) is not justified.

The m* values obtained for the Lennard-Jones
(6, 12), and Bruch-McGee-2 (BM2) potentials'
are, respectively, 2.1m, and 2.25m, . These
should be compared with the experimental value
of 2.34m, .' The perturbative calculations give
2.37,' and 2.8, ' while Feynman and Cohen' obtain
1.67m, with classical backflow.

PB have already shown that the liquid-'He ener-
gy can be lowered by -0.6'K over that obtained
with real spherically symmetric f, by using the
state-dependent f. We hope that these correla-
tion functions can also be used to calculate the
Landau parameters in 'He liquid and dense neu-
tron matter.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor Gordon
Baym, Professor C. J. Pethick, Professor David
Pines, and Professor D. G. Ravenhall for many
interesting discussions and for their hospitality.

~Work supported in part by National Science Foundation
under Grant No. GP 16886.

*On study leave from the Tata Institute of Fundamental
Research, Bombay-5, India.

~C.-W. Woo, H. T. Tan, and W. E. Massey, Phys. Rev.
185, 287 (1969).

~W. L. McMillan, Phys. Rev. 182, 299 (1969).

3V. R. Pandharipande, Nucl. Phys. A 178, 123 (1971).
4V. R. Pandharipande and H. A. Bethe, Phys. Rev. C 7,

1312 (1973).
~R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189

(1956).
6J. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156,

207 (1967).


