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The Jastrow wave function with relative angular-momentum-dependent correlation functions, is shown
to give the back flow of “He around the *He impurity. Variational calculations with these wave
functions and the Lennard-Jones (6, 12), and Bruch-McGee-2 potentials respectively give m * = 2.1m; and
2.25m ,. A simple density dependence of m * is discussed.

I. INTRODUCTION

Within the Jastrow approximation “that correla-
tions between more than two particles can be rep-
resented by a product of two-particle correlation
functions,” the wave function

k)= 1 fim TT Sune™" (1.1)

describes the state of one *He quasiparticle (de-
noted by j) in liquid “He. The effective mass of
3He is then given by

0 (CH(R)IH|Y (k) _ B2k

ok, ( (W(k,)|[¥(k,)) >_ m* (1.2)
where

H:Zg—fnivg+% % vas (1.3)

(subscripts a, B refer to all particles).

Previous calculations!*? of m* initially assume
that f,,, is real, spherically symmetric, and in-
dependent of k;. In this case the V, ¢;*V;, f;, term,

¢ =tk (1.4)

is zero, and k3%%/2m, is the only term in energy
expectation value that depends on k;. This term
is obtained by operating V3 on ¢,, and gives m*
=mg. It was then argued that (1.1) is too simple,
and does not incorporate the backflow of *He; the
authors!’*? improved upon it by perturbative meth-
ods in first order.

Pandharipande® has calculated the f,, varia-
tionally, including the V;¢4,*V, f;, term. These
fim are complex and k dependent. In Sec. II we
show that (i) they incorporate the backflow of *He,
and (ii) at small k; the V, ¢, V,f,, term gives an
attractive contribution proportional to k7. Section
III reports a calculation of m* with the methods
developed by Pandharipande and Bethe* (PB) to
calculate the expectation values in (1.2).

II. PROPERTIES OF f

The f are calculated with the constraint f=1
for 7 >d and Vf(d)=0, by minimizing the two-

joo

body term in the cluster expansion of (1.2). The
healing distance d is subsequently taken to be so
large that the effects of the constraint are negli-
gible. PB have shown that with these f the two-

body term dominates. Its contribution from the

correlation volume (7 < d) is

éf: P> (v —%(k2+vz)> Y dir, 2.1)
where

k= kym,/(ms+m,), (2.2)

m=mgm,/(mg+m,), (2.3)

and formally
Yp=fo=ret ¥, (2.4)

The ¥ is decomposed into partial waves,
¥=2. i*(21+1) U,(r)Py(cos), (2.5)
I=0

where 6 is the angle between T and k. The contri-
bution of each partial wave is minimized separate-
ly to obtain the “Schrédinger equation”

n2 (0% Ul+1)
et T

U +0U
m r? ’> t

=<£m2. k2+x’(k)> w, (2.6)

with

u,=Uy(r)r.
The A}(k) are determined from the boundary con-
ditions on f.

It is convenient here to define I/-dependent cor-
relation functions f;:

ft=(]l/Jl’ (2.7)

where J; are spherical Bessel functions in the
expansion of ¢,

©

¢ =2 i*21+1)d;(kr)Py(cosb). (2.8)
I=0
The f is complex:
f=fr +ifi (29)
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(we use subscripts  and ¢ to denote the real and
imaginary parts) and

fr=zpi¢¢+¢r¢r’
fi=¥:i0, =09, .

The ¢; and ¥; have odd parity, while that of ¢,
and ¥, is even. Thus we obtain

fr(-f)z‘fr(—?)
and (2.11)
f4(1.‘) =-f;(—?).

(2.10)

In the limit of small & the J; can be expanded
in powers of k7, and only /=0 and 1 need be con-
sidered. This gives

fr=fo(r)+ terms involving k2
and

fi=kr cosO[ f,(r) = fo(r)] +--- . (2.12)

The f, and f; - f, at small k are shown in Fig. 1.

The wave function (1.1) is now

\I’(kl)=e”§'?, H (fo(rjm)+iE!..flm[fl(rjm)_fo(rjm)] ” ) H fmn’ (2.13)

and it resembles the Feynman-Cohen® wave func-
tion

Y (%) =exp(iE,-'f', +i ; k;* %, x(”,m))‘l’o,
(2.14)
provided that
Yo~ [ fus (2.15)

a<B
and the exponential in (2.14) is expanded using the
smallness of ;. The ‘maginary part of f;, gives
a current corresponding to the backflow of *He
atoms around the *He impurity with a velocity
proportional to ;.
The first term of

—(B2/m)p*f*Vp-Vf = (7%/m) =ik * (f, VS, + f; VF,)

+E * (frvfi _fivfr)]
(2.186)

gives zero contribution, while that of the second
is attractive and proportional to 22, Thus this
term increases the effective mass of the *He im-
purity.

The effect of the mass difference in *He and *He
is automatically included in these f. The f,,
(*He-*He correlation functions) are calculated with
reduced mass 3m, instead of that given by (2.3).

III. CALCULATIONS AND RESULTS

PB write the energy expectation value in (1.1)
as

E(k)=W + U+ (#?/2m)k3, 3.1)
1
W=’2—9- Z j Vaﬁgabdsr, 3.2)
a<B
and

mg +my,

m<n

r

1 n? -
U=- Q2 O§' 2m, f gs('faey ray)

X vafaB' Vafaz ddr Bds,r .
aﬂfay ¢ «
(3.3)
The notation here is identical to that in PB, g,
being the pair-correlation function and £ the nor-
malization volume. The g is calculated by a
hypernetted-chain equation which is shown to be
fairly accurate when used with the present corre-
lation functions and the energy expression (3.1).
It is noted that the angle average of f2,(k, ) is
relatively insensitive to k2, and hence to the con-
tribution of the chains, and the U can be calcu-
lated from f,(7). This corresponds to neglecting
terms with (f, —f,F in many-body (>3) clusters.
In this approximation the only terms depending on
k; are

E(k,):(h’"‘/st)k§+pf Vim&imd%";,+ const,

(3.4)
where p is the “He density,
Vim(r<d)=x'(R)P?,
(3.5)
Vinlr>d)=v(r),
and
&imM)=h fi(k, VP" . (3.6)

The P! are angular-momentum projection opera-
tors, and (2 - 1) is the contribution of the chains.

The integral in (3.4) can be expanded in powers of
k:

fv,mg,mdsr,f a+bk?+ ... 3.7)

(note that there is no term linear in &), and
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FIG. 1. fy and f—f at d=2.6 7.

m* _ n%/2m,
my (%/2mg) +[bmEp/(my+m, )] *
The m* is calculated at various values of d

ranging from 27, to 37,, where 7, is the unit
radius,

4mpri=1. (3.9)

(3.8)

It is very insensitive to d for d >2.4 7, and in-
creases by a few percent as d is increased from
2to 2.47,

The dominant contribution to m* comes from
the lowest-order two-body clusters (g;,=f3,).
The chains reduce m* by only ~10%, and hence
they are calculated by neglecting the difference
in f,(7) between SHe-*He and *He-*He pairs.

| oo

If the effect of the chains is neglected the b is
independent of p, and the m* obeys the approxi-
mate relation

m*/mg, ~1/(1+cp), (3.10)

where c is a negative constant. Such a relation
could also be suggested from the observed rapid
increase of the effective mass of *He in liquid
*He from 3.1m;, to 5.8m, with a density change
from 0.27 to 0.38/0% However, there are ex-
change contributions in *He (also, the relative %
are not small due to Fermi momentum), and
hence Eq. (3.7) is not justified.

The m* values obtained for the Lennard-Jones
(6, 12), and Bruch-McGee-2 (BM2) potentials?*
are, respectively, 2.1m, and 2.25m;. These
should be compared with the experimental value
of 2.34m4°® The perturbative calculations give
2.37,! and 2.8,% while Feynman and Cohen® obtain
1.6Tm, with classical backflow.

PB have already shown that the liquid-*He ener-
gy can be lowered by ~0.6°K over that obtained
with real spherically symmetric f, by using the
state-dependent f. We hope that these correla~
tion functions can also be used to calculate the
Landau parameters in *He liquid and dense neu-
tron matter.
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