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Separation of an arbitrary potential g into a short-range, repulsive part go and a weak correction p&

afFords the possibility of describing the y-system properties as corrections to the assumed-known &0

reference system. We derive here an expression for such a correction of the classical He&~&oltz free

energy that is the analog of a result familiar from the development of the hypernetted-chain integral

equation. Other corrections are obtained therefrom, including a corrected pair-distribution function

proposed earlier. A11 results are easily adapted for numerical calculation.

I. INTRODUCTION

The advantages accruing from possession of a
simple ideal model of bulk matter are well evi-
denced by the practical successes of solid- and

gaseous-state theories, where the ideal crystal
and ideal gas provide a unique point of departure
for the systematic application of perturbation theo-
ry. For want of a unique "ideal liquid, " such ad-

vantages are not available in the statistical theory
of dense Quids. In recent years, however, as its
properties were extensively studied, the hard
sphere model has faute de mieux moved more and

more into such a role. This development has been
accompanied by an increased interest in perturba-
tion theories applicable to the Quid state, either to
the thermodynamic functions directly or to the in-
tervening pair -distribution function.

In these theories, one treats the weak, possibly
long-range, part y, (r) of an intermolecular poten-
tial

q (r) = q, (r) + y, (r)

as a perturbation added to the short-range repul-
sive potential yo(r); the properties of the reference
system described by cpo(r) alone are assumed
known. Such a separation was first used by Kirk-
wood et al. ' in calculating the first two terms of a
power series in inverse temperature for the per-
turbation correction to the pair-distribution func-
tion. A similar series expansion for the Helm-
holtz free energy was given by Zwanzig, ' who eval-
uated the lowest-order term Higher .terms quick-
ly become intractable, but a novel truncation
scheme for this series has been proposed by Bark-
er and Henderson. * Avoiding the use of a series
expansion, Broyles et al.' employed a collective
coordinate integration to obtain a perturbation cor-
rection to the pair-distribution function g(r).

The specific manner of accomplishing the separa-
tion in Eq. (1) is a sensitive question which affects
the final results. " In this paper, we shall merely
assume that a suitable separation has been made

and shall be concerned with obtaining a computable
perturbation expression for the free energy and

other thermodynamic quantities of the perturbed
system. This work extends earlier results' on a
perturbation correction to the pair-distribution
function. In particular, it is shown in Sec. II that
an analysis of the free energy" familiar from the
development of the hypernetted-chain (HNC) inte-
gral equation' ' can be applied to the correspond-
ing perturbed differences, yielding an expression
for the corrected free energy in terms of a cor-
rected g(r) obtained in Ref. 6 (subsequently re-
ferred to as I) by what was called an "HNC-type
approximation. "

The Percus- Yevick" (PY) and HNC integral
equations offer relatively uncomplicated paths to
the determination of the structure and thermody-
namic properties of simple Quids, given the inter-
molecular potential. For potentials with a sharp
repulsive core, the PY equation provides the more
accurate results. " The situation is less clear,
and may be reversed, ~ in the case of potentials
lacking such a core. These considerations sug-
gest that, for a calculation from first principles,
one could use a PY approximation to study the ref-
erence system and an HNC approximation for the
correction. Vfe discuss in Sec. III how the latter
calculation can be carried out.

As in the work of Broyles et al. ,
' the results ob-

tained here are not in the form of a series expan-
sion. By comparison with such expansions, an in-
finite number of selected terms is in effect
summed. This should make the present results
less sensitive to the details of the potential sep-
aration of Eq. (1).

H. CORRECTION FOR HELMHOLTZ

FREE ENERGY

Canonical-ensemble formalism, describing an

N-particle system in thermal contact with a heat
reservoir at temperature T and contained in the
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q(»; ])=y,(»)+(y, (»). (2)

volume V, will be used. For mathematical pur-
poses, we generalize Eq. (1) by the common arti-
fice of inserting a "charging" parameter $, so that
the intermolecular potential is

C(»' k) = G(»' $) —S(»; $)

is the direct-correlation function. Similar equa-
tions can be written for the reference system and,
in particular, we have

The value g =0 then pertains to the reference sys-
tem, whose properties are assumed known. Ex-
cept for the fact that $ is associated only with the
perturbing part of the potential, the subsequent
development follows that of Morita and Hiroike'
and Green 8

The configurational part of the free energy is

(rb 8 yp(r) $p(r)+Bp(r)~pxr18 8

so that dividing Eq. (7) by Eq. (11) yields

g(»; $) =g,(») exp[-$py, (») +AS(»; $) +b B(»; $)],
(12)

A'(() = kaT l-nQ($), (3)
where

where

Q(()=) "Jl p' reep( pl, -p(r„;())
f&f

(4)

and p=(ksT) '. Evidently, the difference in free
energy between the system with arbitrary $ and
the reference system can be written

~(t) -~.=
0

1 Np'
d r g(»; 5)Py, (»), (5)

0

where p is the number density N/V and

g(»~; $) =, d rs ' ~ d 1'„N(N 1)-
pQ$

as(»; t) -=s(»; ~) —s,(»),
r B(»; $) =B(»; () —B,(»).

(13a)

(»b)
Differentiation of Eq. (12) gives

Bg(»; $} 8[ES(»;() +KB(»,' ()]

8 K8rps(p)=-—g(»; $) —g(»; $)ln
g, (»)

—[as(»; g) +aB(»; ()]

(14)
The left-hand side of Eq. (14) is of course the inte-
grand of Eq. (5). Recalling the definition of C(»; $),
Eq. (10), we may write

x exp -P
j&f

(6)
ns(»; t} ' =~s(»; t)

eg ' eg

s[-,'aG(»; g)'] sn. G(»; ()

p(r;() =p J pr'c(r';()c(lr —r'l;(),
where

G(»; &) -=g(»; C) —1

(8)

In Eq. (5) and hereafter, the subscript 0 labels
quantities pertaining to the reference system,
where $ =0.

Now, from the graphical analysis of the pair-
distribution function, ' s ~ it is known that g(»; $)
may be written

r ~&ps+~": &~ = g~&: &&+&~":&&ry qp8 —8

where 8 is the sum of all diagrams of the series
type and B the sum of bridge-type diagrams, and
furthermore that

(15)

with hC and b G defined similarly as in (13). With
(15), Eq. (14) becomes

g(»; &)eq,(») = , .'«(»; &-}*—+g(»; &)—8

6»'t)ln '
()

( )
BKG(r; $)

e$

( )
BAG(»; $)—b, B r,'$

which, inserted into (5), yields

p[A(() —p, ]/N= =',p f dp —',ec(r; ()'+ec(r; ()—p(r; () )e '
)g, (»)

+'p d$ drbC r'$ ' ——',p d$ drbB r'g
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We shall use a tilde to denote a Fourier transform. It can be readily verified that in the penultimate term
of (17) we may put

dry. C(r&$) ' =(2v) ' dkhC(k; $)8$ t

1 B „paG(k; t) paG(k; $)
p'(2v)~ B] 1+pG~(k) 1 +pGO(k}

(18)

where in the second equality we have used

1+pG(k;t') =[1-pC(k; ~)] ',
which follows from Eqs. (8) and (10). Equation (18) may be inserted in (17) and the integration over $
carried out, yielding finally for the difference in free energy between the fully perturbed (t =1}and
reference systems

(20)

Equation (20) is the analog of the expression for
the free energy obtained by Morita and Hiroike'
and Green. ' If we chose the ideal gas as the refer-
ence system, it would be identical.

With g,(r) assumed known, there remain two
additional steps that must be taken to render (20)
usable. These deal with the calculations of b, G
and ~B. The former is discussed in Sec. III. With
respect to the latter, we note that there is no sim-
ple functional known which expresses the bridge

set in terms of 6, and the same lack holds for
their differences AB and b, Q. The most straight-
forward approximation for AI3 is to neglect it al-
together as in the HNC equation. It is not the same
as the HNC approximation, however, in that one
neglects only the effect of the perturbing potential
y, on the bridge-diagram set, rather than the en-
tire bridge set, and hence we call it an "HNC-type"
approximation. Our usable result is then

dr —,'sG(r)'+n. G(r) —g(r) ln —,Jtdk ln 1+
go(r) 2p(2v)' J 1+pG, (k} 1+pG, (k)

(21)

g(r)= g.(r)e """"""' (22)

which was used in I and will be taken up again in
Sec. III.

The equilibrium condition for the canonical en-
semble is that the free energy be minimum. Varia-
tion of Eq. (20) with respect to g(r), holding g, (r)
fixed, then yields our point of departure, Eq. (12)
(with $ = 1), as the condition for minimum differ-
ence in A —A, . (See Appendix. ) Similarly, varia-
tion of the approximate Eq. (21) yields

It is of interest to examine the thermodynamic
quantities obtainable from the free energy, be-
cause an inconsistency appears when using the
approximations (21) and (22). The last term in
(20) will warrant special attention, so we put

t d$ dr SB(r; () ' . (23)
0 8

For the energy difference per particle due to this
term we get

B P~A' „B(P~A'/N) Bg(r)
BP N Bg(r) BP

JI
d

5(phA'/N) Bgo(r), , }Bg(r),
( )

BB()(r)
(24)

having again used the results in the Appendix. Differentiation of (20) then yields



PERTURBATION CORRECTION FOR THE FREE ENERGY AND. . . 2551

a [p(A —Ao) /N]
ap

, , a[G,(r) —C,(r) +B,(r) -lng, (r)]

r e+~(r) a
+ —,'p dr ln —AG(r)+AC(r) —b B(r)

g.(r) ap

The last term in (25) vanishes because of (12),
while from (11) the derivative in the second term
is just (p,(r). Thus we get the expected result:

'=-,'p dr ~ y, r +bG r y, r

C(r) = G(r) —ln[g(r) e "'")]+B(r),
and subtraction of the similar equation for the
reference system yields

6c(r)=-))q, (r)+EG(r) —)n( +aB(r).r)
g.(r)

(29)

= —,'p d r go(py r +b G r y r (26) (30)

An inconsistency appears when the approximation
(21) is used instead of (20). Because both terms
in Eq. (24) are then neglected, not only does the
approximate g(r) [Eq. (22)] appear in (26), but also
an additional term, the wanted second term of (24}.
This means that energy differences calculated by

P differentiation of Eq. (21) and from Eq. (26),
with the approximate g(r), will not be the same.

A similar situation obtains for the pressure dif-
ference

A similar use of Eq. (19) gives a second relation
between the transforms of 4G and hC:

[1+p G,(k)]'t)C(k)
1 —p[1+pG, (k)] AC(k)

' (31)

Equations (30) and (31) were used in 1 to produce
a simple noniterative approximation to the per-
turbed g(r). This was to neglect &B in (30) and

approximate 4C by its lowest-order term —Py„
whence (30) yields

a [(A —Ao)/N]
Bp

g(r) =g,(r)e"",
and from (31),

(32}

=--,'p' dry gor y,'r +~G r y' r
(27}

a(A-A, ) A-A, p-p,
BN N p

(28)

III. CORRECTION FOR THE PAIR-DISTRIBUTION
FUNCTION

In Sec. II, the problem of calculating the free
energy, internal energy, etc., of a given system
was reduced to knowledge of the corresponding
quantities for a related reference system and cal-
culation of the difference in the respective pair-
distribution functions. Here we take up this latter
question.

By combining Eqs. (7) and (10}, one gets, for
)=1

Here the first equality, using Eq. (21), will not
give the same result as the second equality, using
Eq. (22). We omit the details.

Such breakdowns in consistency are common fea-
tures of approximate theories.

The third derivative of (20), with respect to num-

ber, for the change in the chemical potential, can
be expressed in terms of quantities already given:

[1+pG, (k)]'PP, (k)
1+p[1+pG, (k)] PP, (k)

' (33)

H(r) =ln[g(r)/g, (r)]+ Py, (r) . (34)

Equations (30) (with &B neglected) and (31) are
then rearranged to read

aC(r) =g,(r)(exp[H(r) —pc((),(r) ] —1]' —H(r),
(»)

[1+pG„(k}]'t)C(k}
1 —p[1+pG (k)]t)C(k)

(36}

The solution is begun by guessing H(r). With a

This approximation has proved reasonably accurate
in a variety of applications" and is above all con-
venient.

We are, however, not forced into a second ap-
proximation after neglect of &B. Instead, it is
possible to treat Eqs. (30) and (31) as in the HNC

equation itself, i.e., neglect &B and solve the re-
sulting pair of nonlinear equations for &G by
iterating to a self-consistent solution. To avoid
possible numerical difficulties in computing
ln(g/g, ) in a hard-core region, it will be prefer-
able to solve for the unknown in the form
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given iterate H"', Eq (.35) produces &Ci~l, whose
Fourier transform yields, from (36), a new iterate
H ". The iterations can be continued until the
solution is self-consistent.

If the perturbing potential possesses a Fourier
transform, we may take as the initial guess H 'i(r)
= P(p, (r); in this case, it is easy to show that the
approximation in Eqs. (32) and (33) is simply

the output of the first iteration of Eqs. (35) and

(36).

in Sec. II. They are obtained in this Appendix.
We first simplify the term by writing

1

=-&p df, dr B(r; g)
0

+&p dr B,r &Gr . (Al }

APPENDIX

The functional derivatives of P&A'/N, the last
term of Eq. (20), were needed at several points

Then assuming B(r; $} and B,(r) to be functionals
of g(r; $) and go(r), respectively, and letting these
latter functions vary, we get the variation

d$ dr Br $
' +6Br $

' +-p dr B,r 5 r —5gox +&p dr5B r 4Gr
0

=-',p dF aG(r) ' 5g (r)- aB(r)))g(r) +-',p J)[ d( f dF ' — ' ' )g(r; (),5B.(r) BB(r; t') 5B(r; () Sg(r; $)

5go(r) 0 s~ 5 r;~ sg

(A2}

after an integration by parts. The bracketed integrand in the second term of (A2) vanishes and so we

have immediately

5(p n.A '/N) (A3)

5(pb, A'/N}, 5B,(r) (A4}
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