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New analytic methods for reducing the Glauber amplitude for charged particle-neutral atom collisions to a
one-dimensional integral representation involving modified Lommel functions are proposed. To illustrate
these new methods, the reduction of the Glauber amplitude for e = + He elastic scattering, using a simple
Hylleraas wave function for the He ground state, is described in detail, and the resulting integral for the
amplitude is evaluated numerically. The Glauber-approximation-predicted elastic scattering amplitude
previously calculated by Franco from a three-dimensional integral representation, with a more complex
Hartree-Fock wave function for the ground state, is also recalculated using these new procedures; these
results are in good agreement with those obtained by Franco. Thus, the utility and practicality of these new
techniques are demonstrated. The application of these procedures to more general charged particle-

neutral atom collisions is discussed.

I. INTRODUCTION

Recent applications of the Glauber approxima-
tion' (GA) to charged particle—neutral atom col-
lisions have been restricted to atoms and model
atoms having one or two bound electrons. The
GA-predicted differential and total (integrated
over scattering angle) cross sections for electron?
and proton® collisions with atomic hydrogen, with-
out rearrangement or ionization, have been cal-
culated from one-dimensional integral representa-
tions of the amplitude; moreover, these ampli-
tudes and integrated cross sections can be ob-
tained in closed form.*5 Glauber calculations of
elastic® and inelastic” scattering of electrons by
ground-~state helium atoms have been performed
using three- and two-dimensional integral repre-
sentations, respectively, for the amplitudes. How-
ever, electron-lithium atom collisions have been
considered in the Glauber approximation only after
making a frozen-core approximation,® thereby
reducing the lithium atom to an effective one-
electron system.

Although Franco® has proposed a method for
obtaining a one-dimensional integral representa-
tion for the elastic and inelastic scattering of
charged particles by arbitrary neutral atoms—
excluding rearrangement (i.e., exchange or charge
transfer) and ionization—there are no reported
calculations actually using Franco’s expressions.
Moreover, Franco’s final integral representation
for these Glauber amplitudes appears to present
several seemingly serious numerical problems,
which generally include the calculation and inte-
gration of the differences between strongly (expo-
nentially) divergent functions, as well as the nu-
merical calculation of 6 functions whenever elastic

8

scattering is considered. We have, therefore,
reexamined the GA-predicted amplitude for struc-
tureless charged-particle collisions with arbitrary
neutral atoms. In this paper we propose certain
new analytic procedures for evaluating the Glauber
amplitude; these procedures again lead to a one-
dimensional integral representation for the ampli-
tude, which can be computed numerically with
relative ease and without the sort of difficulties
seemingly inherent in Franco’s procedure. To
illustrate these procedures we consider only the
case of elastic scattering of electrons by helium
atoms, using the simplest possible Hylleraas wave
function for the ground state. We are able to es-
tablish a rather loose criterion for the easy and
convenient use of Franco’s procedures in this
simple case, at least—provided the aforemen-
tioned 6 function first is removed. The general-
ization of these procedures to inelastic collisions
with He, or to collisions with more complex atoms
is, aside from the application of our new analytic
techniques, very much along the lines which
Franco® suggests in general. We shall discuss in
some detail how to apply our new analytic methods
in the more general case.

The contents of this paper now can be summa-
rized as follows. In Sec. II we describe the re-
duction of the e~ +He elastic Glauber amplitude
to a one-dimensional integral involving a Bessel
function of the first kind and functions £,,,, which
we shall call “modified Lommel functions.” In
Sec. III we present the results of our numerical
calculation of the amplitude obtained in Sec. II.

We also describe the rough limits within which
we feel Franco’s procedures may be conveniently
used to evaluate this amplitude. Moreover, we
have also recalculated, via our new procedures,
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the e~ +He elastic Glauber amplitude previously
obtained by Franco® using a more complex Har-
tree-Fock wave function for the He ground state.
Our new results for this amplitude are in good
agreement with those obtained by Franco. Thus

we demonstrate that our new procedures are valid
and useful for performing actual calculations. The
generalization of these procedures to more compli-
cated applications is also discussed in this sec-
tion.

We have deferred to an Appendix our discussion
of the functions £, ,. Since these functions are
the foundation of our new procedures, we describe
their properties in much greater detail than is
required for the application of Sec. II. In this
Appendix we define the functions £,,,(ix); we also
discuss the recurrence relations which these func-
tions satisfy, together with their differential pro-
perties. The asymptotic properties of these func-
tions &£,,,(ix) are derived both for large and small
values of the argument x.

II. REDUCTION OF THE GLAUBER AMPLITUDE
FOR He ELASTIC SCATTERING

In this section we describe our new procedures
for the reduction of the Glauber amplitude for the
scattering of a charged structureless particle by
neutral atoms. To illustrate our techniques spe-
cifically, we consider the elastic scattering of a
partlcle with charge Z; by ground-state He. Let
h‘K‘ , 7iK IN;, uv, define the incident and final
momenta of the incident particle in the center-of-
mass system; u is the reduced mass of the inci-
dent particle He atom pair and v, and ¥, are the
initial and final relative velocities of the incident
particle. Define the momentum transfer vector
q by

a=K; -K;.
Then, neglecting exchange and spin effects, the
Glauber amplitude for elastic scattering by ground-
state He atoms with wave function ¢,(T,,T,) is
given by''®

F(Q)=ﬁf¢?(r1,rz)r(b; T, T;) ¢;(T,,T,)

x ¢t D@2bd¥,dT,, 1)
where

> > >

r(b; ¥,7,) = 1-<|E;§1l )Mn(lB;E’J—)m @)

and n=-~Z, ¢%/m,. InEqgs. (1) and (2), b, 8,, and
s2 are the respective projections of the pos1tion
vectors of the incident particle and bound elec-
trons (T, and T,) onto the plane perpendicular to
the direction of the Glauber path integration®:

4, b, §,, and 8, are all coplanar. For our present
purposes it is sufficient to take ¢,(T,,T,) to be the
simplest Hylleraas wave function for the helium
ground state, namely, '

¢i(;u;z) =(1/m) (a/a,)’ e=*"1* ’z’/“o, 3)
with «=1.69. Thus

; 1)
F(3)= l%%(_i_) f e~ @0/ag)(ry + 1)

- (B8 (830

x €' Sabdt d T, @)

2

Before proceeding further with the reduction of
Eq. (4), we remark that the first term (indepen-
dent of ) under the integral in Eq. (4) leads to a
6 function in g, which Franco® drops. We shall
retain this term explicitly since, as we shall
ultimately show, it is exactly cancelled by a simi-
lar factor stemming from the second term (depen-
dent on 7) in the amplitude integral. We next note
that the amplitude F(q) of Eq. (4) can be written
in terms of a generating function; in particular,

F@= 54 (&) (55 50 ?) |

==z,

(5)

where we define

5().“A2; q)En]:—sfe‘)‘lfle-xzfa 1

N

- (8530 (8550

x et ba2pd T dT,. (52)

We next introduce cylindrical coordinates for T,
and rz, then the az1muthal angle integrations in the
plane containing b 51 and s2 may be separated.
The preliminary reduction of & follows the meth-
ods of Franco® (among others®~*). We find that
F(A,, Ay; q) can be written as

F(uy,Ay; q)=2° f bdb J,(gb) j s,ds, f 545, Ko(0,8,) Ko(0y5,)
0 0

"o, f* d¢2<l+b

- f]

in s
2-—1-;- cos<p1) (1 +—b§—

—2—%‘- cosq)2>”] . (6)
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In Eq. (6) we now change variables so that s, - s,b,
and s, ~ s,b; furthermore we utilize the result!*
that

fo"’ sds K (Abs) = (Ab)"2.
We obtain
FO, A5 9)=2° [ 0% 0(q0)(,0)72(2,0)2
- M) MM,D)], (7)
where we define M(x) via

M(x)szLﬂ- f” sds Ky(xs)
[
xfﬂdcp(l +5% = 2s cosg)!". (Ta)
0

We now introduce the integral representation of
Thomas and Gerjuoy* to replace the integral over
¢ in (7a) by an equivalent integral involving Bessel
functions; thus

T'(1 +in)

M) = =25 )

f' sds Ky(xs)
o

xf:dt t-z"'-ddT [7,(2) T 4(st)]. ®)

We note that Eq. (8) cannot be simplified by inte-
grating once by parts (see Ref. 4); however, we
can interchange the orders of integration and
differentiation with respect to ¢ with the integra-
tion over s. The integral over s may be done
immediately via'?

fo” sdsKy(xs)d o(st) = (£2 +x2)"2,
Hence

(1 +in) f‘-’ cain d_ J(D)
= —gzin 2\ +27) 2in & Yo\l)
M) ==2"F 5y ), G

)
Now, however,
_ﬁi_ 2 2 -IJ
ar (12427 o(0)
==(2+x2)" 1 (8) = 2¢(22% +x2)"2J o( )

= (#2422 (2) +x-1-a%— #(£2 +27) 1T (2),

(10)
so that

(1 +in)

M) =2 T )

Tdt (2 1x?) 1 (8)
(S

10 [ pezin 12 2)-1
x axJ;dtt (42 +22)710 (1)).

(11)
Each of the integrals in Eq. (11) is of the kind

joo

J,,m discussed in the first part of the Appendix.
Applying Eq. (A7) of the Appendix leads directly
to the result

M(x)==(ix)™" "1 £y, , (ix)

+x71 2in:—x [(ix)27 £,;5 -1 .0G%)].  (12)

The modified Lommel functions £, ,(ix) are
defined in terms of the Lommel function s, ,(ix)
and modified Bessel functions I,(x); we refer the
reader to Eq. (A6) of the Appendix. Equation (12)
may be reduced and simplified via the recurrence
relations for £, , which we derive in the second
part of the Appendix. The indicated differentia-
tion may be carried out via Eq. (A10); thus

M(x)=(ix)"2" "1 {-g,,, , (ix)
+(2im)2(x)™ £y5p -,0(%)
= (2in)(2in - 2) L5y —p,, (%)}

(13)
However, the functions £,;,,, and £,;, _,,, are
related via Eq. (A11):

0,1 (0%) +(2in) (24N - 2) £, 5.2, (Ex) = (Ex )71,
Thus
M(x)=—(ix)"2=2{(ix " = (2in)? L4, o (%)}
(14a)
=x"% + (2in)? (ix)" "2 L, ., o(ix).  (14b)

In fact Eq. (14a) may be simplified further; we
could apply Eq. (A11) again, to obtain

M(x)==(ix)" 22 L, 04y 0(E%). (15)

If in Eq. (15), we were to write £,;,.,,,(é%) as the
sum of two hypergeometric functions fvia Eqgs.
(A3), (A4), and (A6)] we would have precisely the
same result for M(x) that we would have obtained
via Franco’s methods.® However, we do not use
Eq. (15) in Eq. (7) to compute F(A,,),; q); we use
Eq. (14b), which explicitly displays the x~2 depen-
dence of M(x). We find then that

F,2g5 q)=2° [ %bJ 4(qb){(,0)2(A,0)2
—[,0)2 + @in)2(and) 272 g, (ix,b)]
X[(,0)72 +(2in)(ix,0)" %171 £, 4(i2,0)]},
(16)
which leads directly to
F(y, A5 q)=2° [T 0%dbJ 4 (gb){(x,5)"2(A,0)"2(2in)?
X[(En0) 28 2,50 0 GA0) + (40,b) 27
X Loin-1.0(E2,0)] = (2in)*(ir,b) 272
X (in0) 21728, 01 ol D) L4021 ,0(GAD) . (17)
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Note that in obtaining Eq. (17) we have explicitly
removed the aforementioned 5(q) stemming from
the first term in Eqs. (4) or (16). If, on the other
hand, we had dropped the 6 function in Eq. (4) and
used Eq. (15) (or the equivalent thereof) for M(x)
as Franco suggests,® then we would have found
ourselves in the rather uncomfortable position of
having to compute F(g) numerically from an inte-
gral representation which includes the integral
representation of a 6 function. [Note that differen-
tiating F(A,, A,; ¢) with respect to A, and X, does
not affect the b dependence of the integral; thus,
the conclusions drawn from Eqs. (16) or (17) re-
main valid for F(q).] It is straightforward to show
from the results in the third part of the Appendix
that the integral representation (17) for F(A,, A,;q)
is well defined and convergent. Therefore, the
integral representation for F(q) which we obtain

from Eq. (17) via Eq. (5) will be well defined.
Equation (17) may be reduced further without
much effort: the integrals in (17) which involve
only one modified Lommel function £, , may be
evaluated in closed form. We reintroduce the
integral representation, Eq. (A7), for £,,,.,,,)b).
The resulting double integrals may be eval-
uated following the procedures of Appendix B in
Thomas and Gerjuoy.* We find that

ST babd (@b)(nb) 2" £,y o(60D)
=—3T(in) T(1 —in) g "2\ "2"

x 21'1(1 —i"'l, 1 _1'"; 1; —)‘zq-z)’ (18)

where the ,F is the usual hypergeometric function.
Hence

Fhy, A5 4)==2°( 1) 2(2in2 T(in) T (1 =in) g® "2 A% K (1 ~in, 1 —in; 1; -A3g"2)

2524 B (1 —in, 1 —in; 1; -22q72)]

~25@in) [ 6%bJ (qb)(iA,bY B2 (IAB) M2 Ly (iN,B) Lyyney olingd). (19)

To obtain the scattering amplitude from Eq. (19) we need to differentiate Eq. (19) with respect to A, and
A, as indicated in Eq. (5). The differentiation of the hypergeometric functions is carried out via®

d
-HzFl(a, b; c; x)=abc™ ' F(a+1,b +1; ¢ +1; x),

whereas the modified Lommel functions are differentiated by applying Eq. (A10). We ultimately find that
the GA-predicted amplitude for elastic scattering by ground-state He, using the Hylleraas wave function

of Eq. (3), is given by

F(g)=2Kn{2|T(1 +in)| 2¢*"~2A"2"[(1 +in) ,F, (1 —in,1 —in; 1; -2A3¢~?)

+(1 —inP\*q~2,F, (2 —in, 2 —in; 2; —A%q™?)]

+(2in)? f: bdbd, (qb)(i)&b)“""[(ihb)(in -1) Lain-2, 1(iAd) = (1 +in) £zin—1.o(“b)] 2} ’ (20)

where
r=2a/a, and n=-Z; &(kv,) .

Several comments about Eq. (20) are now in
order. First of all, the separation of the Glauber
amplitude into terms involving hypergeometric
functions and the integral over products of modi-
fied Lommel functions is a “natural” one. We may
break up the full T of Eq. (2) in a fashion analogous

to the Glauber multiple-scattering expansion,*
namely,

r(b; T,,T,)

= I"L(-l;; ;1) +I‘2(-6,' -{'z) - FI(B; ;1) 1"2(5; ;2)’ (21)
where

T;(b; T)=1- (|5 -3, /by,

Equation (21) differs from the usual expansion of
T(b; T,,T,) in two-particle I’s since each term
T;(b; ;) contains the collective effects upon the
incident particle, not only of the ith bound electron,
but also of one proton in the nucleus. The separa-
tion of Eq. (21) is dictated by the long-range nature
of the Coulomb force. Of course, the sum I, +T,
contains the effects of single-particle scattering
from each of the charged particles comprising the
He atom, together with higher-order scattering.

If the expansion (21) is used in Eq. (1), then the
integrals over the sum I', +T', may be obtained
directly in closed form using the procedures of



256 B. K. THOMAS AND F. T. CHAN

Thomas and Gerjuoy.* One immediately obtains
the terms in Eq. (20) which involve the hyper-
geometric functions. Thus, at high energies and
small scattering angles where single-particle
scattering dominates the amplitude, we may ex-
pect the scattering amplitude of Eq. (20) to be
well approximated by the terms involving only the
hypergeometric functions. Furthermore, for any
nonzero incident electron energy it is straightfor-
ward to show that the hypergeometric-function
contribution to Eq. (20) diverges* as ln(g?) as
q -0, whereas the integral involving the products
of modified Lommel functions is well defined and
finite as ¢~ 0. Therefore, the scattering ampli-
tude defined by Eq. (20) diverges as 1n(q?) as ¢~ 0.
Equation (20) differs from the result to which
Franco’s procedures would lead in that we have
explicitly removed a troublesome 6 function in
the momentum transfer q. On the other hand, if
we had suspected that the second term in Eq. (4)
or (5a) also concealed a 6 function which can-
celled the 6 function stemming from the first term,
then we could have retained the first term and
proceeded to reduce the second term along the
lines which Franco suggests. We would have
found, for example, that Eq. (16) would be re-
placed by
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FIG. 1. GA-predicted differential cross sections for
e”+He elastic scattering shown as a function of ¢% for
100- and 150-eV incident electrons. The lower solid
curve is obtained using the simple Hylleraas wave func-
tion for the He ground state, whereas the upper solid
curve is obtained using the Hartree-Fock wave function
previously used by Franco. The experimental data are
that of Vriens et al., normalized to the data of Chamber-
lain et al.

| oo

Fy, g5 4) =25(02,)72 [ bdb J,(qb)
x[1 = (ix,b)247 (32, b)Y~

x£zin+1.o(ix1b)£zin+1,o(i’\zb)] (22)

[where Eq. (22) comes from using Eq. (15) for
M(x) in Eq. (7)]. Moreover, the functions
£4¢n+1,0(¢%) in Eq. (22) would have been written
out as the sum of two hypergeometric functions
[e.g., Eq. (23) of Ref. 9]. However, as we show
in the Appendix, each of these hypergeometric
functions diverge as ¢* for large x. Therefore,
even though we implicitly remove the 6 function
in q, we would still face the seemingly difficult
task of computing the amplitude from a represen-
tation involving an infinite integral, the integrand
of which required the computation of differences
between exponentially divergent functions when
the integration variable was large. By identifying
the functions £, ,(ix) as modified Lommel func-
tions we have eliminated this problem since we
may now compute £,1_,,(ix) from a valid asymptotic
expansion when x is large. Thus, in view of the
analytic results in the Appendix, computations of
the Glauber amplitude via Eq. (20) should be prac-
tical.

IIl. NUMERICAL RESULTS AND CONCLUSIONS
A. e +He Elastic Scattering

In order to demonstrate that our analytic tech-
niques for the reduction of the Glauber amplitude
are, in fact, practical and useful, we have cal-
culated the GA-predicted elastic scattering ampli-
tude of Eq. (20) for incident electrons. The hyper-
geometric functions in Eq. (20) were calculated
first by applying the linear transformation'*

.Fla,b;c;2)=(1 =2)° ,F(a,c-b; c; z/[z -1])

and then summing the resultant hypergeometric
series. The infinite integral involving J,,(gb) and
the modified Lommel functions £, ,(ixb) was
evaluated by breaking the integration region into
two pieces: 0<b<Rand Rsb<w~, The value of R
was determined as that value of b for which
£,,,62b), evaluated by summing simultaneously the
hypergeometric series obtained by using Eqs. (A3)
and (A4) in Eq. (A6), was well represented by the
first few terms of the asymptotic expansion of

Eq. (A17). We found that a value of x =AR~18 was
adequate for our purposes. Then, in the region
0<b<R, the Lommel functions were evaluated

via Eq. (A6) and the integration was performed via
Gaussian quadrature. In the asymptotic region,

R <b <=, the modified Lommel functions were
replaced by the first few terms in their asymptotic
expansions and the integration was performed
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analytically.'®> We found that the contribution to
the integral in Eq. (20) from the asymptotic region
was essentially negligible (less than 1 part in 10°)
at all the incident electron energies and momentum
transfers we considered. We remark that Eq. (18)
provides a very useful simultaneous check on the
integration routine and the numerical generation
of the modified Lommel functions; now, however,
the asymptotic region b=R contributes signifi-
cantly (~1-5%) to the integral on the left-hand
side of Eq. (18) when ¢%/A220.5 and 0.1 <n<2,

A further word about the generation of the func-
tions £,,,(ix) is in order. We found, for example,
that the series expansion, Eq. (A6), for the func-
tion £,;,.,,0(ix) agreed well with the asymptotic
form, Eq. (A17), for 0.1<7<2 and 14<x <20; from
(A17) £yi5-1,0(ix)~Ex)** "2, to lowest order. As we
mentioned previously, the hypergeometric func-
tions in Eq. (A6) were summed simultaneously;
the computations were performed entirely in double
precision. Moreover, both the real and imaginary
parts of Eq. (A6) were required to converge to at
least one part in 10'°, However, for x >20 where
we expect Eq. (A17) to be increasingly valid, the
series expansion (A6) does not converge at all
well to the asymptotic result. This simply re-
flects the fact that the expansion parameter in
Eq. (A6) is 3x2, so that extremely high precision
is required in order to sum (A6) accurately for
large values of x.

In view of the preceeding remarks, we now may
establish a tentative criterion under which
Franco’s procedures may be used conveniently to
evaluate the amplitude of Eqs. (5)—provided, of
course, the § function in the momentum transfer
first is removed as in Eq. (22). The utility of
Franco’s procedures is predicated upon the natural
assumption that the Glauber amplitude integral
over the range [0,») [Eqs. (23) and (24) of Ref. 9]
may be replaced by a finite integral over some
interval [O,R] , wWhere the integrand may be ac-
curately and conveniently computed. In our pre-
sent example, this assumption is equivalent to
the assertion that the amplitude of Eqs. (5) may be
computed from Eq. (22), all the while neglecting
the asymptotic contribution to the infinite integral
in Eq. (22). However, we have already demon-
strated that Eq. (22) is just an alternative way of
writing Eq. (17) [or Eq. (19)], where we have
separated the contribution due to the single-scat-
tering terms. Thus Eq. (22) implicitly contains
terms like the integral in Eq. (18). As we men-
tioned previously, the contribution of the asymp-
totic region [R,«) to the value of the integral on
the left-hand side of (18) can be significant. In
fact, for very small values of ¢/ the right-hand
side of Eq. (18) goes asymptotically as In(g/));

it is straightforward to show that this logarithmic
divergence at small q stems entirely from the
asymptotic contribution to the integral on the left-
hand side of (18). Thus the region in which
Franco’s procedures may be conveniently used
is roughly determined by those values of the mo-
mentum transfer g for which, at fixed incident
electron energy, the single-scattering contribu-
tions to the amplitude may be well approximated
by a finite integral. In the present case, at least,
the integral representation for the contribution
to the amplitude from higher-order scattering is
sufficiently well behaved that these asymptotic
problems do not arise. These remarks suggest
that in general the single-scattering contribution
to the Glauber amplitude should be removed expli-
citly and evaluated in closed form; the remaining
contributions to the amplitude may then, perhaps,
be evaluated straightforwardly using the proce-
dures which Franco suggests. This is essentially
what we have done in the present case by identi-
fying Eq. (20) as the Glauber scattering amplitude.
In addition to calculating the Glauber amplitude
of Eq. (20), we have also recalculated, using these
present methods, the e~ +He elastic Glauber am-
plitude obtained by Franco® from a three-dimen-
sional integral representation for the amplitude.
Instead of using the simple Hylleraas ground-state
wave function of Eq. (3), Franco used a Hartree-
Fock wave function by
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FIG. 2. The same angular distributions as shown in
Fig. 1, only now for 200-, 300-, and 400-eV incident
electrons.
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@i(T,,T,) = (N¥/na3)(e” *171/0 4 C =22 171 /ag)
X (e~ %172/0 4 Ce~2%172/0)  (23)

where N=1.484, a, =1.456, a, is the Bohr radius,
and C =0.6. The results of these two calculations
are shown in Figs. 1 and 2, in which we have plot-
ted the GA-predicted differential cross sections
(in units of ra?) as a function of ¢ (in units of a2)
for incident electron energies of 100, 150, 200,
300, and 400 eV. In each case, the lower solid
curve is the GA-predicted angular distribution
obtained from Eq. (20), whereas the upper solid
curve is obtained by using Eq. (23) in Eq. (1). The
experimental data of Vriens et al.,'® renormal-
ized to the small-angle absolute measurements of
Chamberlain et al.,'” also are included; at each
energy the measured angular distribution covers
the range from 5° (leftmost datum point) to 30°
(rightmost datum point). We do not present the
first Born-predicted angular distributions since
they already have been discussed by Franco.®

We note that our present Glauber results using
the Hartree-Fock ground-state wave function
[Eq. (23)] agree well with those obtained with con-
siderably greater numerical effort by Franco.®
Indeed all the present results shown in Figs. 1 and
2 were calculated in less than 5 min on a very
slow computer (DEC 1055) using double-precision
arithmetic. When compared with experiment, the
Glauber predictions obtained from Eq. (23) are
seen to be superior to those using the Hylleraas
wave function, as we might well expect. However,
the difference between the two Glauber predictions
is never as large as the difference between the
upper curve and experiment. For momentum
transfers corresponding to scattering angles
greater than 30° the two Glauber predictions are
essentially indistinguishable, reflecting the fact
that the wide-angle scattering is dominated by the
interaction with the He nucleus, and independent
of the detailed shape of the electron cloud. More-
over, for an incident electron energy of 400 eV we
also find, as expected, that the amplitude of Eq.
(20) is well approximated by the hypergeometric-
function terms when ¢%a%2<0.5. Because the GA-
predicted elastic scattering amplitude [using
either Eqs. (3) or (23)] diverges as In(g?) as ¢~ 0,
we expect these Glauber predictions to overesti-
mate the measured differential cross sections at
very small scattering angles. Although the data
are all at angles too large (=5°) to demonstrate
this explicitly, the results shown in Fig. 1 strongly
suggest that the Glauber predictions will be larger
than the measured differential cross sections at
still smaller values of g2.

The poor agreement between the GA-predicted

angular distributions and the data shown in Figs. 1
and 2 is rather disappointing since, from the

e~ +H(1s) elastic scattering results,? we are lead
to expect the Glauber approximation to be most
valid at these incident electron energies and scat-
tering angles. Even at 400 eV and (ga,)* =0.2 the
Glauber result using Eq. (23) underestimates the
measured differential cross section by an approxi-
mate factor of 30%. The failure of the Glauber
approximation at these scattering angles and ener-
gies may simply reflect the fact that even Eq. (23)
does not for our purposes adequately represent the
shape of the He electron cloud at large distances.
Indeed, the results shown in Figs. 1 and 2 seem to
confirm this assertion. At low incident electron
energies the scattered intensity at small angles is
determined predominantly by the large distance
behavior of the bound-state wave function. At
higher energies, however, the incident electrons
are capable of sampling the electron cloud nearer
to the nucleus and yet be scattered only through
small angles. Thus, the fact that these present
Glauber predictions agree best with experiment

at high electron energies suggests that we may
require an even better wave function than Eq. (23)
to obtain good agreement with experiment at these
scattering angles.

B. More General Applications

The extension of the foregoing methods to the
evaluation of the Glauber amplitude for inelastic
scattering by helium targets, or for elastic or
inelastic scattering by neutral atoms other than
helium, is straightforward along the lines that
Franco® suggests. In addition, we require a useful
reduction of integrals of the class

K, pm)= fo“’dt ¢mRNLR(42 2)1p g (1) (24)

where n, p, and m are all integers >0 and n<—+
+2p. Although Franco has proposed a general
reduction of the integral in Eq. (24), we also may
obtain an alternative reduction in terms of the
modified Lommel functions described in the Appen-
dix. However, the results of the Appendix [Eq.
(A7) in particular] may not be applied directly to
the above integral. An alternative reduction of
Eq. (24) may be obtained in the following way.

We may expand the term £"(#2 +A2)"!~? in partial
fractions to eliminate excess powers of ¢ in the
numerator and then, in each term, replace excess
powers of (¢2 +)2)"! by repeated differentiation
with respect to A%, In this way X, ,, , may be
written as a finite sum of integrals, to each of
which we may apply Eq. (A7) of the Appendix. Af-
ter carrying out the differentiations with respect
to A%, we will obtain a finite sum of terms involv-
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ing modified Lommel functions £,;;_ .+, (i) for
the integral X, , ,(A). At this point we do not
appear to have gained a great deal, aside from the
knowledge of the asymptotic behavior of X, , ,(A)
for large and small A. However, since the Lommel
functions satisfy the recurrence relations dis-
cussed in the second part of the Appendix, we need
to calculate explicitly via Eq. (A6) only four of the
modified Lommel functions [for example, £,;, ,6}),
Loin1 (B0, £5in-1.0(iX), L£3i5-1,1(i0)]; all others
may be obtained from these four using the re-
currence relations. In this manner, we may cal-
culate easily and conveniently the quantities

X pp.m(). ’

Since no other computations of the Glauber am-
plitude for multielectron atoms, using either our
procedures or those suggested by Franco, have
been reported, it is difficult to say a priori which
procedure will ultimately prove more useful in a
more general case when the problem of computing
0 functions does not arise. We are confident that
the method suggested above for the reduction of
Eq. (24), when used in the context of the results
of the Appendix, will be practical in actual cal-
culations. However, it may well prove to be the
case that these methods will be most useful for
establishing the bounds within which one may em-
ploy Franco’s reduction of Eq. (24), which super-
ficially, at least, is of simpler structure. It
should be clear then that further calculations of
the Glauber amplitudes for both elastic and inelas-
tic scattering from targets more complex than
neutral helium are required in order to establish
the utility, not only of these and Franco’s proce-
dures, but also of the Glauber approximation
itself.

Note added in proof. We recently have received
from Franco a report of work prior to publication
in which Franco applies his methods (Ref. 9) to
the evaluation of the Glauber amplitude for the ex-
citation of the 2!S state of helium and compares his
results with the measured angular distributions.
We note that the single-scattering terms in this
amplitude

2 2

again lead to a ln(g) behavior for the amplitude at
small values of the momentum transfer ¢g. Even
though the momentum transfer never can be iden-
tically zero for inelastic scattering, at high inci-
dent particle energies the values of ¢ correspond-
ing to scattering near the forward direction can be
quite small. Thus at high incident particle ener-
gies and at these small values of g one again must
ask if the logarithmic dependence of the single-
scattering terms is represented adequately in the
numerical calculations of the GA-predicted 2'S
excitation amplitude. Although Franco does not
discuss his numerical techniques for the evalua-
tion of this Glauber amplitude, we remark that for
high incident electron energies Franco appears to
have evaluated this amplitude at sufficiently large
values of ¢ so that the single-scattering terms
seem to be represented adequately in his computa-
tions.
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MATHEMATICAL APPENDIX
1. Definition of the Function £, ,

In the first part of this appendix we are con-
cerned with the reduction of the integral

au,,,,(k)sfo"dt TR (L2 + B2V (8), (A1)

where k%>0 and » is an integer >0; moreover
Re(u)#0. We show that the integral g, ,, can be
expressed in terms of functions £, ,, which we
shall call “modified Lommel” functions; these
functions obey a set of recurrence relations and
possess differential properties that make them
very useful for our present purposes. These and
other properties of the functions £, , are dis-
cussed elsewhere in this appendix.

When -m <Re(l - )<+, the integral in Eq. (Al)
may be evaluated in closed form!® as

9, mlk) =k H¥m-1g=m o1 r(’" ‘“+1> r(l *“'m) [T +m)] -t

m=-p+l m-p+1
Xl‘F2< 2 ; :

m+p—1

xlF;<1;2+ 2 -

Since

Fola; a, m+1; 2)=F(m+1; z)

k_2> cpmzp (==l ( m+u—1>]'1
, 1+m; 2 +2 I‘<———2————>[r 2+__._2____

m-u+l K
2 ’ 2 7 4

(a2)

r

and'®

In(2)=[T( +m)]"* (32)" B (1 +m; 32%),  (A3)
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the first hypergeometric function in Eq. (A2) re-
duces to a modified Bessel function. Furthermore,
we note that the Lommel function s,,,(2) is de-
fined by?°

su,u(z)=[(l-l+1 +v)(pn+1+ V)]-lzuﬂ

-v+3 +v+3 22
XIF2<I5HZ 3 “T)’

provided pxv# -1, -2,.... However, in Eq. (A1)
Im(p) is nonzero, thus the remaining hypergeome-
tric function in Eq. (A2) can be written as

m+p-1 m-p+1  k?
IF‘2<1;2+ 2 ’ 2- P} ;_Z_

=(p+1+m)(p+1 =m)(ik)"*"'s, ,(ik). (A4)
Using Egs. (A3) and (A4) in Eq. (A2), we find that

8y mlk)=3k7#1 T (“';—‘“) {r(“zﬂ) 1,(k)

—jH-11-k [I‘ <m+TM> ]-1 Su,m(ik) }’

(A5)
where, to obtain (A5), we have used the fact that

(I.L-M+1‘)1(u+m+1) r <m —;21.-1) [P (3 +;n +u >]-1

pfm-p+1 1+m+p ]"
- r( . ) [r( ! ,
We now introduce the modified Lommel function
£,,,(ik) which we define via

‘cu.v(ik)ESp_y(,ik) _iei"l-l/zzu-l
1+p+v 1+p=—v (A6)
xT (=5 r(=5—) L.().

Hence the integral g, ,(k) defined in Eq. (A1) be-
comes

f”dt t=Hd, (£)(22 +R2)!

e () (2

x 270 &, (ik) 7))

provided, of course, —m <Re(l —u)<%. Equation
(A6) defines the functions £, ,(ix) even when Eq.
(A7) is no longer valid.

2. Recurrence Relations for 3,4,» (ix)

The Lommel Functions s, ,(z) and the Bessel
functions I ,(z) satisfy very similar sets of re-

| oo

currence relations. Consequently, the modified
Lommel functions £, ,(ix) defined by Eq. (A6)
satisfy recurrence relations similar to those for
Su,y. First of all we note that® s, ,(z)=s,_,(2)
for all v. However,?21,(z)=1I_,(z) only if v is an
integer. Therefore, from Eq. (A6) we have

£,,,(ix)=8,_,(ix) if, and only if, v=0, 1, 2....
(A8)
The functions s, ,(z) satisfy the relation®
5@ =By =15,y () =L s, (2).
From Eq. (A6) we therefore have
d . . . v .
E£u.u(zx)=z(u+v —1)s“_1',,_1(zx)—;su',,(zx)

—iet (/2 p gu=1 1—-(1_*2"_*&>

(i) fue. e

However,?®

d v
E;Iy(x)=1y-1(x)_7lu(x);
and

1+p+u> (1+p.-v)

r( s )T\

L+v—=1 1+(p=-1)+@w-1)
= ) I"( ) )I‘

((Lrw=D=E=1)

Hence, we may regroup the terms in Eq. (A9) and
reapply (A6) to obtain

d . . .
E£n.v(zx)=z(u+v =1) &y, y-1(i%)

-—£,,,6x).  (A10)

By similar methods, one also may prove that
Lyea, (@)= (Gx) = [(u+1R =12 g, , (ix),

(A11)
and that
. d N .
—Zza-£u,,,(tx)-(u+u-1)£u_1,,,_1(1.x)
+(p=v=1)8,_ v, (ix). (A12)

Moreover, since (A10) holds, it is straightforward
to show (proof by induction) that
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(% ;—x>m[x“£u,u(ix)l

im

( ,:o (p+v+1 —2p)) x"'"'_gu_m.v_m(ix).

T p+v+l \p
(A13)
We also note, for example, that Eqs. (A10) and
(A12) may be combined to eliminate the term
@/dx)£,,,(ix). We emphasize the fact that Eqgs.
(A10)-(A13) are valid for all u and v for which the
functions £,,,(ix) are well defined.

3. Asymptotic Behavior £, , (ix)

The asymptotic behavior of £, ,,(ix) for small
x (1 and v fixed) may be obtained from Eq. (A6) by
retaining only the first few terms in the hyper-
geometric function expansions of the functions
s, »(ix) and I,(x). On the other hand, when x is
large® I,(x)~ (2mx)~Y'2 ¢*; moreover, in view of
Eq. (AT), we strongly suspect that s, ,(ix) behaves
in a similar fashion. Therefore, we require some
relation other than Eq. (A6) as a starting point for
developing the asymptotic expansion of £, ,(ix)
for large x.

First we remark that £,,,(ix) can also be ex-
pressed in terms of the Lommel function s, ,(ix),
where?!

bt (242 {32

X [sin(%(u— V)) J,,(z)—cos(%(u—v)) Y,,(z)] .

(A14)

If in Eq. (A14) we replace z by iz = ¢'"/2z then,
since!®

J,,(e“'/’z) = ¢ ‘"’””I,,(z)

and?®®
Y,(e"22) =it "DV (2) - (2/1)e " "/2K ,(2)

we have, after rearranging terms,

S, ,(ix) =5, ,(ix) +2*1 T
(122 o 22) [

+ _1%_ etV cos(%(u—ﬂ)Ku(x)] . (A15)

By comparing (A15) with (A6) we see immediately
that

. ) ) Lo 1
£,,,(ix) =S, ,(ix) - 2¢ ‘1"( +421 V)I‘( +g+y>

% % e-itm/2)w cos(—’-zr—(u— v))K,,(x). (A16)

The asymptotic behavior of £p',,(ix) can be ob-
tained directly from Eq. (A16). For large x, we
have® K, (x)~ (n/2x) e™*; moreover®

Suri= [ 5 (152) (55=2)

n=0

«(3) " rotm-], @

where (a), is the Pochhammer symbol. Thus, if
x is sufficiently large so that we may neglect
entirely the term in (A16) dependent upon K ,(x)
then the asymptotic behavior of £, ,(ix) is deter-
mined by (A17). Since Eq. (A17) also holds for
&,,,(ix), it should be clear that in Eq. (A6) the
function s, ,(ix) must also diverge as ¢ for large
x in order to cancel the exponential behavior of
I,(x).
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Configuration-Interaction Effects in the Scattering of Electrons
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In this paper we report new and improved theoretical electron-impact cross sections involving energy
levels of different electronic configurations of atomic nitrogen and oxygen, and some of their ions. The
results are expected to be improvements over previously published work, based on a single
(ground-state) configuration approximation, because allowance has been made for additional distortion of
the target system by the projectile by taking into account the effect of either virtual or real transitions
to different terms of excited electronic configurations. The effect of coupling to excited configurations
on the total elastic and forbidden cross sections among the ground-state terms of atomic nitrogen and
of Niv is discussed in detail. Cross sections are also given for selected transitions to terms of excited
configurations in O, Our, N, N1, and N1v. Some new autoionizing series in O1 and N1 are
predicted and suggestions are made for their experimental verification. Also, qualitative agreement with
recent observations of autodetaching states in atomic oxygen is obtained and the existence of other as
yet unobserved states is suggested. The results indicate the need for additional experiments in oxygen
and nitrogen and especially a careful measurement of the electron-nitrogen scattering in the energy

range 0-5 eV.

I. INTRODUCTION

In a previous paper Smith and Morgan' developed
a theory for describing transitions, induced by
electron impact, between any pair of terms in
atomic systems. In this paper we report and dis-
cuss the results of the first systematic applica-
tions of this theory to the calculation of electron-
impact excitation cross sections in atmospheric
atoms and their ions. The main thrust of this work
is an investigation of (i) the extent to which explicit
allowance for different configuration interactions
can be used to describe the details of low-energy-
electron—-complex-atom (ion) scattering and (ii)
the degree to which the close-coupling approxima-
tion (CCA) can be effectively used to obtain accu-
rate cross sections for a variety of excitation
processes. Prior to the work reported here, use
of this approximation to investigate the effect of
configuration interaction in electron-atom scat-
tering has been explicitly carried out only in the
case of simple two- and three-electron systems.2—*

The forbidden and total cross sections in atomic
nitrogen and oxygen and their ions have been the
subject of several model calculations during the

last 20 years,®=!* and of some experimental in-
vestigations.!®"!® However, because of algebraic
and computational problems, the different theoret-
ical models emphasized either a particular tran-
sition or set of transitions, e.g., Seaton,® or spe-
cific interactions, e.g., Klein and Brueckner,®
Bauer and Browne,!° or Temkin.” This led to the
result that the over-all effect of each type of ap-
proximation could not be realistically assessed.
The most intricate calculations to date for low-
energy-electron-atmospheric-atom (ion) collisions
have employed close coupling within the limitation
of a single ground-state configuration approxima-
tion (Smith et al.'® henceforth referred to as SC).
In their model the eigenfunction expansion of the
total wave function for the electron-target system
was restricted to only the three terms of the
ground-state configuration of the target. More
recently, an attempt to allow for configuration
interaction via implicit inclusion of some excited
terms in ions has been carried out by Eissner and
his colleagues.?* However, the model they used
is semiempirical because it relies on adjustable
parameters. The present model is totally ab initio.
It has been emphasized in Smith, Henry, and



