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The thermodynamic properties of several systems of multilevel atoms interacting with a quantized

radiation field are investigated. We allow a quantum-mechanical treatment of the translational degrees

of freedom and do not require the rotating-wave approximation. In the finite-photon-mode case one can
calculate the free energy per atom in the thermodynamic limit exactly and rigorously. In the
infinite-mode case we only get upper and lower bounds, but these are sufficient to give conditions for
thermodynamic stability and instability. The kind of phase transition previously found by us for the
one-mode Dicke model with the rotating-wave approximation persists in the general multimode case.

I. INTRODUCTION

In a previous paper' we elucidated the
thermodynamic properties of the Dicke maser
model with one photon mode coupled to N two-
level atoms in the rotating-wave approximation.
We calculated the free energy per atom and the
thermal expectation values of time-dependent
intensive and fluctuation observables exactly
in the limit N- ~. Our analysis relied heavily
on the various conservation laws inherent in
the model: the total "number" operator and

the total atomic "spin. " In the relevant part of
the spectrum we effectively diagonalized the
Hamiltonian in such a way that the error became
negligible as N- ~. While such a procedure
is necessary if one wants to study fluctuation
observables, it is intuitively clear that a
simpler mean field method must exist if one is
content to analyze only the intensive observables.
In fact our results showed that these quantities
behave classically; that is to say the lack of
commutativity becomes unimportant as N- ~.
It is also clear that these qualitative features
should continue to hold even without the above
mentioned conservation laws, i.e., it should be
possible to handle a much wider class of models.
In this paper we show how to achieve that goal in a
simple way by using coherent states and the results
of a recent paper. ' The phase transition found in
Ref. 1 persists in the general multimode case.

Wang and Hioe' and Hioe4 demonstrated that
the Glauber coherent states of the photon field
constitute a natural basis for this problem. Un-
fortunately, they were not able to show that their
approximate evaluation of N 'ln Tre ~ is exact
when N- ~. Nevertheless, it is a fact that their

answer agreed precisely with our previous
rigorous result' for the Dicke model, and we shall
prove here that their results for the other models
they treat are also correct. In addition, we also
calculate exactly the expectation values of inten-
sive observables for those models. Ginibre' has
previously made use of coherent states to obtain
exact results for the many-boson problem. Dur
methods can be easily generalized for atoms of
more than two levels.

In Sec. III we make an attempt to understand
the thermodynamics of the infinite-mode case
which, to the best of our knowledge, was never
discussed before. We cannot solve that problem
exactly, but we can derive upper and lower bounds
to thepartition function which prove that such a
system is thermodynamically stable if and only if
the atoms have very repulsive cores.

In Sec. IV we return to the finite-mode Ham-
iltonian, but allow translational degrees of
freedom (either quantum or classical) for the
atoms. It is shown there that use of the Glauber
coherent photon states permits an exact (as N- ~)
reduction of the problem to a conventional many
body problem. This, in turn, can be solved
in closed form in several interesting cases.

We do not confine our attention only to the
Glauber coherent photon states, but also show
that the Bloch atomic coherent states' for the
atoms may be used to advantage. The former
make the radiation field classical, while the
latter make the atomic variables classical. It
is the Bloch states that are used in our discussion
of the infinite-mode case.

In the Appendix we resolve some technical
problems related to the unbounded nature of the
photon operators.
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II. FINITE-MODE MODELS

The Hamiltonians we shall consider are those
of the form

H= P v a*a +eS'

+N '~'g g [s (& S„'+p S„)+H.c.], (2.1, )

where a~, . . ., a~¹are boson creation and annihila-
tion operators for the photon modes having
energies p )0,8„.. ., S„are spin--,' operators
describing N two-level atoms having energy
spacing ~)0 (S„'=S„"+iS„"and S'=Q„" iS„', i=z, y
or z}. The X (respectively, g „) are coupling
constants for the rotating (respectively, counter-
rotating) wave terms. The factor N ~' in (2.1)
really comes from a factor P ~', where V is
the volume of the cavity containing the atoms.
However, as we are interested in N/V fixed, the
distinction merely entails a coupling constant
renormalization. The interaction term in (2.1)
is linear in the g¹operators, but the method we
are about to describe would work equally well
if one included quadratic terms (i.e., if one

goes beyond the dipolar approximation).

A. Atomic Coherent State Representation

(2.5)

JAP

Z(j) —Tre SB(z)

(2.t))

(2 'I)

where H(J) is the Hamiltonian for a spin, 5, of
magnitude J,

H(j) = g v a "a +~S'
m= 1

Q —(Q„.. . , Q„),
Q„= (sin8„cosy„, sin 8„sing„, cos8„) .

H(j, Q") is defined from (2.1) by replacing each
B„by JQ„. The bounds in (2.3) for the free energy
per atom do not agree as N ~, but they are use-
ful in proving the stability of the infinite photon
mode free energy —a subject to which we shall
return in Sec. III.

Further progress can be made with the
Bloch-state bounds, however, if we make an
assumption about H, namely that the A. and the

are independent of n. This is true in the
original Dicke model where one neglects the
spatial variation of the radiation field. (Alter-
natively, the method will work if the atoms
belong to a finite number of groups in each of
which the coupling constants are the same. ) In
this case we can use the fact that the total "spin, "
J, is a constant of the motion, so that

We turn now to the atomic or Bloch angular
momentum coherent states' used in Ref. 2. With

F being the Fock space for all the photon modes
and 3C being the Hilbert space for the N atoms
(spine) we define

and

+N ~' g [a (A S'+p S )+H.c.] (2 &)

Y(N) j)=N! (2J+1)[(J+1+2N)!(2N-J)!] ' (2.9)

Z= Try-» (2.2)

where the trace is over F|3X. The bounds
obtained in Ref. 2, and justified in the Appendix
for boson operators, are Z(J) ((2J+1) 'Z(J) (Z!'j+1), (2.10)

is the number of ways to construct an angular
momentum J from N spin- —', particles.

Using Ref. 2, one has the bounds

Z(~ ) Z Z(2),

where

(2.3) with

2'(J}=(4z) 'Tr )I dne (2.11)

Z(j) 2z Tr (4v)-))( [dQ))(e- SlrtA 6 )

and where

(2.4) and H(J, Q) is (2.8) with S replaced by JQ. Since
H is quadratic in the a, it is easy to evaluate
Tr~ in (2.11}:

N 1r 21K N

&(e)=(4 ) 'n(( —e s"
)

'
J si ees dyes)t (is(ccse+N( 'e is-P (i ses' +s e '

( v ') .
0 +0 m= I

Since J' (-,'&', we see that

(2.12)

lnZ(j + I) —lnZ (j)(p ~ + II[ (N + I )/N ]g ( I e(. I
+

I u. I
)'~.' (2.13)
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(2.14)

which means that (2.12) gives the free energy per
atom exactly to order M/N. It is also clear that
for large N and fixed M, (2.12) and (2.6) can be
evaluated by steepest descent, i.e. , simply by
maximizing with respect to 8, y, and J. If we

first maximize with respect to q we see that the

free energy is the same as that for one mode in.
the rotating-zoave approximation, Dut witt' an
effective coupling constant A. given by

z'=max~ Z e'~+p, e '~ 'v '.

a = w
' ~tdau

I a&(a I, (2.22)

aa=~' da n' —1 a u. (2.23)

Z&Z&exp P 'v
nt= &

(2.24)

The same methods as in Ref. 2, but using the
Glauber states instead of the Bloch states, yield
upper and lower bounds for the partition function
(again, see the Appendix):

Subsequent maximization with respect to g and J
yields the free energy found in Ref. 1. Such a
result agrees with that found in Ref. 3.

Expectation values of intensive observables can
be found by the foregoing procedure, but some
technicalities are required. These will be dis-
cussed in the Appendix. The result is as expected:
The expectation value of any polynomial in the
intensive observables (defined in the Appendix) is
equal to that polynomial evaluated at the maximal
steepest descent points referred to above, and then

averaged over the variety of maximal steepest
descent points if there is more than one point.

Before turning to the photon coherent states,
which we shall describe next, we remark that when

there is no spatial dependence (A. and p, „ inde-
pendent of n) the Bloch picture (2.12} is the more
convenient to use. The main conclusion, (2.14),
that even without the rotating-wave approximation
there is effectively only one coupling constant, is
more tedious to derive using the photon coherent
states (cf. Refs. 3 and 4).

where

Z &-eT d u -BN( ~)
3e (2.25)

and

a"=(a„.. . , a„),
Af

H(u"} = g v la I'+eS*+N V'

xP +[a (X S„'+p. S„}+H.c.]. (2.26)
m= 1 ff

The trace on X in (2.25} is now easy to compute:

N N

Z=~ " du" exp -p v u ' 2 cosh
Nt= 1 e= 1

N

x sP e +4N g (u g +ac/, e) V

(2.27)

This Z is precisely the approximate partition
function derived by Wang and Hioe. '4 We note
from (2.24) that, as long as the number of photon
modes is finite, -Pl& 'lnZ is the free energy per
atom to order MN '. Another remark is that al-
though we assumed each atom to have only two
levels, the atomic trace in (2.26) can just as well
be evaluated for multilevel atoms, and the inter-
action does not have to be linear in the atomic
S' operators.

B. Photon Coherent-State Representation

For a given photon mode, a¹,a Glauber coherent
state is

I a) = exp[-2 I
u

I
'+ u a']

I 0&, (2.15)

where a is a,ny complex number and IO) is the
photon vacuum. The following properties are
required and are justified in the Appendix:

III. THERMODYNAMIC STABILITY OF THE
INFINITE-MODE SYSTEM(u I tt& exp[ =II u I'-l I tt I'+ a—*tt]

» I a&&P I
= &t} I u&

(2.16)

(2.17} In this section we return to the Hamiltonian & of
(2.1}and shall show that under suitable conditions
it is stable when the number of photon modes is
infinite. This means that there exists a constant
A such that Z= Tre &e""for all N. The proof
of the existence of the thermodynamic limit,
lim~ ' InZ, is a more complicated question
with which we shall not deal. The phrase infinite
number of modes means that in any frequency
interval (v„v,) the number of modes with v, & v& vm

(2.18)

(2.19)

(2.20)

t=s 'dulu&&ul, - (2.21)

TrA = ~ ' da(u IA I u),
where A is any trace-class operator and fdo,
= Jf d(Rea)d(„lma),

(ale la&= u,
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-y«z g ««««„),
n= j.

(8.1)

is proportional to N, the size of the cavity. The
problem we are considering here is similar to
the corresponding problem for electron-phonon
interactions dealt with by Gallavotti, Ginibre,
and Velo. '

We use the bounds (2.8) and the definition (2.4).
The trace over the photon modes 5 can easily be
done exactly and one finds, dropping irrelevant
factors of the form e """,

N

s(z)-««ag ««p(N* Q Q «(««„, ««, )
ft= 1

where

h'(x) =ff ' Q ~(k) '[I&(k) I'+
) p(k) I']cos(k. x),

g'(0„,0&}= sino„sing&e'~~~ ~&~,

(3.8}

(3.9)

X(k) = d'xg(x)5(k) pg, (x)e'"'" (3.10)

and the other pairs g', h', r = 2, 3, 4 are defined

similarly.
Let us investigate how the generic h(x} decreases

as ~x j- ~. In a real system, X(k) and p, (k) are the
Fourier transforms of functions with exponential
decrease at infinity, i.e.,

(3 2)

and R„ is the ideal photon contribution to 2

R» ='0(I - e ~ "~) ' .
Tft

The latter is independent of the interaction and

may be assumed to have a nice thermodynamic
limit in a physically sensible model, e.g. ,

(8.4)

Then

(3.7}

v - v(k)= (Ifi, (8.5)

k=2sN '(n„s„s,),s,aZ, ko0. We could allow
several photon modes for each k; such a generali-
zation does not affect the conclusions below.

if (8.2) be inserted into (3.1), one has (dropping
R„)precisely the partition function of N classical
spins of magnitude J interacting with each other
via a quadratic interaction and with an external
magnetic field & in the s direction. This is a well
understood problem. If one allows all the particles
to be at the same location, i.e., A, and p, „ in-
dependent of s, then v(Q„, Q~) is positive when

Q„=Q&, and no matter what one assumes about the
various parameters, the lourer bound Z(—', ) will
behave like e3" with B &0. Thus, no stability
is possible in this case and, as we shall show
later, the introduction of the quantum mechanical
uncertainty principle does not save the situation.

To describe (3.2) more concretely, we use (3.5)
et seg. ; we associate a position x„with each atomic
index n, and suppose that

-~(k)e'" ". (8 5)

~ (k)8 'I k ' X««

h'(x) = g K(x+KL), (3.11)

where I, is the length of the cubic cavity and h(%)

is a smooth, real function which decreases at
infinity as ~x) ', for example. For such a poten-
tial, it is well known that the total N body poten-
tial appearing in (3.1) is stable provided the
particles are not too close together, e.g. ,
)x, -x~)&s&0 for alii, ,j.

To generalize the above model, (2.1), we can
permit the atomic coordinates (x„) to be variable
and replace H by H +U(x„. . . , x„), where U is
some ordinaxy interatomic potential, e.g. , a
sum of pair potentials. Now the partition function
involves a configurational integral on (R')", i.e.

g (y))-1 I dsNxZ(~)8 BNx)
pN

(8.12)

where Z(x} is the partition function for each
fixed set of atomic positions as defined in (2.2).
The bounds (2.8) still apply and we can draw the
following general conclusion: If we ignore the
infrared problem as above, then the total Ham-

where u and / refer to the upper and lower atomic
states, e is a polarization vector and y is the
momentum operator Sinc. e A, (0) 40, there is an
infrared problem connected with the potential
(3.8}. On physical grounds we do not think this
difficulty is intractable but, as a somewhat pain-
ful analysis is requix ed, we shall not try to solve
this yroblem here. For one thing, one should
certainly include the term A' in the Hamiltonian,
where X is the vector potential. This introduces
a positive quadratic form in thea~operators which
can be handled by our methods, just as the photon
energy, pv a*a, was. It will certainly mitigate
the k ' divergence in (3.8).

From now on we shall assume A, (k) has a zero
of sufficiently high order at k =0. Then
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iltonian is stable if U is sufficiently repulsive
whenever two atoms get close together and if U

decays sufficiently fast (i.e. , faster than ~x~

for e &0) at large separations. Conversely, the
Hamiltonian is unstable if U does not have strongly
repulsive cores.

The next level of complication is to treat the
atomic coordinates quantum-mechanically, i.e.,
H-H+U+T, where T is the N-particle kinetic
energy operator. Using Bloch states we can
still derive the bounds (2.3), but now

Z(P = 2"Tr,.Tr JtdA" exp[-PH (J,0")+ U(x) + Tj,
(3.13)

where 9 is the Hilbert space L'(V") and H is as
in (2.4). Because the terms linear in a¹involve
the x„'s, it is no longer possible to do the trace
over F in a closed form. To circumvent this
difficulty, we derive upper and lower bounds to
(3.13).

Lozoer bound. We use the variational principle
Tre" &e ¹ "¹for any normalized g. With 0" fixed
we choose g~ %ISIS to be g=yc3I p. Let p be of
the form p(x„. . . , x„)=Q„",p, (x,} where the p,
are smooth functions with supports in V which are
pair-wise disjoint. Since the supports are disjoint
we can imagine the atoms to be either fermions
or bosons without affecting any expectation values.
With p given, we can calculate (g, Tg) and (p, Vg).
Recalling that A. depends upon x„, we can cal-
culate (A. ) = (g, A. „g), and similarly (p „). Now

we choose y~ 5 to be the ground-state eigen-
vector of

Q v a¹a +N '~'Q Q(a (A. )S„'+(p, „)S„+H.c.j
(3.14)

with energy

IV. FINITE-MODE CASE WITH TRANSLATIONAL
DEGREES OF FREEDOM

In Sec. III we were obliged to use the Bloch
atomic state picture for a simple, but fundamental
reason: If one uses the Glauber state picture, one
sees from (2.20) and (2.23) that the difference
between the upper and lower bounds to the free
energy (2.24} is precisely Q",v, and if the
number of modes is infinite this sum generally
diverges. On the other hand, if M is finite one

can always use the Glauber state picture, and
the difference of the bounds is O(N ') in the free
energy per atom. With this in mind, we shall
briefly consider the class of Hamiltonians men-
tioned at the end of Sec. III, but with M finite, i.e. ,

K=H +U+T, (4.1)

where E is the total Hamiltonian in the Hilbert
space St=6:9X, H is given by (2.1), U is an

ordinary interatomic potential and T is the N-atom
kinetic energy.

Our bounds lead to the statement that to O(1) in

the total free energy

(4.2)

H, =H'+U, and where H' is as in (2.1), except
that it has a factor —,

' multiplying the photon-energy
term. The kinetic energy does not appear in H„
and if U has the aforementioned repulsive core
plus rapid fall-off properties then the factor —,

' in
H' does not affect the previous conclusion: as an

operator on 8'8 9, H, is bounded below by -BN for
some constant B. Thus

Z &e8 Tr Tr e-881&eAN
g

for some constant A.
In summary, a proper quantum statistical treat-

ment of the atomic center of mass motion does
not affect the general conclusion above.

N' Q v ' Q-(Z „)S„'+(p, )S„'. (3.15)
Z=m " do."Z o. , (4.3)

The point of this lower bound calculation is to
show that the quantum uncertainty principle does
not change the previous conclusion based on

classical mechanics, namely that a repulsive core
is still needed in U. Without it we still have that
Z &ecN for large N with C&0; this can be ac-
complished by letting all p,. have support in some
fixed box of size l, where l is such that the
ground-state energy of (3.14) is still O(N') and

negative. Then, (q, Tg}=O(N'~'I '), and hence the
ground-state energy of H +T is still O(N') and

negative.
Upper bound. We can write the Hamiltonian

H + T + U as H, +H„where H, = T + —,
'
Q v a¹a and

and

Z(~) Tr e Bt(a)- (4.4)

g(y) = limN 'Inz(PI'~'y) . (4.5)

Then,

limN 'lnZ= max g(y), (4.6}

where K(u) is K with a and a¹replaced by the

c numbers n and a*. By changing variables
a —y~V, it is clear that one can use steepest
descent (in the limit N- ~} to evaluate the integral
(4.3). With y = (y„.. . , y„), we define
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provided the set on which the maximum occurs
is of dimension less than 2M. The existence of
the limit g(y) can be shown by customary methods'
when U is reasonable. It is generally impossible
to calculate g(y) exactly, but the point is that the
problem has been reduced to a conventional prob-
lem of point particles with spin interacting via a
spin independent potential U and whose spins are
coupled to a static external field which may or
may not have a spatial variation. If U is a sum
of single particle potentials, g(y) can be evaluated
in closed form and there will clearly be a phase
transition for sufficiently large coupling constants

from y = 0 to y 40 as P is varied, just as
there is in the models considered in Sec. II. An

example of this in which the translational degrees
of freedom are treated classically is given in
Ref. 4. If U is more complicated, this kind of
phase transition in y probably still persists.

V. CONCLUSION

In this paper we have attempted to show the
usefulness of coherent states (both Glauber states
for the photon field and Bloch atomic states for
the atomic degrees of freedom} to calculate rigor-
ously the free energy per atom for various
models of the interaction of matter and radiation.
For the finite mode case (Sec. II) the problem can
be reduced to the calculation of a classical type
integral which can be handled by steepest descent
methods. This proves the results of Hioe and

Wang, and the Glauber state picture shows that,
in effect, each atom interacts with a classical
radiation field whose value is determined self-
consistently. Therefore, one sees that as long as
the number of photon modes is held fixed and as
long as the interactions of the photons and atoms
has a smooth spatial dependence, the thermody-
namic properties of the model are very insensitive
to the details of the Hamiltonian. In particular
they are insensitive to whether or not the rotating-
wave approximation is used and they are insensi-
tive to the number of atomic levels, provided that
number is finite.

The Bloch picture shows clearly that for two-
level atoms with or without the rotating-wave
approximation, but with spatially independent
coupling constants, the problem reduces to that
of a single photon mode in the rotating wave ap-
proximation. Furthermore, as shown in the
Appendix, expectation values of intensive ob-
servables can be calculated using the mean fields
given by the steepest-descent points of the co-
herent-state integrals. In this context we note a
similarity to those approximations in laser theory
in which the photon field is treated semiclassical-
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APPENDIX: SOME TECHNICAL

CONSIDERATIONS AND CALCULATION

OF EXPECTATION VALUES

To avoid unnecessary complications we shall
consider a one-mode Hamiltonian

H =Hp+R,

II, =a*a,

8 =A+a~B+aB*,
(Al)

where the Hilbert space is 3', = 53C, 5 is the
Fock space of the boson mode a¹,X is a finite
dimensional Hilbert space of dimension d (the
spin space) and A and B are operators on X with
A Hermitian.

Clearly p is a Kato perturbation" of Hp which
implies that H is self-adjoint on D(jfo), the domain
of H, ; H is bounded from below and has purely
discrete spectrum with finite multiplicity because
H, has these properties. Therefore p=e ~ o is
bounded. To prove that p is trace class, write
p =exp[=2PH, —P(,H, +R)]. By the —Golden-Thomp-
son inequality, "

Trp (Tre 8&p ~2e @&p~2+ &~

The first factor in (A2} is trace class and the
second is bounded.

Let P„be the projector onto the states with
~n photons, so that P„-I strongly. Let H„
=P+P„and consider

Z„=-TrP„e '~~,

(A2)

(AS)

which is a finite dimensional trace. We note that
D= U„P„3:is a common core for all H„and H and,

ly, and in which the atoms are treated as inde-
pendent, but fully quantum-mechanical entities. '"

Section III explores the question of stability of
the more fundamental Hamiltonian in which there
are an infinite number of photon modes. Leaving
aside the infrared problem, we have established
some necessary and some sufficient conditions
for the thermodynamic stability. Our methods are
not powerful enough, however, to prove the
existence of the thermodynamic limit.

In Sec. IV, where Hamiltonians similar to those
of Sec. III but with a finite number of photon modes
are discussed, the existence of the thermodynamic
limit can be established. The main result of Sec.
IV is that the inclusion of translational degrees
of freedom generally does not destroy the kind of
phase transition possessed by the models of Sec. II.
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(a, n IP, n) =K„(n, P) = exp[--', la l' ——,
' IPI']

, n

x Q (ump) /m!, (A5)

Tr
I n, n&(P, n

I =K„(P,u},

TrPQP„= v ' Jtda(a, n IA la, n),

(a, nla I a, n) = uK„, (n, u),

(u, n la*a
l n, n) = In I'K„,(n, u),

(A6}

(A7)

(A6)

(A9)

P„=a '
J da

I a, n)(a, n I, (A10)

P aP„=& ' dun on a n

P„a*aP„=v ' du(! u I' —1) I u, n)(a, n I, (A12)

da+n ~y ~ +n +&y~ Rn ~y y . A13)

Similar formulas hold for all other polynomials
in a¹.

We wish to compute a lower bound to Z„ following
Ref. 2. Use (A7) and the fact that (0 Ie" IO)
o (p I g)exp((g IX I

tII)/(!!P I!t)) applied to H„Then.

(A11)

Z„~ Trz J daK„(a, u)

xexp[-I u I'K„,(a, a)/K„(n, u) +A

for any g~D, P„HP„g= g for n sufficiently large.
In fact P„QP„g= g for n sufficiently large when Q
is any polynomial in a, with coefficients which

are operators on 3C. Hence H„-H in the strong
resolvent sense. " Let ($, , h, )P, (resp. (g"„h",}",¹,)
be the eigenvectors and eigenvalues of H(resp.
H„ I P„x) arranged in increasing order. We can use
the g",. as trial vectors for H and conclude from
the mini-max principle that A, , & h, for 1 & i &nd.
Using this fact, together with the strong conver-
gence" of the eigenprojections E„(a,b)- E(a, b) for
every interval (a, b) with a, b~spec(H), one can
show that b„'-h' and g„'- g' weakly. Hence
Z„-Z by the dominated-convergence theorem.

Define the cutoff Glauber states by

(A4)

For these states the formulas (2.16}-(2.23) are
correct with certain obvious modifications, i.e.,

tion.
It is somewhat more difficult to prove the

upper bounds (2.24) or (2.3). According to the
method of Ref. 2 one defines

Zm = TrP„(1 —PH„/m)m (A15)

m

Z„(e) ~v ' dnK (u, a)Trne& (A17)

Again, we can let e 0 0 and use dominated con-
vergence to replace Z„(e) by Z„and H(u, e) by

H(a, 0) in (A19). Now, because H has a term Ial',
we can let n- ~ and use dominated convergence
to obtain the right-hand side of (2.24). For the

Bloch state upper bound, (2.3), the same strategy
works except that it is not necessary to introduce
the convergence factor, i.e., one can deal directly
with Z„.

Having proved that the bounds on the partition
function used in the main text can be justified for
the unbounded photon operators, we turn now to
the problem of evaluating expectation values of
intensive observables. This latter is the algebra
generated by a¹/N~' and by the atomic operators

g„~/¹ In particular we consider an operator 8
which is a monomial in thea¹/N~' times an opera-
tor on X. Defining

and, since the trace is finite dimensional,
lim„Z„=Z„. The difficulty is that if one applies
(A5)-(A13}directly to (A15) the dominated con-
vergence theorem will not be clearly valid. In-
stead, for all e ~ 0 we define H„(e}as follows.
For each photon operator that appears in II„,
such as a*a or a¹,one introduces a convergence
factor e~ '!m! ' in the integrands of (All) and (A12).
Using; H„(e}, one defines Z„(e) and Z„(e). Then

lim„, Z„(e) =Z„and lim Z„(e)=Z„(e). Using the

Golden-Thompson inequality, as shown in Ref. 2,
one has

Z„(e) ~ w
'

Jt daK„(u, a)Trr(1 —PH(n, e))

(A16)

where H(n, e) is defined by the replacements
a*a- (I al' —1}e~ '!"!', etc. Owing to the con-
vergence factor and to the Gaussian decrease of

K„(u, n) [cf.(A5)] one can use dominated conver-
gence to assert that

+[B *aK( un)/K„(u, a}+H.c.g . (8) = Tr8e 8"/Tre s" (A18)

(A14)

First we take Tr~, and then let n- ~. By the
dominated-convergence theorem, the left side
of (2.24) is proved. It is equally clear that the
same strategy proves the lower bounds (2.3) and
(2.4) obtained from the Bloch state representa

we want to show that as N- ~, (8) can be evaluated

by simply replacing each factor in 6 by its value
at the absolute maximum of the integrands of
(2.11}, (2.25), etc. , and then summing over those
points. [Note that in the Dicke model with the
rotating-wave approximation there is a conserva-
tion law which leads to a gauge invariance. The
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Iimdg„(»)/d» = ~(»)/d» .

Proof. Fix»EI. For y&0 and»+yEI,

g„(»+y) & g„(») + yG„'(»),

g. (» -y}& g„(») —yG„(»)

Fix y and take the limit g- ~. Then

(A20)

limsupG„'(») cy '[g(»+y}-g(y)]

and similarly for lim inf G„(») . Now let y p 0.
Q.E.D.

In the following, Lemma 2, we consider a
sequence of "partition functions" which, quite

generally, we may write as

Z„(P) = e "'du. (e),

where (p„}is some sequence of nonnegative mea-
sure on R. We assume that all Z„(p) & ~ for p in

some open interval I= (a, b). Define

g.(P) =s 'lnZ„(P) .
Obviously, g„(P} is convex for PEI. We also
define the moments of the energy (per particle)

E„'(P)= 8'e '"'du„(e)/Z„(p), .

where k =0, 1,2, . . . . It is easy to prove (by
dominated convergence, or otherwise) that for
pa I, E„'(p) exists and

(A28)

E.'(P) =(s) 'Z(P) 'd'Z. (p)ldp' (A24)

Lemma 2. Let the sequence (p„,Z„(P),g„(P)}be
defined as above and assume that

limg„(P) =g(P) (A25}

stationary phase "points" are, in fact, curves.
After integrating over those curves, one finds,
for example, that N '(a*a)40 butN '(a') =0,
as expected (cf. Ref. 1)].

We shall need two lemmas whose use will be-
come clear later. First we give a different proof
and a, slightly generalized version of Griffiths's
lemma. '4

Lemma I (Griffiths). Let (g„(»)}be a sequence
of convex functions on»~ (a, b) =-IC 9 with a point-
wise limit g(»), which, of course, is convex.
Let G„'(»)[resp. G„(»)]be the right (resp. left}
derivatives of g„(»), and similarly for G'(»),
G (»). Then, for all »EI, -

lim supG„'(») c G'(»),
(A19}

liminf G„(») & G (»).

In particular, if all the g„(») and g(») are differen-
tiab},e at some point g~I, then

exists. Then, for every P at which g(P) is dif-
ferentiable,

limE„'(P) = [limE„'(P)]' = [-dg(P}/dP]' (A26)

Z() ) & Z(0)e-8%4vo+w)

can easily be proved to hold here. Then, with

g(P, N, A.) =N' InZ(A. ) a—nd A, &0,

P(6) &Z '[g(P, N, O) g(P, N, Z)] —PV—'(W). (A28)

Take the limit N- ~. In those cases (Secs. II and

IV) in which our upper and lower bounds agree,
they mill also agree when ~ &0. Thus, lim„

(g,pNX) =g(p, X) exists. Also, Iim„~ '(W)=0
by Lemma 2. Thus, for all A. &0

Proof. For k=1, the lemma is the same as
Lemma 1. Let J be a compact subinterval of
I. From the facts that Z„(p) &~ for all p&I, and
the uniform convergence of g„(P) on compacts,
which always hoMs for convex functions, we can say
that if P~J' then we can find a, lower cutoff e, in
the integral (A28) such that the error in g„(P) and

in E„'(P) is 0(e ~) for all k less than some fixed
E, and where c +0 is a constant independent of
s and P. By adding a (trivial) c:onstant to e we

may assume, without loss of generality, that

e, =l, i.e., p, ((-~, 1)}=0.Then E~(p}&0 and

e~diL„(e) is a non-negative measure for all k.
Consider k=2. Replace dp, „(e) by ed'„(e) and

thereby define Z„'(P) and g„'(P) as in (A23) and

(A24) Then dg„'(P)/d(P) = -E„'(P)/E„'(P)
exp[s{g.'(p) -g„(P)}]= Z.'(P)/Z, (P), so h„(P) =-g„'(P)

-g„(P)-0. Hence, g„'(P) = h„(P) +g„(P) is a convex
function having the limit g(P), and we can apply
Lemma 1 to it on int(Z). This proves the k = 2

case. Obviously, the argument can be extended
inductively, i.e., one writes E'„(P) =g~&, [E„' i"(P)/
E„'-'(p)]. Q.E.D.

Now we return to the monomial 8 whose expecta-
tion value we wish to compute. If 6 is not self-
adjoint then consider 6 to be replaced by 6+6*.
Clearly there is some integer k ~ 1 such that H'
dominates 6, i.e. , i 6 i

( 2H'+bI for so-me positive
constant b. With p&0 fixed, let e, =iim~~ '(H~)

For each a & 0 define H(X) =H +AN6+)t. W, with
"H -e»,H. Obviously, the pxeceding

analysis for Z applies equally well to Z(A. )
-=Tre 8~~"~, i.e., one can obtain upper and lower
bounds to Z(X) in terms of classical integrals.
Naturally, for the monomials in 6 and H» one has
to find the obvious generalizations of (2.19)-(2.23},
but this can easily be done; in particular the
monomial (a~)~a' has (a*)~a' as its leading term
in (2.19)-(2.28).

The Peierls-Bogoliubov inequality
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lim inf(8) ~ X '[g(P, a) —g(P, 0)) . (A29)

In a parallel way, we can define H'(A) =H —AN8
+A.W and g'(P, N, A.), and obtain

lim sup(8) ~ a '[g(P, 0) -g'(P, a)] .N~ (ASO)

To complete the demonstration one has to show
that as X t 0 the right-hand sides of (A29) and
(ASO) have a common limit and that this is the
classical value of (8) at the steepest-descent
points for A. =0. When these points are isolated,
as they are in the absence of the rotating-wave
approximation, it is easy to see that the above
is true; as A. 0 0 some points approach the A. =0
points while others go off to infinity. The latter
are not maximal, however. In the rotating-wave
approximation, the A. =0 points are in fact curves

~
u

~

= const. In this case, (A29) and (A30) will
agree for those operators such as a~a/N or
aS'/N' ' which are invariant under the gauge
group. For other operators, such as a', the two
limits will not agree because as A. 40 the steepest-
descent curves will be approached as two different

points. However, in such cases it is easy to see
directly that (a') =0, and this value agrees with
what one would get if one integrated over the
entire curve.

This completes our discussion of the Hamiltonian
(Al) and clearly no difficulty is encountered in
extending it to the multimode case. However,
some remarks are needed for the Hamiltonians
considered in Secs. III and IV because the un-
bounded operators T and/or U are introduced.
The additional Hilbert space, 9, is generally
I.2(V"), where V is the box, but if U has a hard
core it is L'(V" -hard-core region). In either
case, it suffices to say that in addition to the P„
photon projection operators one can also introduce
a strongly convergent sequence of projections
(Qg on 9 such that D=U„Q„Q is a common core for
H and all Q+Q„and such that (Q+Q„-H)y-0
strongly for all y~ D.

The remarks in this appendix are admittedly
sketchy in places, but the interested reader can
easily fill in the details required to analyze any
particular model of the class we have considered
in the main text.
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