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The angular correlation for (e, 2e) experiments involving knock out of the least-bound electrons in
helium and argon is compared with theory. A distorted-wave off-shell impulse approximation is derived
and shown to fit the data within experimental error. Outstanding features are that the shape of the
angular correlation at energies from 200 to 800 eV depends only on the momentum transfer. Hence the
angular correlation is directly related to the momentum wave function of the struck electron. The
reaction is sensitive enough to distinguish between different approximations for the wave function.

1. INTRODUCTION

The 400-eV (e, 2e) experiment on argon of
Weigold, Hood, and Teubner' promises to
inaugurate a wide range of applications to dis-
cover new knowledge of the structure of atoms
and molecules. Before this knowledge can be
reliably extracted from the experimental data,
we must have a theory that is capable of cor-
rectly describing the shape of the angular cor-
relation between the two emerging electrons
(i.e., the distribution of momentum transfer §)
which is measured in the experiments. A sche-
matic representation of the experiment is given
in Fig. 1. An electron with momentum k, is
incident on an atomic system (atom, molecule,
or solid) with a kinetic energy E, greater than
the ionization potential. The two outgoing elec-
trons are detected in coincidence by two elec-
tron detectors A and B capable of measuring both
the direction and energy of the electrons. The
angular variable ¢, the azimuth of one of the
outgoing electrons, is measured from the plane
defined by the incident electron, and the other
electron (A).

Earlier theoretical studies?® of the (e, 2¢)
reaction have been based on plane-wave Born,
impulse, and binary-encounter approximations.

In this paper we derive a theoretical framework
based on a distorted-wave off-shell impulse ap-
proximation and test it by treating the simplest
application, namely, the knock out of one of the
least-bound electrons in the shell-model descrip-
tion of an atom, leaving the residual ion in its
ground state. In Sec. II we give a brief outline
of the model which is developed in Secs. III and
IV. In Sec. V we present the experimental
results, and compare them with the theory in
Sec. VI.

II. THE MODEL

We will assume in our model that the ion plays
the role of an inert particle, to which the knocked-
out electron is initially bound, as far as the
(e, 2e) reaction is concerned. Many other reac-
tions such as elastic and inelastic scattering and
ionization leaving other residual ion states can
occur. These are described by complex potentials
in the interactions V,, V,, and V, between the ion
and the incident electron and the electrons mea-
sured in the detectors A and B, respectively.
Approximate values of these optical-model poten-
tials are known from analyses of elastic scattering,
for example, that of Furness and McCarthy.?

The model is thus one of a quasi-three-body
system, where the bodies interact through the

FIG. 1. Experimental
arrangement for the (e, 2e)
reaction.
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optical-model potentials and the Coulomb poten-
tial between the two electrons. To describe
breakup in this system, we will derive an ap-
proximation to be called the distorted-wave off-
shell impulse approximation.

III. DISTORTED-WAVE OFF-SHELL
IMPULSE APPROXIMATION

The approximation has been derived by Dodd
and Greider? as the first term of a multiple
scattering series for a pure.three-body problem.
We will give a derivation more suitable to the
quasi-three-body problem in which the optical-
model potentials depend on the relative energy
in the appropriate two-body subsystem.

We must first remind the reader of the formula-
tion of general three-body scattering theory
(Gell-Mann and Goldberger®). The three-body
Hamiltonian H for the problem is split into two
arbitrary portions X+%v, where X contains the
three-body kinetic-energy operator K. Wave
functions are defined as follows

H=%X+7,
(E® -H)W® =0, 1)
(E® —x)@®) =0.

The three-body wave functions ¥*) satisfy the
Lippmann-Schwinger equation

1 1
\I,(t) =¢(t) +Em__HUq)(t) =§(t)+mv\1,(i) , (2)

where

EY =1lim (E+ie€). 3)
€0+

The plus and minus superscripts correspond to
boundary conditions with outgoing spherical waves
(entrance channel) and ingoing spherical waves
(exit channel), respectively. The inverse
Shriodinger operators (Green’s functions) are
integral operators.

The amplitude for a reaction defined by the
boundary conditions of ¥ and &® is

M= |v][e) =@ |v|e). (4)

The Lippmann-Schwinger equation (2) relates
¥® to &® by means of the three-body t-matrix. .

Ulq,(+))=T(+)!q,(+)>’

(\I’(—) "U = @,(-) ' T(-) , )

where

1
() = 6
TP=0+0 ;1 V- (6)

In the application to the present breakup prob-

lem, we will first treat the entrance channel in
which the potentials are V,, previously defined, and
the single-particle potential U which binds the elec-
tron to the ion. It will be seen that the chief
utility of the angular-correlation measurement
is to provide a very sensitive test for the poten-
tial U. In addition the two electrons interact
through the Coulomb potential v.

We first define our partitioning of the Hamilto-
nian

K=K+V,+U, V=v. M
The breakup amplitude, according to (4) is

M= |v|a™)y, (8)
where
(E-K-V,-U)@"=0. 9)

We next turn our attention to the exit channel,
where the electrons interact with the ion through
potentials V, and V;. We now define X and U by

X=K+V,+V,, V=0. (10)

Equation (5) defines our formal expression for
the breakup amplitude:

M= T |8e™), (11)
where
(E-K-V,-Vg)a") =0, (12)
) - 1
T =v+v v. (13)

EC —K-V,-Vy-v

Equation (11) is exact, in the context of the
quasi-three-body model. It is defined in terms
of three-body operators operating in the space
of three-body wave functions. We must reduce
the problem to one in terms of two-body operators,
which can be defined in terms of the two-body
potentials of the problem. It will be convenient
(but not necessary) to make the approximation
that the ion is infinitely massive. We will
attach the coordinate T, to the electrons 0 and
A and the coordinate T, to the bound electron and
the electron B. Antisymmetrization in these
coordinates will be performed later. The
canonically conjugate momenta are p, and p,,
respectively.

We are also interested in the center-of-mass
and relative-electron coordinates

ﬁ=%(;1, +—Ez)’ ;=(F1_;z), (14)
and the conjugate momenta

-

P=51+-§2’ 5=%61—§2)- (15)
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The kinetic-energy operator is
K=K +K,=K, +K_, (16)
where
K =p*/2m, K,=p:/2m,
K, =p*/2p, K,=P%/2m, 17)

u=sm, M=2m.

The Schrodinger equation (9) for ¥ separates
in the coordinates T, T,:

|oo

[E-K,-V,lr)-K,-U(r,) e, T,)=0,

[EO -Kl -Vo(Tl)]Xc()”(fl):O, (18)
[€ _Kz - U(rz)]‘p:u(;z) =0 ’

3® (;u;z) =X§)+)(Eo, ;1)¢r’:‘u(—{'z) .

The incident distorted wave is x*(k,, T,), where
the 7k, is the momentum of the incident electron.
The bound-state single-particle wave function
is ym ,(T,) for the potential U(r,).

The expression (11) that we want to reduce to a
tractable form is written explicitly as

1

M= fdsrl fdsrz &) (T, T,) <v(r) +o(r)

The coordinates after the operator are primed
because the nonlocal Green’s-function operator
(E-H)™! involves integrations over T] and T;. The
term in large parentheses has the explicit form

[ a¥; [a*r[vlr)s(F -7)6(R - R') +G(F, R, ¥/, R")].

In the approximation to be derived the explicit
form of G is not required.

" A similar procedure to (18) may be followed

for separating #)(F,, T,):

‘I’(-)(;U ;z) = x(;)(ip Fl)x(i)(ﬁa, ;z) . (20)

The distorted waves for the electrons A and B
are x7) and x§), computed from the two-body
Schrédinger equations:

[E,~K, -V,(r ) XSk, T,) =0,
[Eg =K, = Vg(r) X5 (kp, ;) =0 .

The momenta of the electrons A and B are #k
and )il’(n.

The second term in the three-body ¢ matrix
in (19), however, cannot be separated exactly.
We must take the first terms in the Taylor
expansions of V,(r,) and V,(r,), respectively,
about R. This is a good approximation since
in an ion the gradients of the single-particle
potentials are small, except near the nucleus.
Our reaction is unlikely to occur near the nu-
cleus, since the absorptive potentials reduce
the absolute values of the distorted waves there,
also the volume of this part of space is small
compared with that of the periphery of the atom.

The problem is that the operator V,+V,
cannot be commuted through the operator v(r)
on the left-hand side in Eq. (19) to act on the
wave function &(r,,T,), since it depends on
the coordinate T.

For the second term (but not the first term)
we must put

(21)

E-Kgp-K, = V,(r,) = V3(r,) —v(r)

v(r'))xg”(?;)zp;",,(f;). (19)

Valr )= V,(R), Valr,)= Vy(R). (22)

The three-body Schrddinger equation now
separates thus:

[E —Kg = V,(R) = Vo(R) - K, —0() 2T, R) =0,
[E, +Eg = Kq = V,(R) - V(R)X(R) =0,
[e-K, -v(r)]eF) =0, (23)
#FIT, R) = p(DxOR)

= pENGE ,, FIXG(K,, F) -

The operator in large parentheses in (19) be-
comes (when operating on &)
(o) +0) — ) s(E-R)

— 1
K,-v(r)v(r
= fdar{fd’r; tole, 7, 7)6(R-R"). (24)

The function ¢,(e, 7,7’) is the two-body Coulomb
t matrix in coordinate space calculated for the
energy

€=E,-E,-E, (25)

which is the separation energy of the electron
that is removed.

The distorted-wave off-shell impulse approxi-
mation is

M=AKG & XS ) [2c(€) XS R, 5 (26)

where A denotes antisymmetrization in ¥, and
T,.

It is clearly a very close approximation to an
exact solution of the quasi-three-body problem.
It is exact up to first order in ». Higher-order
terms involve only the neglect of gradients of
the atomic single-particle potentials near the
periphery of the atom where they are small.
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IV. EVALUATION OF THE MATRIX ELEMENT

The matrix element (26) will be evaluated with
the aid of the eikonal approximation for the
distorted waves

X, F) = e WRReH R T
x(-) (&, T) = e-ykR”e—l:w. , (27)
k=(1+B+iy)k.

This approximation was first tried and found
to be excellent for the inelastic scattering of
40-MeV « particles from nuclei by McCarthy
and Pursey.® It has had great success’ in
describing the reaction C'2(p, 2p)B!! at 400 MeV,
and has been verified by comparison with plots
of nuclear wave functions by Amos.® At first
sight its success in nuclear theory may seem
irrelevant to the case of atomic reactions.
However, one must remember that the radial
optical-model equation is written in terms of
the dimensionless variable p =kr as

2 2
(o + 58 -2 D000, (28)
where the local wave number K(p) is defined by
K(p)*=(2m/K*)[E - V(p)]. (29)

Values of K?/k? are very similar (and quite
close to 1) for the atomic case at a few hundred
eV and the nuclear case at a few hundred MeV.
The relevant real atomic potentials are of the
order of 20 eV (in the interaction region). The
imaginary parts® are of the order of 10 eV.

The nuclear potentials are of the order (10 +10:)
MeV. Hence it is seen that the wave functions
(as functions of p) are very similar.

The parameters in the eikonal approximation
are easily approximated by solving a one-
dimensional Schrodinger equation as
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B+iy=V/2E, (30)

where 7V is the average complex potential in
the interaction region (the periphery of the atom).
The normalization parameter R, ensures that
the absolute value of the distorted wave is 1
at a distance R, before it enters the interaction
region. A good approximation for R, is the
distance inside which 99% of the atomic charge
density is concentrated. In practice both g and
y are less than 0.1 and R,, is about 1.1 A for
argon.

The impulse approximation matrix element
(26) becomes

M=NA [d, [d%r,[d%[dr} e~V Rafigika
Xto(r, r')6(R - R et T iym (1), (31)
where
N =e~(koYotk ava*RBYBRN (32)

1t is straightforward to show (see, for example,
McCarthy and Tandy®) that (31) reduces to

M=NA(%(;A -EB) l tc(':’l.le —T(B |2) I%(T(o +f1))¢n"'u(7<) ’
where ¢/ ,(k) is the Fourier transform of w,’,"”(f)

with respect to k.

- -

K=Ky =Ky=Kp - (34)

The differential cross section is proportional to
g =N22 |A<§(’;A _;3) I tc(% I;A _T(B |2)
av
x| 5o + @) || o1, (0|2 (35)

The notation 37 denotes a sum over final and an
average over initial magnetic degeneracies.

The t-matrix elements required are half off
the energy shell. A convenient computational form
for them has been given by Ford.!°

The final computational formula is

2 (2me®\2 2mp 1 1 1 k+k[2\)| , 2
ot =N () 280 e e - T2 e oo e (B )| ety

k=i(ko+%), K =3(k,~kp), n=me*/m?k'.  (37)

The radial single-particle function is u,,(r).

Since « is very nearly equal to the momentum
transfer q which is measured in the experiment,
it is clear that the momentum-transfer distribu-
tion g(x) looks like a Mott scattering factor
(off-shell) multiplying the momentum distribution
of the electron in the atom before it was knocked
out.

(36)

V. EXPERIMENTAL RESULTS

The apparatus used in the present experiment
is, in the main, identical to that employed by
Weigold, Hood, and Teubner' and is shown
schematically in Fig. 2. Electrons are acceler-
ated in an electron gun to the desired impact
energy and are scattered from a gas beam
produced by allowing the target gas to effuse
through a stainless-steel tube 0.2 mm in diam-



eter. The scattered electrons are then energy
analysed by two cylindrical mirror analyzers.
Although the entrance aperture on the larger
analyzer could be rotated in azimuth by +75°,

the present measurements were all taken in the
angular range +40°. The acceptance angles of
the detectors are approximately 7° and their
combined energy resolution is of the order of
1%. Two channel electron multipliers (CEM)
are used to detect the two electrons in coincidence.
The time resolution of the coincidence equipment
(consisting of double delay-line amplifiers,
zero-level cross-over discriminators, and

a time-to-amplitude converter) is monitored

by a multichannel analyzer (MCA) and is typically
10 nsec. The background accidental coincidence
counting rate is constant, being independent of
the time difference between the two pulses. Two
single-channel analyzers (SCA) are used to
route the coincidence and background pulses into
separate scalers.

The background gas pressure, electron-gun
current, and singles counting rates are all
monitored continuously. Care is taken to reduce
stray electric and magnetic fields. The effect
of the earth’s magnetic field is minimized by
means of Helmholtz coils. All conducting sur-
faces are coated with colloidal graphite to re-
duce production of secondary electrons. Data
taking has been partially automated, since
several days are often required to obtain suf-
ficient statistics for one angular correlation.

In the symmetric noncoplanar geometry used
in the present series of experiments, the angular
variable is the azimuth ¢ of one of the outgoing
electrons measured from the plane defined by the
incident electron and the other outgoing electron.
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Both electrons are emitted at an angle 6 of
45° relative to the incident direction, and both
are selected to have the same energy, i.e.,

0,=0,=6=45°and k,=k,.

Then the magnitude of the momentum transfer
q=k, +k, -k, is given by
q=1|(2k cos6-k,)? +4k2 sin?gsin’*s¢p | V2.
Figure 3 shows the angular correlations
obtained for the ejection of a 1s electron from

helium leaving the helium ion in its ground state
for total energies (E=E, - €=E, +Ey) of 800,

] aus ev

10 § 45 ev

[ 2245 ev

CROSS SECTION (ARBITRARYUNITS )
<)
o
T

L 1 I
0 0.5 1.0 1.5 20 25
q.(ag")

FIG. 3. Angular correlation for helium at incident en-
ergies of 824.5, 424.5, and 224.5 eV. The theoretical
curve is calculated for 824.5 and 424.5 eV, in which
cases the curves are indistinguishable.
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400, and 200 eV. The lowest and highest incident
energies are, respectively, approximately 9 and

34 times the binding energy of the ejected electron.

From Fig. 3 it can be seen that the three
angular correlations observed over this wide
energy range are indistinguishable when plotted
as a function of the momentum transfer q. This
is obviously not the case if they are plotted as
a function of the angular variable ¢.

No excitation of the first excited state of
the helium ion could be observed. The cross
section for the excitation of the n=2 level is
(0.1 +£1.3%) of that leading to the ground state.
This is certainly consistent with the theoretical
value of 1% for the ratios of total cross sections
expected from electron correlations in helium.!

Figures 4 and 5 show the angular correlations
obtained at total energies of 800 and 400 eV,
respectively, for the ejection of an outer 3p
electron from argon leaving the argon ion in
its ground state. Electrons leaving the ion in
its ground state could be clearly differentiated
from electrons ejected from more deeply bound
states, leaving the ion in more highly excited
states (cf. Weigold, Hood, and Teubner!).

VI. COMPARISON OF THEORY AND EXPERIMENT

The angular correlations for (e, 2¢) reactions
on helium and argon, leaving the residual ion in

815.76 eV

CROSS SECTION (ARBITRARY UNITS)

0 0.5 1.0 1.5 2.0

9 (agt)

FIG. 4. Angular correlation for argon at an incident
energy of 815.76 eV. The full curve is calculated with
the HF wave functions of Herman and Skillman (Ref. 12)
and of Fischer (Ref. 13) (indistinguishable). The dashed
line is calculated with the HF wave function of Lu et al.
(Ref. 14). The dotted line is calculated with an effective
hydrogen-atom wave function.

its ground state, were calculated by Eq. (36).
An experimental uncertainty of 7° in the direc-
tion of each electron in the final state was
folded into the calculation. In each case the
function u,,(r) was taken from tables of Hartree-
Fock wave functions. With the geometry of the
present experiment, the shape of the angular
correlation depends only on the momentum trans-
fer if distortion of the ingoing and outgoing waves
is negligible. Values of the distortion parameters
used were B=y=0.01 for E =800 eV and
B=y=0.02 for E =400 eV.

Figure 3 shows the result for helium plotted
as a function of momentum transfer. In this
case both theory and the various experimental
results for total energies of 800, 400, and 200 eV
are indistinguishable. The Hartree-Fock wave
functions of Herman and Skillman'? and Fischer®®
gave indistinguishable curves.

The cases of argon at 800 and 400 eV are shown
in Fig. 4 and 5, respectively. In these cases
the sharp minimum for the kinematic situation
where all three electrons are coplanar (zero
momentum transfer) is washed out by the angular-
resolution factor. This factor has a greater ef-
fect on the momentum-transfer distribution at
800 than at 400 eV. In both cases the theoretical
curves using the wave functions of Herman and
Skillman'? and Fischer!? are indistinguishable.
The curves calculated for different energies with-
out the angular-resolution factor are also
indistinguishable, indicating that the difference
in the experiments at the two energies is due

415.76 eV

£

5

&
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@
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%
1
2.5

q (ag )

FIG. 5. Angular correlation for argon at an incident
energy of 415.76 eV. The theoretical curve is calculated
with the HF wave functions of Herman and Skillman
(Ref. 12) and of Fischer (Ref. 13) (indistinguishable).
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to angular resolution, not to a breakdown of the
impulse approximation.

A Hartree-Fock wave function due to Lu ef al.**
was also tried in the case of argon at 800 eV
(dashed line in Fig. 4). The experiment clearly
distinguishes this wave function from the other
two. In order to illustrate further the sensitivity
of the experiment to the choice of the single-
particle wave function, we have illustrated on the
same diagram (dotted line in Fig. 4) the angular
correlation calculated for a 3p hydrogen-atom
wave function with an effective charge determined
by the Hartree-Fock screening factor (Zey=17.517).
This is often used as a rough approximation to
a single-particle wave function, but it is clearly
inadequate in the present reaction.

VII. CONCLUSIONS

In order to verify our description of the (e, 2¢)
reaction mechanism, we have chosen cases
where the structure of the atomic states involved
is well known. In the noncoplanar symmetric
geometry chosen for the present experiment,
the shape of the angular correlation in the off-
shell impulse approximation depends only on the
momentum transfer, and not independently on
the energies of ingoing or outgoing electrons.
In other words, the shape of the angular cor-
relation is given directly by the momentum-space
wave function of the knocked-out electron. This
is true if distortion is negligible in determining
the shape. The absorptive effect of other channels,
which is included in the distortion, is noticed only
in the magnitude of the differential cross section,
which is not measured in the present experiments.

|oo

In a later paper relative magnitudes for excita-
tion of different final states in the same experi-
ment, which are measured, will be discussed.
The experimental data for both helium and
argon, when the effect of finite angular resolu-
tion is taken into account, verify that the momen-
tum-transfer distribution is independent of the
energies of the ingoing and outgoing electrons.
It is worth noting that for helium this is still
true at an incident energy of only 225 eV,
in marked contrast with the results of Ehrhardt
et al.*® at 256.5 eV. In our noncoplanar symmet-
ric situation the momentum transfer to the
“gscattered” and “ejected” electrons is very large,
whereas the very asymmetric coplanar situation
employed by Ehrhardt ef al. is characterized by
low momentum transfer to the ejected electron.
Since in such experiments the ejected electron
is emitted with a very low energy at a relatively
large angle, large distortion effects are to be
expected.
The validity of Hartree-Fock wave functions
as a description of the relevant atomic structure
is verified. In a structure calculation, spectro-
scopic amplitudes are defined with respect to
a single-particle potential. The experiment
provides a very sensitive definition of the
“best” single-particle potential. It is capable
of distinguishing Hartree-Fock wave functions
calculated in different numerical approximations.
In summary, (e,2e) experiments such as those
reported here and of Weigold, Hood, and Teubner
yield directly, to a very good approximation,
the momentum-space wave function of an electron
ejected from an atomic system.
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