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A theory of rearrangement collisions taking account of the nonorthogonality of initial and final states is
presented. Detailed discussion of the range of validity of the theory is worked out. The method is applied to
proton-hydrogen-atom charge exchange collisions. We find that at high energy the Jackson-Schiff results are
obtained and that below 100 kev the cross section is raised significantly above the result of Jackson and
Schiff. The new result is in better agreement with experimental results than the calculations based on the

Jackson-Schiff formulation.

1. INTRODUCTION

I shall describe charge exchange collisions of the
type A +(B+e”)~(A +e”) +B, where A and B are
cores which are difficult to excite. In the initial
state 3, the electron is associated with core B and
(B+e") has a relative momentum E,(ﬁ =1) with re-
spect to A, The final state that we shall consider
is that of the electron associated with core A and
(A +¢7) having relative momentum E, with respect
to B.

There have been many different approaches to
calculating charge exchange transition probabilities.
In the energy range we are concerned with, relative
velocities of 10® cm/sec or greater, there have
been Born-approximation calculations carried out
by Brinkman and Kramers, ! by Saha and Basu,

and by Jackson and Schiff.® The last of these in-
cluded the intercore potential and on the basis of
their results, Jackson and Schiff claim that its
neglect is not justified, Within the Born approxi-
mation no account has been taken of the nonorthog-
onality of initial and final states. Some attempts
have been made at taking the nonorthogonality into
account by Bassel and Gerjuoy4 and by Grant and
Shapiro5 using a distorted-wave approximation. To
first order the distorted-wave results tend asymp-
totically to the Brinkman—Kramers cross section.
Cheshire® has also calculated the resonant charge
exchange cross section using a distorted-wave ap-
proximation, McCarroll and Salin’ obtain the same
asymptotic result at large energies as Cheshire.
Cheshire® has also calculated the charge exchange
cross section into excited states using the results
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of Jackson and Schiff .®> An impact-parameter
formalism using straight-line trajectories (from
which differential cross sections cannot be ob-
tained) has been employed by McCarroll,® Mit-
tleman, *® and McElroy™ to obtain the total charge
exchange cross sections into a given final state.

The approach used here is a time-dependent quan-

tum-mechanical formulation with a two-state ap-
proximation. Section II describes the kinematics

of the problem. Section III presents the method and
discusses the range of validity of the model. Sec-
tion IV applies the method to proton-hydrogen-atom
collisions and compares our results to experiments
and previous calculations. Section V is a summary.

II. KINEMATICS

As Bohr' pointed out, charge exchange is a
three~body problem whereas excitation is a two-
body problem. Consequently, we must be careful
in our consideration of the kinematics as well as
the potentials between particles. Cores A and B
have masses M,, My and coordinates R,, Ry with
respect to an inertial frame. The electron has
mass m and pOS1t1on T (see Fig. 1). We define the

vectors R, ¥,, Ty, and R, ,:

R=Ry-R,, )
Fu=T-R,, (2)
Te=T-Rj, 3)
-’e,m. = (1/M7') (MARA +M ﬁa +mr), (4)

where Mp=M +Mg+m.
It will be convenient to define vectors R} and R}

= = _mF+Ma§B
Ra=Ry Mg+m ’ (5)
= _mF+M,ﬁ,
Rz=Rs My+m ®)

These are the relative coordinates between A and
(B+e), and Band (A +e), respectively.

FIG. 1.

Coordinate system.

The initial state consists of core A with momen-
tum K, and (B+e) with momentum K in our inertial
frame. Inthe c.m. frame, initially A and (B+e)
have relative momentum E, . The internal energy
of (B+e) in the initial state is B. The momentum
and energy of the c.m, are constants of motion and
are trivial to handle. The final state that we con-
sider is (A +e) and B with relative momentum k ’
in the c. m. frame and (A +e) hasinternal energy a.

The kinetic energy of the system is given by

T=3M,Ve+1MzVE +im¥2 . 4
It will be useful to find expressions for T in terms
of two different sets of variables, {ﬁgk P,}, where
By, is the momentum of A with respect to (B+e)
and -ﬁa is the momentum of e with respect to B,
and {P"Fs B,}, where Pnjg is the momentum of B
with respect to (A +e) and P 4 is the momentum of
e with respect to A. Inorder to express T in terms
of {PRA, PB} we obtam the expressions of VB, VA,
and V in terms of V/, and ¥ by using Eqs. (1)-(5)
after they have been differentiated with respect to
time. We find

- Yoty ®)
My
= M m ->
= —A4r
Vs= MTVA Mp+m B’ ©)
V=Vy+V5. (10)
We conclude
T= 1 A_/]AMV 62 (11)

where we have dropped _Ehe c.m. kinetic energy.
Similarly, in terms of V5 and v, we find

T= ;Mﬂ%ﬂl"—vu mi2, (12)

We now define the eigenfunctions ¢,(Fz) and
@4(T4) which satisfy the equations

1
(_va

1 - - -
rACRAAP DIALLTIN

VB(;B)) ¢;(?a) =B (pi(FB)’
(13)

where VA4(f,) and V2(¥;) are potential energies of
the electron in core A and B, respectively.

IIIl. METHOD

When the Hamiltonian is expressed in terms of
{Pgy, Pg}or {PR;5 , P4} and we quantize the theory
and make the operator replacements

1-> -
i

[y

,—P

Vey— Pg, and = ¥, ve

~,

or



(=

=

- - 1 -
s va“’PRb and i_v'A“?"A’

-~

we obtain the expression

oLz, Lo v ) LB+ VAR
== g, VR Gy Vra PV W)+ VTR + VER)
(14)
or
__._Lva, ..—1v2 + VAT, +VEE )+VAB(E)
2u, *B T 2m AT T4 ? ’
(15)
where
ZMA(MB‘I"m) =M8(M4+m)
i My ’ i My

for the Hamiltonian operator depending upon which
set of independent variables we choose.

So far we have not made any approximations.
The Hamiltonian operator expressions are exact.
Expanding the wave function in a complete set of
basis functions which satisfy the initial conditions
that at £= -, we have the state

- R 2
Pt =—o)=,Fp) oK Ry o-1(Bery/2u )t

will give the exact answer. We shall make a two-
state approximation which consists of ignoring all
states except the initial state and the particular
final state of interest. A discussion of when such
an approximation is justified will be given in what
follows. We should actually consider a two-state
wave function of the form given in the Appendix.
However, as is shown in the Appendix the result
is not changed by our approximation. We take our
Ansatz wave function of the form

W, F,1)=b,(t) @ (Fp) o7t ERh oiiom/2upt
+a,(t) (PI(FA) e!ifvnbe-{(auf/ZMf)t, (16)

where R/, and R} are given in Eqs. (5) and (6), re-
spectively, and a,(f) and b,(f) are coefficients.

We now substitute the wave function into the
Schrddinger equation to obtain

ib,(t) @,(F p) e i RA gmtut 14 ds(t) @y (¥ 4) 'y R gmivt
= [VAFD) + VAR )] 0,(t) 9,(F ) e FirPa g
+[VB(FB) + VAB(E)] a,(t) (Pf('rA) ei!f-ilae-iuc’

an

where we have let

u=B+k /21, v=a+ki/2u,.
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We used the expression in Eq. (15) for the Hamil-
tonian when we operated on the term with coeffi-
cient b,(t) and Eq. (16) on the a,(t) term.

Now in the limit as |R| -, when { -+ we find
that @(x~)=0; this is due to our choice of exponen-
tial ¢ dependence and

lim VA3(R)=0, 1}3'131 VA(ra) @4(r5)=0,

| Rlwo

lim V(rp) @s(r4)=0.

IR | =0

The wave function in Eq. (16) is constructed so
that the electron is carried with the moving cores
A and B at infinite nuclear separation so that the
difficulty pointed by Thorson'® does not arise.

Before we continue with the method to obtain our
results, we know enough about the model to dis-
cuss in what situations it may be applied. We are
concerned with collisions of atoms, one of which
(B+e) has an electron that is more loosely bound
than any of the rest (if there is more than one) so
that, except for the “active” electron, the atom may
be considered as a core. Examples are hydrogen
and sodium atoms. Atom A must also be a core
with respect to state ¢,(F,).

We are interested in finding the charge exchange
probability |a,(=)|%in a particular state ¢,(f,). To
do so by this method, the probability of finding dif-
ferent excited states ¢,(T5), excited core states
[when more than one electron in (B+e)] and differ-
ent states ¢ ,(FA), must be small compared to the
probability of elastic scattering. Also, no other
channels besides the elastic one should couple
strongly with ¢,(F,). If these conditions are not
met, then our two-state approximation is not valid.

Criteria governing the collision energy must also
be met if we wish to use this model. The relative
momentum of A and (B+e), and (A +¢) and B should
remain more or less constant for trajectories which
contribute heavily to the charge exchange cross
section,'* That is, we require

ky> {l“i [VA(FA) + VAB(E)]}“zs

ke> { g [V2(F ) + VARRF/2

for trajectories which contribute to charge ex-
change.'® In what follows we shall substitute |3,)
and |3;) for projections onto charge transfer and
elastic channels of |$‘’). This is justified when
ka>1 and M(V)a/k <1, that is, when the criteria
for the validity of the Born approximation are
satisfied. These conditions are satisfied in the
collisions of light atoms A and B when the
relative kinetic energy >10 keV.
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If the relative kinetic energy is above this limit
and the other conditions are met, we expect that
the method will work.

Taking the inner product (mtegral over T, and
Tp) of () e-%1°RY with cp,(ra)e'"‘l “®4 we obtain

ff 9"1‘(7’3)9&;.:{"‘ @17 5) e-';'.nkds"’Ads”B
=| | @s(F5)|2exp (- ili —E’)-—MLF a%
i\r'p $TR) a m TB)¢ 7B

Xf RUTEH ";AdsrA= (2r)® 53@4 -E:)

YEHUDA B.

BAND

|

why we obtained the Dirac 6 function rather than
the Kronecker §. The § functior_l. is handled by tak-
ing a narrow wave packet about k; in the usual fash-
ion,

We multiply Eq. (17) by ¢} (rs) "R giut gng
integrate over r 4 and rB (which is equivalent to in-
tegrating over 7z and R}) to deduce

i[by(¢) +a,(8)S s € 9= b, (t) By +a, ) BE e““-v".(m)

-

-{k *R!

We multiply Eq. (17) s1m11arly, by (T e B

xe'”® and integrate over ¥, and T to deduce

i[apt) +b,(t) Sy e U | = ay(t) B +b,(¢) et v,

The integral over T is always finite. We have (19)
chosen to normalize in an infinite volume which is where
J
S =S"‘=——s-1 d3r, o (F,) exp | -ilk 1- —2 ) -k |-F
fi if (2") A A ! M4+m i A
x | d%rg o,(Fp)expli |k, -k (1- —2]-F (20)
B ¥i\*B ’d 1 MB +m B ’
= gy [ 4RIV R+ [ @, o1 Galen(E) VAEa- B, (21)
hgy = Tz_)TJ'd R[V*2(R) +Jd 74 OF(T,) @i (F ) VE(F o~ R)] (22)
1 - P > m - - - - -
hiy= @) I d¥, Ids"’a @} (Ts)exp {— i [kf" ky (1 "M)5 m )] : ra} [VAB(F - Tp)+ VE(Fp)]@4(F0)
. m el -
X exp {z [k, ( 1- MA+m> -k,] . rA} , (23)

and

m
MA+m

1 - | [
h;‘,:m Jd’rAfdsrB¢;(rA)exp{—z[k,(1—

Rearranging Eqs. (18) and (19), we obtain

(1= |Sy |2)by(t)= (bf = S, )b, (0)

+ (B =S hE) et “Piat)  (25)
and
(1= |Sy [Dag(t)= (12 - Sphly)alt)

+(hp=Sphf)e “ (1) . (26)

The form of these equations is determined, not
by the specific model but by the fact that we used

)- E,] FA[VAR(E = Fa)+ VA O] 04 (F )
X exp {i[ﬁ,—ﬁ(l— )] } . (24)

a two-state Ansatz wave function, the two states
not being orthogonal, and the time-dependent
Schrédinger equation. ® It is the form of the S and
k’s that is determined b% the Hamlltoman and the
expressions @,(75)e” %" Rar o (r ) e!¥r* Far

The initial conditions are

[by(t==w)|=1, |ay(t=—=)|=0.

We shall solve Eqs. (25) and (26) for la,(¢) | in
perturbation theory. The solution obtained will be
identical to the solution of the problem based on a
wave function allowing elastic and charge exchange

-

-rB

Mp+m

—

@7
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scattering into any solid angle, as shownin the Ap-
pendix. Into the left-hand side of (26), we substi-
tute the zero-order coefficients a®(t)=a(t=—~ )= 0

and b° ()=b(- )=1 and find, for large values of #,
that

’afvﬂf(t) '2= 2

—i——%ﬂﬁﬂ to-v).  (28)

We can now compute the charge exchange (C.E.)
differential cross section

do C.E.

= [hd,-S,hi dk
=21T E ‘ | 2 /
oQ W inll= 184 | Ty (217) W
4__]_ 2 hA—_S, ht
= (2m)* () —ﬂ——&—éil , (29)
i trinl 1= 1841

where the sum over final and average of initial
states are taken. We should comment at this point
that the relative velocity should be large enough to
justify using the Born approximation. This point
will be discussed again in Sec. IV when we dis-
cuss the comparisons with experimental results.

Our expression for the cross section has the fea-
ture that a shift in the definition of the zero of ener-
gy will not affect the result. This is not the case in
the standard Born approximation for rearrange-
ment collisions because of the nonorthogonality of
initial and final states. The Born term £ 4 is
corrected in our expression for this effect. We
shallnow apply (29) to a simple example to in-
vestigate the corrections to the Born term and to
compare our expression to experiment,

1IV. PROTON-HYDROGEN-ATOM COLLISIONS

Perhaps the simplest application of the theory
just presented is to collisions involving proton and
hydrogen atom. Since in this system there is but
one electron, the full potentials of the nuclei are
felt by the electron (no screening) and there are
no correlation effects due to other electrons. The
initial and final wave functions of the electron are
hydrogenic orbitals which are easy to work with,
The identity of protons may be ignored in the ener-
gy range we are concerned with and negligible er-
ror results., This is because the cross section for
charge exchange is peaked in the forward direc-
tion; hence in practice the protons are distinguish-
able.®

A word of caution concerning application of the
theory to systems like H*+ H, or H'+ He is in or-
der. There is no a priori reason to assume that
the correlation effects of the electrons in such
systems will not greatly affect the charge ex-
change cross sections. Also, excitation of the
“second” electron may have a large effect on the
charge exchange cross section. Extreme caution
should be applied when considering such systems

where correlation effects between electrons are
important when considering charge exchange.

The electron is initially on proton B in a 1s state.
The potential energies are

VB("’B)= -1/7g, (30)
VA(”A)= = 1/7,, (31)
VABR)=1/R=1/|F,-T5 |, (32)

where e =1 and from now on atomic units are used
throughout. The final state will have the electron
in some state (nlm) about proton A where the quan-
tization axis may be considered along l'f,. In the
evaluation of cross section (29) the matrix ele-
ments k};, S;;, and k, appear. To compute h},
and Sy, it is convenient, following Brinkman and
Kramers, to use T, and T as the independent co-

ordinates in the evaluation of the integrals. When
this is done we find, 3 from (20) and (24)
1 - -
S11= Gy ¢¥(C)oy(B), (33)

2 -> -
h?«=(—2};)1 [-<%+ | @ |) ¢*(C) ¢4(B)

+ﬂzjgr w;.*(?f— k) ¢4(B- k)] , (34)
where we have defined
- > m
B-K-K(1-52), (35)
- m -
6=k,<1-M m)—k,, (36)
and the Fourier transform of the wave functions
o(®)= [ e Fo@E)dr . (87)

For hydrogenic orbitals about a nucleus with
charge Z, ®

¢nlm(§)= (2‘”)3/2 Ylm(ﬂp)Fnl(p) ’ (38)

[2n(m—-1-1)1\ 1?2 220+
Fm(P)-( 1r(n+l)! > LY

Y
(P/) 1+1 (P/'Y)a"l
[(p/y>;+1]' : C”"'*((p/y)’u) , (39)

where y=Z/n, Cit} (x) is the Gegenbauer func-

tion, and p is in atomic units.

The matrix element 4} is easily evaluated if one
uses the independent coordinates R and ¥, in the
integral. From (21) we see

1
h;‘i = (2_;_)—9' I dsR(ﬁ —IdsyB l(p((rB) Ia ITBiR I) ’
(40)

which for (z, I =0) states is
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nh= 4%‘(-’2%',;,]; dRR? J;mdxxe"‘L,‘,ﬂ (x)G- 2~/>,
(41)

where L{})(x) is an associated Laguerre function,
We shall be concerned with the initial state, a 1S
state, when dealing with H'+ H, for which we obtain'®

h“ = 1/47’2 . (42)

The matrix element which appears in the charge
exchange cross section
’ A _ A
M= M _hy Sﬂh‘g (43)
= 1S4 1 1- 1S4 1
for transitions 1s -nlm, becomes with the aid of
Egs. (33), (34), and (42),

1
M=[_§ (Cz+ ;15 .\ 517?’) Fi(C)Y1,(026) F1o(B) (;,,1—)17'2

3 - -
+_21?J"%2'k-Fnl(lc_k I)Y’x"m(ﬁ'c'-i)
- . 1
x Fio([B-E|) g |/

[1-(Fu@rR@orEGm) ] - @

The “Born term” of the charge exchange matrix
element, in the treatment by Jackson and Schiff,

MJS = —'_;' (Cz'f‘rl}z)Fnl(C)Yl*m (QC)FIO(B)(ETTIIH

+ 1 dskF (,E—K')Y* (Q"")
_2;2' FZ fm tm \V9C-

XF:o(l-B.‘EI)@‘%TTZ , (45)

is corrected by the term in the denominator of Eq.
(44) which is 1—- | Sy, | and by the term k{; Sy, in
the numerator. We see that as long as C2+ 1/n?
is much larger than 1/27% and the two terms in
M, ¢ do not cancel each other, then the kfj Sy cor-
rection is unimportant. When | Sy 1% is small
compared with 1 the denominator correction term
is unimportant.

To find the charge exchange cross section to a
given state (nlm) as a function of c. m. energy,
1E, and scattering angle 6, we must express B2
and C? in terms of these variables. This can be
done by using Eqgs. (35) and (36) and the conserva-
tion-of-energy relation »= v so that k2 is found in
terms of @, B, and kf. When this is done for equal-
mass particles M ,=Mg=M to lowest order in m/M
we obtain for transitions into the ground state

B®*=C*=E(1+1), (B-C)*=2E(1+cosb)~4E,
(46)

joo

where the last equality is made since the cross
section will be extremely peaked, and

2

E= (M:”m) k2, @7)
2

A= 4(My;: m) sin®i6 . (48)

When E is measured in units of 100 keV then

where V is in atomic units.
The integral over k in Eq. (44) can be evaluated
explicitly for transitions (15)~ (15)% 20

,o 1 (d% = = - »
I'= 57 | 37 #5(I1C-k|) ey (|B-Kk|)
32 ( d% 1

T ) BT [(C-KP+ b P [(B-K)Pral]

_8.109°%L(-B,4;-C,b) ,
T mab 9a db a=1,b=1 (49)
where
- d% 1
=) B [(C-R)+a?][(B-K)? +4?)
21° ((x _yz)uz)
= t. _—
x=[(B - C)2+ (@ +b)?] (B%+a?) (C2+b?), (50)

y=b(B%+a%+a(C¥+b2).

Lovaail

1. Present Result |
2. Jackson 8 Schiff
3. Bassel & Gerjuoy

| I [
15 20 25 30 40

—_—

L
o 5 10

FIG. 2. Comparison of angular distributions at 25-keV
proton energy.
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With a little algebra we find

Myse1s= % ({ -[ 1+ ‘z;z[falm] *(% *%)

arctang % 1
AL

[EQ+1)+1F

1 X 8 2
*8E+ DAEC: D+ 1) '4(E+1)[E(x+1)+1]‘)/[I'W)] (51)

and therefore

o -oont ([ gparnrn) (G D)

arctang /2 } 1

1 A 2
TBE+V[EM+ )+ 1] 4E+D[EM+ 1)+1?)/(1‘ [EQ+ 1)+ 1

We can now see explicitly when the &, Sy, and
[1/(1-|S,]|*]? corrections will be important for
the 1S - 1S transition. We note that for forward
scattering (A=0), h{} S, will give a small contribu-
tion. At E=0, 25 (proton lab energy of 25 keV) the
differential cross section at A= 0 is increased by a
factor of 1. 52 over the Jackson-Schiff result., For

comparison of results on the differential cross sec-

tion at 25-keV proton energy with those of Jackson

and Schiff and Bassel and Gerjuoy, see Fig. 2.
Before the arguments advanced in this paper it

might have been concluded that the dip in Fig. 2

was due to the nonorthogonality of initial and final

state. The argument is as follows: Since |f)

is not orthogonal to |i) we can write

LFY= | IYCL|fy+ [i) G | Fy=| L)Sy+ |i)Sy,

where |l)is perpendicular to ). Therefore in
the Jackson-Schiff Born approximation we could
write

(FIV])=8 L |V |i)+ S (i |V |3)
=S; (L |V |i)+Sy (1/47%) .

Now at the angle at which the dip appears, perhaps
the two terms cancel. Since the dip appears in our
method as well, where we have

Vi) =Su i |V i)
M= L

we conclude that the nonorthogonality is not the
cause for the dip.

To get the total 1S~ 1S cross section we inte-
grate over all angles. Since the cross section is
extremely peaked in the forward direction

J|M|2d@=nm/M)? [°|M [2dx. (53)
0

If we were to neglect A} Sy; and the denominator
corrections, we would obtain the Jackson and Schiff
cross section

2°%x
aﬁqs: 5E(E+ 1)5 (ﬂa(z)) ’ (54)

E'? [E(+ D+
0.6570 )z (52)
where
1 1 2
X= 192 (127+ +E§)
__1 arctang!/? (83 15 2)
96 B’ *E TE?
1 arctanE!/2 8 1
* 96 ——E—sz——<31+E+ Eg) (55)

When the correction terms are taken into account
we find the cross section substantially raised even
for energies past 100 keV (see Fig. 3). At 25 keV
our result is 28% larger than oy, At an energy
of 1 MeV our result is only 1% larger.

To obtain our total cross section we choose a

9_5 T T T T T T T T T T T T
9 -
8- 21 1. Present result
- B 2.Jackson & Schiff —60
T+ 3. Z7%.5. (right hond
i T, ordinate scole)
6 —50
—F
N o ~
o5~ —40 R
s f A
b A4r 3ot |E
()
3 —
- —20
2 -
. -0
I U N S S N T O T
0 20 40 60 80 100 120

ENERGY (keV)

FIG. 3. Charge exchange cross section 15§ —1S in (@d.
Right-hand ordinate is (0 - 0;5)/ ;¢ (%).
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FIG. 4. Total charge exchange cross section (waﬁ).

range of A in which the correction terms are not
negligible (i.e., 0<X<20 for 25 keV), and sub-
tract our differential cross section from that of
Jackson and Schiff in the range, integrate this
difference over the range of A and add this to oy,

By multiplying our ground-state cross section
04s-15 by the ratio determined by Jackson and
Schiff using scaling laws postulated in their paper,
we would expect a reasonable estimate of the total
charge exchange cross section. Figure 4 compares
our calculation with that of Jackson and Schiff and
the data of McClure, 2! Bayfield, % and Gilbody and
Ryding. 2 Below 25 keV the data begin to drop be-
low our calculation. This is owing to the break-
down of the Born approximation. Above 25 keV we
can see that the correction terms to the Jackson-
Schiff cross section help to bring about better
agreement between theory and experiment. Be-
tween 25 and 90 keV our curve is lower than the
data of McClure and Bayfield by about 15%. From
90 keV and above our curve lies on the data points
of McClure and Gilbody and Ryding.

J

oo

V. CONCLUSION

We have presented a method of calculation for
cross sections of rearrangement collisions that in-
cludes the effects of the nonorthogonality of initial
and final states; the nonorthogonality is due to the
fact that the initial and final zero-order Hamilto-
nians are different. The method was applied to the
charge transfer collision P+ H(1S)-H(1S)+P. In
so doing we have justified Jackson and Schiff’s cal-
culation in the sense that the correction effects to
the differential and total cross section, although
significant on the scale of precision of experimental
data, do not affect the magnitudes of shapes greatly.
The cross section 1S - 1S increased in this treat-
ment by 28% at 25-keV proton energy and by 8% at
100 keV, above the Jackson-Schiff result. We
estimate the energy range in which the method is
expected to yield satisfactory results. Using the
Jackson-Schiff scaling laws we find agreement of
the theoretical and the experimentally determined
total cross section,

Charge exchange scattering into higher states
(n1, 1=0, 1, ...) as well as perturbation effects of
the proton on the ionization electrons that come
off in the forward peak are now being studied.
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APPENDIX

I have been a bit cavalier in the Ansalz wave
function (16). We should, until otherwise justified,
consider a two-state wave function of the form

W(Rrt)= e 9,(F5) [dRyb, ailt)e™" B4
+e™ @,(Fa) [d¥yas 0 )W FE, (A1)

where &; and §; are the directions in which E, and
K; point. We impose initial conditions

bya,(=°)=0(8), asq,(-=)=0. (A2)

Such a wave function allows elastic and inelastic
scattering into the charge exchange channel in
which we are interested, in all directions. After
making arguments similar to those made in the text
we obtain an equation of the form (17):

ie""'qﬂ;(-fg)fdﬂt'b.i,n[ (t)e"ii‘ A +ie""'¢f('rA)fd9;df,n; t)e'%s* Ry

= - I8 -7 - = - - '0'/./ 0
= [VAG L)+ VAER)] e 0, (F5) [ 0] by, a3 (0)e i RA+ [V2(F5) + VAR (R)] e, (F0) [ dQfay, a3 t)e™ 2, (a3)

where the prime on the momentum vector refers fo the fact that its direction is in the solid angle Q; ;.. By
taking inner products with e-ik;* Ra¢,(Tp) and e-tks- R'59,(T,) we obtain
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8
idg,0,0)+ie™ Y [dQ B 01 (S (Qp Q)= [dDfay, af ORF; (R, Q) +e™ Yt [aQ]b; op (V1 (R,0)),  (A9)
iby,0,(t)+ie' “* [ dQds,0,0)S1y( @)= [ dD by Oy, Q)+ e “* [ ag, 0 Ohis(@1,9)) ,  (A5)
where
1 - £.e B )
St (Qy,9) = Wfd% d*rp (P;k(l‘A) e ¥y @;i(rgle” iy By ,
1 EpeRY - - oo
h3dQy, Q)= @y j d% 4 d%g @1(ry)e ¥ FB [VB(F5)+ VAB(R)]@sr ) e'Tr Ba (AS6)
r
etc.

We solve Eqs. (A4) and (A5) thus: (i) Solve
using perturbation theory taking b,,o‘(t) =6(R;) and
asq ,(t) =0 on the right-hand side of the equations;
(ii) when solving for a; g (¢), break the integrals
on the left-hand side in tfle following way:

J 46,04 (t) 5,0, @)= thi-0 6)S4(Qy, 21=0)
! .
+ [ aQ)b, g ®)Su(ay, ),

where the prime on the integral sign means that
Q)= 0 should not be included. Now neglect the
primed integrals in solving for a; g (t).

This is a reasonable procedure: "The ay,q (t),
and bi.nj (¢) (24 #0) would be first order in the in-
teraction, and they are multiplied by the small

parameters Sy((2;, ;) and S (R, Q;), respec-
tively, so these terms should not be taken into
account when computing ay, o (¢) to first order in
perturbation theory. Using {his procedure we ob-
tain

id t _’_/lf!."_sﬂ.ﬁi‘; -t (u-v)t
0,027 5, 12 ’

where all symbols are defined in Eq. (28).
Without condition (ii), we would obtain

asg, nf(t)

- _; M@y, 9,=0)- [ Su(@y, Q)R] 9,=0)
’ )
1- [dQSu(Qy, )8, Q)

which is more difficult to calculate.
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