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A theory of rearrangement collisions taking account of the nonorthogonality of initial and final states is

presented. Detailed discussion of the range of validity of the theory is worked out. The method is applied to
proton-hydrogen-atom charge exchange collisions. %e find that at high energy the Jackson-Schiff results are
obtained and that below 100 kev the cross section is raised significantly above the result of Jackson and
Schiff. The new result is in better agreement with experimental results than the calculations based on the
Jackson-Schiff formulation.

I. INTRODUCTION

I shall describe charge exchange collisions of the
type A + {B+e )- (A +e ) +8, where A and B are
cores which are difficult to excite. In the initial
state f, the electron is associated with core Band
(B+e ) has a relative momentum k, {PE= 1) with re-
spect to A. The final state that we shall consider
is that of the electron associated with core A. and
(A+e ) having relative momentum k& with respect
to B.

There have been many different approaches to
ealeulating charge exchange transition probabilities.
In the energy range we are concerned with, relative
velocities of 10 cm/sec or greater, there have
been Born-approximation calculations cax I ied out
by Brinkman and Kramers, by Saha and Basu,

and by Jackson and Schiff. The last of these in-
cluded the intereore potential and on the basis of
their results, Jackson and Schiff claim that its
neglect is not justified. %'ithin the Born approxi-
mation no account has been taken of the nonorthog-
onality of initial and final states. Some attempts
have been made at taking the nonorthogonality into
account by Bassel and Gerjuoy and by Grant and
Shapiro using a distorted-wave approximation. To
first order the distorted-wave results tend asymp-
totically to the Brinkman-Kramers cross section.
Cheshire has also calculated the resonant charge
exchange cross section using a distorted-wave ap-
proximation. MCCarr oil and Salln obtain the same
asymptotic result at large energies as Cheshire.
Cheshire has also calculated the charge exchange
cross section into excited states using the results
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of Jackson and Schiff. ' An impact-parameter
formalism using straight-line trajectories (from
which differential cross sections cannot be ob-
tained) has been employed by NfcCarroll, ' Mit-
tleman, ' and McElroy to obtain the total charge
exchange cross sections into a given final state.

The approach used here is a time-dependent quan-
tum-mechanical formulation with a two-state ap-
proximation. Section II describes the kinematics
of the problem. Section III presents the method and
discusses the range of validity of the model. Sec-
tion IV applies the method to proton-hydrogen-atom
collisions and compares our results to experiments
and previous calculations. Section V is a summary.

II. KINEMATICS

As Bohr pointed out, charge exchange is a
three-body problem whereas excitation is a two-
body problem. Consequently, we must be careful
in our consideration of the kinematics as well as
the potentials between particles. Cores A and 8
have masses M» M~ and coordinates R» R~ with
respect to an inertial frame. The electron has
mass m and position r (see Fig. 1). We define the
vectors R, r„, r~, and R,

Ms+ m y,
A M As

T
(8)

The initial state consists of core A with momen-
tum k„and (B+e) with momentum ks in our inertial
frame. In the c.m. frame, initially A and (B+e)
have relative momentum k, . The internal energy
of (B+e) in the initial state is P. The momentum
and energy of the c.m. are constants of motion and
are trivial to handle. The final state that we con-
sider is (A+e) and B with relative momentum k~
in the c.m. frame and (A+e) has internal energy n.

The kinetic energy of the system is given by

T ——,M& V„+—,M~V&+-, mv2 1 g 1 ~2

It will be useful to find expressions for T in terms
of two different sets of variables, (Ps. , Ps), where

A~

P„„is the momentum of A with respect to (B+e)
and P~ is the momentum of e with respect to B,
and {P„., P„), where P„ is the momentum of B
with respect to (A+e) and P„ is the momentum of
e with respect to A. In order to express T in terms
of (P„„,Ps) we obtain the expressions of Vs, V„,
and v in terms of V„' and vs by using Eqs. (1)-(5)
after they have been differentiated with respect to
time. We find

R=R~- R~,

rg=r -R~,
ra=r -R~,
R, =(1/Mr)(M„R„+MsRs+mr),

(1)

(2)

(3)

(4)

M~g,
M M +mr B

v- Vg +vg ~

We conclude

1 M~(Ms+m) V, ))T=
2 ~

--- Vg+2 mv~,
T

(10)

R' -R mr+M~ R~
A A (5)

mr+Mg R~
M. (8)

These are the relative coordinates between A and
(B+e), and B and (A+e), respectively.

Rc.m.

FIG. 1. Coordinate system.

where M&= M&+M&+m.
It will be convenient to define vectors R& and R~

where we have dropped the c.m. kinetic energy.
Similarly, in terms of V~ and v„we find

1 Ms(M„™)~mfa, «a'
2 M

vg+g mvg ~

T

We now define the eigenfunctions cp, (rs) and

y&(r„) which satisfy the equations

&',,+ V'(rs)
~

e((rs)= P Vc(rs)~

( ff f V (fA)) ff(f A) = ff (lf(f )

where V"(r„)and V (rs) are potential energies of
the electron in core A and B, respectively.

III. METHOD

When the Hamiltonian is expressed in terms of
(P„„,Ps} or (P„,P„)and we quantize the theory
and make the operator replacements

1~
g A
—. V~. P~, and —. V P

A Fg

or
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1-
+gg~ Pgs and . +~ ~ pB i FA ~A

we obtain the expression

v',,+ v"(F„)+ v'(F, )+ v"'(R)

We used the expression in E«I. (15) for the Hamil-
tonian when we operated on the term with coeffi-
cient b, (t) and E«I. (16) on the a/(t) term.

Now in the limit as )Rl ~, when t + we find
that a(s ~) = 0; this is due to our choice of exponen-
tial t dependence and

or

3!=—
2

v„. —
2

v„+v"(F„)+v (r )+v" (R),

(15)

where

M„(M««+m) M««(M~+m)

for the Hamiltonian operator depending upon which
set of independent variables we choose.

So far we have not made any approximations.
The Hamiltonian operator expressions are exact.
Expanding the wave function in a complete set of
basis functions which satisfy the initial conditions
that at t = -~, we have the state

2
y(t ~) ~ (r )e-«f«'R1 e ««&A« IR-g«)«

will give the exact answer. We shall make a two-
state approximation which consists of ignoring all
states except the initial state and the particular
final state of interest. A discussion of when such
an approximation is justified will be given in what
follows. We should actually consider a two-state
wave function of the form given in the Appendix.
However, as is shown in the Appendix the result
is not changed by our approximation. We take our
Ansatz wave function of the form

y(Q F t} b (t) p (r }e «I«'R1 e ««st«P«/Rll«««

+a«(t) «I«/(F„) e«I/'Rl«e «« ''//'"/'«(16)

where R„' and R««are given in E«ls. (5) and {6},re-
spectively, and a/(t) and b/(t) are coefficients

We now substitute the wave function into the
Schrodinger equation to obtain

ib«(t) «p«(F««) e "«'"/ e '«+ta/{t) «I«/(F„) e"/'"Re '"'

= [V"(F„)+ V" (5)]b, (t) y«(FR) e-«~«'R&e-««

+[V (r««)+V (R)]a/{t)«/«(«)e / Re

(1V)

where we have let

««=P+k«/2il«, v= 0+k//2i«/.

lim V" (R)=0, lim V"(y„)«(z }=0,
I Bl~ lBl

lim VR(ys) «///(r„) = 0.
lB I ~

The wave' function in E«I. (16) is constructed so
that the electron is carried with the moving cores
A and B at infinite nuclear separation so that the
difficulty pointed by Thorson'3 does not arise.

Before we continue with the method to obtain our
results, we know enough about the model to dis-
cuss in what situations it may be applied. We are
concerned with collisions of atoms, one of which
(8+a) has an electron that is more loosely bound
than any of the rest (if there is more than one) so
that, except for the "active*' electron, the atom may
be considered as a core. Examples are hydrogen
and sodium atoms. Atom A must also be a core
with respect to state «I«/(F„).

We are interested in finding the charge exchange
probability ia/(~) I in a particular state y/(F„). To
do so by this method, the probability of finding dif-
ferent excited states «(F««), excited core states
[when more than one electron in (8+e)] and differ-
ent states «/««{F„), must be small compared to the
probability of elastic scattering. Also, no other
channels besides the elastic one should couple
strongly with y/(F„). If these conditions are not
met, then our two-state approximation is not valid.

Criteria governing the collision energy must also
be met if we wish to use this model. The relative
momentum of A and (B+e), and (A+ a) and 8 should
remain more or less constant for trajectories which
contribute heavily to the charge exchange cross
section. That is, we require

k, {««,[v"(F„)+ v"'(R)]}'/',

k, & {t, [v'(F,) + v"'(R)]}"'

for trajectories which contribute to charge ex-
change. ' In what follows we shall substitute I «t&}

and (g«} for projections onto charge transfer Rnd
elastic channels of [g"}.This is justified when
ka & 1 and M(V}a/k ( 1, that is, when the criteria
for the validity of the Born approximation are
satisfied. These conditions are satisfied in the
collisions of light atoms A and 8 when the
relative kinetic energy & 10 keV.
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If the relative kinetic energy is above this limit
and the other conditions are met, we expect that
the method will work.

Taking the inner product (integral over r„and
rs) of «f««(r««) e « "«'"» with y«(r«)) e «~«'"& we obtain

Q) ~Q

«f«f(r««)e' «'"&«ff«(rs) e '"«' &«f r„d3«s

p ( . ~ ~, Mq
I4«(rs)I expI-i(k«-kI) ~

M&+m

x
I
e" «« "~«f'y„=(2r)353(k

The integral over r~ is always finite. We have
chosen to normalize in an infinite volume which is

why we obtained the Dirac 5 function rather than
the Kronecker p. The 5 function is handled by tak-
ing a narrow wave packet about k,' in the usual fash-
ion.

We multiply Eq. (17) by y'f(r««) e" «'"&e«"«and

integrate over r„and rs (which is equivalent to in-
tegrating over xs and R„') to deduce

i [b«(t)+«'«f(f) S«f e""""]= b«(f) h««+af(t) f««f
e"""".

(16)

We multiply Eq. (17) similarly, by pre(r„) e «~f'"««

xe'"' and integrate over r„and r~ to deduce

i[««f(f)+f)«(f)Sf«e """"]=«x (f)i'«+f), (t)h", 8 ""-""

(19)
where

tf m
Sf, =S,f =, ,~ d r„yp(r„)exp -i kf

I

1—
(2s) M„+m)

3 mx d rs y«(r««) exp i kf-k, 1- r,
M +m)

(20)

I«««(2 )3
d ' ft [V" (R) + d 'rs ((()«(r««)((«)«(r««) V"(r«« —R)] (21)

10

Puff (2 )Q
d ft [V" (R) + d r„(((()r«„)«f««(r„) V (r„-R)]

k,r--, dr„dr d (r )exp —i kr —k, ( — re} [r (r„—r ) re(r )]dr(r„)
(2««) M&+m

m
& exp i k& 1— (22)M„+m

and

hf, =
() d r„d red+(r„) exp —i kf 1 — —k, r„[V" (r„- r««)+ V"(r„)](I()«(rs)

(2««) M~+ m

mx exp i k&-k& 1- ~ re . (24)
M&+ m

Rearranging Eqs. (18) and (19), we obtain

«(1 —Isf« I
)b«(~)= (I««"«-s«f@f«)&«(f)

+ (h «f
—S«fh ff) e " af(t) (25)

and

a two-state Ansatz wave function, the two states
not being orthogonal, and the time-dependent
Schrodinger equation. It is the form of the S and
f«'s that is determined by the Hamiltol)(ian and the
expressions «f««(r«))e '« ~e, «fff(r„)e f

The initial conditions are

i(1 —Isf« I Qf(t) = (hff —sf«h, f)af(t) If««(f= — ) I
=1, Ief(f= — ) I

=0. (27)

+ (hf«- Sf«h««)e
" ' b«(t) . (26)

The form of these equations is determined, not
by the specific model but by the fact that we used

We shall solve Eqs. (25) and (26) for l««f(&) I in
perturbation theory. The solution obtained will be
identical to the solution of the problem based on a
wave function allowing elastic and charge exchange
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scattering into any solid angle, as shown in the Ap-
pendix. Into the left-hand side of (25), we substi-
tute the zero-order coefficients a (f) = jj(t=; ~)= 0
and f»0(f)=b(-~)=1 and find, for large values of f,
that

We can now compute the charge exchange (C.E. )
differential cross section

d(7 Q ijgj Sf«P»jj»j deaf 1 ~k

(TQ «j» «y» 1 !Byj ! dll (27«)

(2v)4~( )8 P R n jj (29)
kg (]) (~) 1—

t $~] )

where the sum over final and average of initial
states are taken. Vfe should comment at this point
that the relative velocity should be large enough to
justify using the Born ayproximation. This point
will be discussed again in Sec. IV when me dis-
cuss the comparisons with experimental results.

Our expression for the cross section has the fea-
ture that R shift in the definition. of the zero of ener-
gy mill not affect the result. This is not the case in
the standard Born approximation for xearrange-
ment collisions because of the nonorthogonality of
initial and final states. The Born term A. &, is
corrected in our expression for this effect. We
shall now apply (29) to a simple example to in-
vestigate the corrections to the Born term and to
compare our expression to expex"iment.

IV. PROTON-HYDROGEN-ATOM COLLISIONS

Perhaps the simplest application of the theoxy
just presented is to collisions involving proton and

hydrogen atom. Since in this system there is but
one electron, the full potentials of the nuclei are
felt by the electron (no screening) and there are
no correlation effects due to other electrons. The
initial and final wave functions of the electron are
hydrogenlc orbitals which Rx'8 8Rsy to wox'k with.
The identity of protons may be ignored in the ener-
gy ra~ge me are concerned with and negligible er-
ror results. This is because the cross section for
charge exchange is peaked in the forwaxd direc-
tion; hence in practice the protons are distinguish-
able.

A word of caution concerning application, of the
theory to systems like H'+ Ha or H'+ He is in or-
der. There is no c priori reason to assume that
the correlation effects of the electx'ons in such
systems wi.ll not greatly affect the charge ex-
change cross sections. Also, excitation of the
"second" electron may have a large effect on the
charge exchange cross section. Extreme caution
should be applied when considering such systems

mhere correlation effects between electrons are
important when considering charge exchange.

The electron is ioitially on proton 9 in a 1s state.
The potential energies are

V (j'j») = —I/r~,

I'"(&g)= - I/&g,

V"s(R)= 1/R= I/Ir~- rs I

(30)

(31)

(32}

mhere e = 1 and from nom on atomic units are used
throughout. The final state mill have the electron
in some state (nfm) about proton A where the quan-
tization axis may be considered along k&. In the
evaluation of cross section (29) the matrix ele-
ments k&„S&„and jg«appear. To compute jg&,

and 9&„ it is convenient, foQoming Brinkman and
Kramersq to use rg Rnd x'3 Rs the independent co-
ordinates in the evaluation of the integrals. %hen
this is done we find, ~ from (20}and (24)

3gj=(2 )s e,"(C)«jj(I~),

ca
3 — —+

I
&

I e'(c) v'j(~)~j (2v)', 2

(33)

+ ~ s «o*(&-k)ej(Ii-k), (34)2~'

mhere me have defined

(35)

2n(n-I- I)! '" 2'«'"»I!
njC ) jj(n I)! 3/»»

(p/y)' ~„j (p/y)'-1
[(~/ )R I]j+3 n-j-j

(p/ )I 1 k ( )

where y= Z/n, C„".jj, (x) is the Qegenbauer func-
tion, and p is in atomic units.

The matrix element h&"& is easily evaluated if one
uses the independent coordinates 5 and rs in the
integral. From (21) we see

kn=
k

kn -„-' «k Iki(" ) I
( n ()

I'3 1, 3 3 1
2' FJ +

(40)

which for (n, I = 0) states is

5= kg (1—
)

—kg,

and the Fourier transform of the wave functions

V'(p) = Js"'m(r)d'~ . (3&)

For hydrogenic orbitals about a nucleus mith
chRx'ge Zy

m. j (p)= (2»j)"' Fj (@j)&.j9),
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(e —1)(,' d g

~( ))I I
' dRR dree 'I ~

g (x) ——2y
+Q "2' n-i

(41)

where L,„&(s)is an associated La0)
We shall be con

cia e Laguerre function.
a e concerned with the initial state, a lS

state, when dealing with O' O n+, for which we obtain

Pi«= 1/4s (42)

The matrix element which a ears
exchange cge cross section.

c appears in the charge

(43)

for txansitions Is -n/m becofor ' - m, ecomes with the aid of
qs. ( ), ($4), and (42),

3 1 11 +~+2 g F)C F~AgFgom c I (4&)1/8

"d'y
+ 2y bz &.i(lc-k l)&5m(ilc4)

where the last equality is Iliad
t0 ~

m e since the cross
sec ion. will be extremely peaked, and

(46)

WhenE 'en E is measured in unit of 100s keg then

E QR
y

where V is in atomic unit
The integral over k in E
l ~ 0

m g. (44) can be evaluated
xp xcltly for transitions (18)~ (18

q*„(lc-k l)(p„( l8-k l)

32 "de l
[(C-k)'+b']'[(5- f)' s']'

6 1 &'I (- 8, s; —C, b)
m gb &a&b

x E)0(l8-k l) (4m)'" J

&n~(C) FF (inc)F m(B) (44m o N (4&)1/&

The "Born term" of the chax e ex
n, in e treatment by Jackson and 8 biff

1„=-- c +& z„,(c)r~„(n,)z (B)rm & &0 (4s)&/&

kl cf, z„,( l
c —k

l ) y, (n;;)

b' [(C-R)'+ s'] [{5-Q'+b*]

3 I/I
g g/ g al ctan-y)

&= [(8—C) + (a+b) ] (B +a )(C +b ),

y =b(B +a~)+a(CI+b~).

IO.

(46)~E„(l8-k l) )1/2

is corrected by the termy erm in the denominato f E .
4j which is I-—IS« I and by the term h" S in

x' 0 q.

e a aslon asC~t. W tht g
is much larger than 1/2s

o not cancel each other, then the h" Sn e «S&, cor-
r an. When ISra . Wh g] ) is small

is unimportant.
i e denominator correction term

To find the charge exchan e cxc nge cross section to a

~E, and scattering an ~e 8
. enexgy,

in terms of these vari bl Th c
done hy using Egs (26)
tion-of-ener l

and (I) and the conserva-
re a ion u = p so that ky ls found in

, an, . When this is dono e for equal-

~ =M to lowest order in m
we obtain for transitio t' ns in o the ground state

in m/M

B =C =E(1+X)+ ), (8 —C) =2E(1+cosa) —4E
(46)

I.O =

IO—

-2
I0 .—

IO .:
0 5

I I

5 IO l5 20 25 30 40

FIG. 2. Comparison ofn o angu1ar distributions at 25-keV
proton energy.
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( PE

=64M
I

— 1+ 2s [E(X 1) 1+ +, &2 4 E E(X+ 1 +

and therefore

With a littl' tie algebra we find

32m (
18"18 (2 )3 I

+ 32*[ (+1)~ l~ ~ I+ + 2 4& E"'
1

[E(X+1)+ 1]

8(E+ 1) [E(X+ 1)+ 1 4 + +4( 1)[ ( 1) 1]' I+ + ) m (1+1)+l]~ I

(51)

8(E+ 1) [E( +1) 1+ + lj 4(E+ 1) [E(&+ 1)+ 1] I ++ +1 i [E(X+1)+1])
(52)

(f1v li&=sf&(1 I
v li &+ s~, (i

I
v

= &s, &1
I

v li & +3'yc (1/4~')

Now at the an le
the

g e at which the d' p pp p

thod "w 11

"' iS t
e, where we h ave

xn our

&f lv li& -5'i)(i Iv li&
1- ISA) I'

we conclude that th
cause for the d'

e nonortho gonality is not the

To get the total 1S-
11 1

- 1S cross s
ang es. Since the, ;.th. f. .d d-e r irection

M — f (Ml dx.d 0 = ~ (m/M )' '
lf we were to ne 1 t

(53)

e t « && and the deno ' tneg ect h" S
'

ns, we would obtain the
manator

cross section
ann the Jackson and Schiff

gs 2X
18 is 5E(E 1)5 (+ 0) (54)

We can now see ex li 'ee explicitly when the h„, 8 „and
1 s~, I')]' corrections wi

nsx ion. We note
or

tt i (X= 0' h"
b . = . 'proton lab ention. AtE=O 25 '
s ' =',, «S&, will 'vgive a small cont 'b-n rl u-

ifferential cross section at X=
energy of 25 keV) th e

factor of 1.52 ovover the Jackson-
= 0 is increased bya

comparison of results on the ' cr
son-Schiff result F

tion at 25-keV- e proton ener w'
e differential crcross sec-

and Schiff and Bn assel and Ger'uo
rgy with those of Jackac son
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V. CONCI. USION

We have presented a method of calculation for
cross sections of rearrangement collisions that in-
cludes the effects of the nonorthogonality of initial
and final states; the nonorthogonality is due to the
fact that the initial and final zero-order Hamilto-
nians are different. The method was applied to the
charge transfer collision P+H(IS)-H(18)+I&. In
so doing we have justified Jackson and Schiff's cal-
culation in the sense that the correction effects to
the differential and total cross section, although
significant on the scale of precision of experimental
data, do not affect the magnitudes of shapes greatly.
The cross section 18 - 18 increased in this treat-
ment by 28% at 25-keV proton energy and by 8% at
100 keV, above the Jackson-Schif'f result. We
estimate the energy range in which the method is
expected to yield satisfactory results. Using the
Jackson-Schiff scaling laws we find agreement of
the theoretical and the experimentally determined
total cross section.

Charge exchange scattering into higher states
(nl, l = 0, 1, . . . ) as well as perturbation effects of
the proton on the ionization electrons that come
off in the forward peak are now being studied.

range of X in which the correction, terms are not
negligible (i. e. , 0 & X & 20 for 25 keV), and sub-
tract our differential cross section from that of
Jackson and Schiff in the range, integrate this
difference over the range of X and add this to 0'».

By multiplying our ground-state cross section
o ~~ ~z by the ratio determined by Jackson and
Schiff using scaling laws postulated in their paper,
we would expect a reasonable estimate of the total
charge exchange cross section. Figure 4 compares
our calculation with that of Jackson and Schiff and
the data of McClure, ' Bayfield, and Gilbody and

Ryding. Below 25 keV the data begin to drop be-
low our calculation. This is owing to the break-
down of the Born approximation. Above 25 keV we
can see that the correction terms to the Jackson-
Schiff cross section help to bring about better
agreement between theory and experiment. Be-
tween 25 and 90 keV our curve is lower than the
data of McClure and Hayfield by about 15%. From
90 keV and above our curve lies on the data points
of McClure and Gilbody and Ryding.
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APPENDIX

I have been a bit cavalier in the Ansi'~~ wave
function (16). We should, until otherwise justified,
consider a two-state wave function of the form

4(Rt't)= e " p~(rs) f de&& o~(t)e

+e "'qq(r~) fdAqat „(t)e'~I' s, (Al)

where Aq and 0& are the directions in which k& and

k~ point. We impose initial conditions

(A2)

Such a wave function allows elastic and inelastic
scattering into the charge exchange channel in
which we are interested, in all directions. After
making arguments similar to those made in the text
we obtain an equation of the form (17):

te pg(rs) fdA) bg, o)'(t)8 1 ++'te pt(tg) fd+yay, ni (t)e'
/

= [V"(r~)+V (R)]e "'y~(rs)fdic, '5~ o&(t)e 'I'"&+ [V (r ) sV+" (IT)]e '"'Pq(r~)fdfiqat „ (tt)e'0'"' s& (A8)

where the prime on the momentum vector refers to the fact that its direction is in the solid angle Q,' z. By
taking inner products with e-~&g ' Ray, (rs) and e-&&y ~ R'syz(r„) we obtain
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iat, nt(t)+ie '" "fdA,'b( „,(t)S«(Qt. A()= fdQtat, oz(t)i'(~q(Qt Qt)+e "" "fdA»b( o('(t)i'(f;(A, A(), (A4)

e

ib(, „,(t)+ie"" "jdQt('(t n(t)S(q(Q(Q&)= fdA(b( n'(t)h(((Ai, A,')+e"" "fdAqaq (r(t)t»(q(Q(, QI), (A5)

where

sf &}&}&D'}=
}& }

fd'x„d r & & }r„}& '
&

'
&&(r )e

»&

h&t(A&, Qt)=(2 o d r„d rs(t(t(r„)e '"s [V (rs)+ V" (R)](t(&(r„)e' t "s, (A6)

etc.
We solve Eqs. (A4) and (A5) thus: (i) Solve

using perturbation theory taking b, „(t)= 6(A() and

a& „(t)= 0 on the right-hand side of the equations;
(ii) when solving for at „(t), break the integrals
on the left-hand side in tIIe following way:

f dAP(. n,'(t) S„(A A') =b(".n'=o(t)Sn(A~& Q(= 0)

I ~

+ f dQ' b,(n&(t)S«(Af, Q', ),

parameters S ((tQ ,(At) and S«(At, Q, ), respec-
tively, so these terms should not be taken into
account when computing a& „(t) to first order in
perturbation theory. Using (his procedure we ob-
tain

~ ~ (gq f5 ~Sf ~$4
&

f(u v)t

where all symbols are defined in Eq. (28).
Without condition (ii), we would obtain

where the prime on the integral sign means that
Al& = 0 should not be included. Now neglect the
primed integrals in solving for at, n (t).f

This is a reasonable procedure: The a( „(t),
and b(, „& (t) (Q(((0) would be first order in the in-
teraction, and they are multiplied by the small

aq „(t)

bf)(Af A( 0) —f dQ', Sf((Af A()b(((Q( Q( ——())

l —f d A', St((A„A,')S„(A„A,)

which is more difficult to calculate.
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