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New measurements of the differential collision cross section for Kr + Kr are presented and, together
with previously published data, are analyzed in terms of a Morse-Spline-van der Waals interatomic
potential function. By means of a least-squares fitting procedure a potential is obtained which best
describes the measurements. This potential also predicts second virial coefficients and vibrational-level
spacings that agree well with experiment. Some of the difficulties that arise in attempting the
inversion of scattering data in this and similar systems are discussed. Finally, we present a comparison

with some low-tempereture solid-state data.

I. INTRODUCTION

Recently, under the crossfire of molecular
beams,!*? spectroscopy,® and the reanalysis of
bulk properties in terms of flexible multiparam-
eter potential functions,*”® the long-standing prob-
lem of the realistic description of the ground-
state interaction of two argon atoms has been
essentially solved. Small discrepancies obviously
remain, but we now appear to be almost at the
point where even the nature of many-body forces
in condensed phases can be discussed quantita-
tively.

It is then logical and useful to apply the same
techniques to the next-heavier noble gas, krypton.
There are at least four reasons for carrying out
such a study. First, the availability of a radio-
active Kr isotope has generated a series of data
referring to experiments which are particular to
this gas.”"® Second, the precise knowledge of the
interatomic forces in krypton will allow a check
on the validity of combination rules for interac-
tions between unlike molecules.® Third, it may
also allow for the determination of how strictly
the principle of corresponding states holds, %!
and finally, the important problem of the three-
body-forces contribution to condensed-phase prop-
erties needs to be examined in more than the one
system in which it has been studied so far—
argon.®'®

In 1971, working along the same lines as for
Ar,, Bobetic'? produced a potential for the Kr,

joo

dimer.!®* As with the Bobetic-Barker potential for
Ar,, the Bobetic Kr, potential was shown to de-
scribe inadequately the differential collision cross
sections for the Kr + Kr system that were first
measured by Cavallini ef al.'* Moreover, a recent
calculation’® of the lattice constant of solid Kr at
high temperatures confirms the inadequacy of
Bobetic’s Kr, potential. Differential collision
cross sections for the Kr +Kr system were also
obtained at one energy by Schafer, Siska, and
Lee'® and the data fitted by a potential of the
Morse-Spline-van der Waals (MSV) form. An
improved analysis of the same data produced a
new set of MSV parameters that are quoted by
Docken and Schafer!” in their recent study of the
spectroscopic levels of the Kr, dimer. However,
it appears that neither of these MSV potentials is
entirely satisfactory when solid-state properties
are considered. Accordingly, in an attempt to
resolve this problem, we have extended the dif-
ferential collision cross-section measurements
for Kr +Kr to a lower energy than those in pre-
viously published results.'* A potential for Kr,
is obtained by fitting the experimental data to
cross sections calculated with a MSV potential
function along with the added constraint provided
by the spacings of the first few vibrational levels
of the Kr, dimer. Our potential is compared with
other existing Kr, potentials. Finally, we com-
pare experimental second virial coefficient and
solid-state properties with values calculated
starting from our potential.
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II. EXPERIMENTAL

The experimental setup has been previously de-
scribed.” It makes use of a crossed out-of-plane
beam geometry with an angular resolution of about
0.5°. The relative energies of collision of the
three series of data used to obtain the potential
are reported in Table I, along with the Mach num-
ber of the supersonic primary beam and the tem-
perature of the secondary multichannel beam
source. The resulting velocity resolution full
width at half-maximum (FWHM) is, in any case,
about 15%. No measurements have been per-
formed at lower energies because of suspected
primary-beam condensation.

Beam velocities and Mach numbers have been
determined by beam analysis with a slotted-disk
velocity selector. A leveling off of a Mach-num-
ber-versus-beam-parameters curve (increasing
pressure and decreasing stagnation temperature)
has been taken as indication of beam condensation.

III. ANALYSIS

The experimental results are compared in the
LAB system with the calculated cross sections as
outlined below.

Following Munn and Smith,'® and adopting their
notation, we calculate numerically the approxi-
mate “low-resolution” scattering amplitudes

72 @F +1f~OF + 1 f*(n= )+ 1f~(n-0),

where the contribution from the 7 - 6 angle ac-
counts for the lack of mass selectivity of our
detector. We then convert the cross section to the
LAB system and perform the averaging over the
relative velocity, which is constructed using 81
different points. Finally, at small angles, we
take into account the loss in resolution due to the
non-negligible detector height (detector dimen-
sions 0.3x3.0 mm; detector-scattering center
distance 55 mm). The present data were found
to be inappropriate (see Sec. V) for a direct in-
version procedure, mainly because the damping
and shifting of the rainbow oscillations by the
finite velocity resolution was too large.

TABLE I, E is the relative energy of collision; % is
Boltzmann’s constant; M is the primary-beam Mach
number; and T is the secondary-beam source tempera-
ture,

E/k T
(K) M (K)
916 13.5 91
760 18.7 91
613 20.1 85

|oo

We then decided to adopt a fitting procedure,
but, in order to save some advantages of the in-
version method, we deduced the starting potential
for the fit using inversion techniques.

We started from the measured positions of the
rainbow oscillations, applied a correction due to
the finite resolution, and determined the deflec-
tion function as described in Ref. 20. Then the
potential was obtained by direct integration over
the deflection function.?® Thus the range of the
potential to which the data are sensitive and a
well-behaved starting potential are obtained. In
order to determine finer details of the potential
and to account for an exact averaging process, the
points obtained by inversion were fitted to an
analytical potential as follows:

Vir)= €fulx, B),

0<7r<r,

3
V)= a2, 7, <r<r, with z=(r—r))/(r,-7)

k=0
Vir)==Cgr °=Cer™®, r,<r<w
fu=e2B0) 226800 - yoy/y

€ is the potential minimum and 7, is the inter-
nuclear distance corresponding to the minimum.
This form of the potential has been chosen in
order to decouple the repulsive part and the mini-
mum from the asymptotic part of the potential,
which can be varied independently.?!

The long-range attraction is described by a disper-
sion potential including dipole -dipole and dipole-
quadrupole terms. The well and the short-range
repulsion are represented by a Morse potential.
The different parts are connected by a cubic
spline function

Vir) =i ay2* with z=(r -7,)/(r,- 7).

R=0

The coefficients a, are completely determined by
the two end points of the interval and the first
derivatives at these points. The special require-
ments of this type of spline function provide a
continuous connection with a continuous first and
nonzero second derivative at the connection points.

The final adjustment of the free parameters was
then performed using a nonlinear least-squares
procedure®? to find the minimum of

Ny \
Xp = Z (13 = Cp ISH/ALRP

i=1

k is the index of a single group of data (e.g., the
differential cross sections belonging to one energy)
with &, data points. I is the measured and I3
the calculated data point in the LAB system for

obs

each measured value. A3} is the error of the
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reference point. C, is an additional free parame-
ter employed in order to adjust the absolute value
of the cross section. The criterion that a poten-
tial fits the data is that

n
2 _ 2
Xtot = E : Xr
R=1

is minimal, where 7 is the number of data sets.
N,=23, 24, and 22 for k=1, 2, and 3, respectively.

It should be noted that the significance of x? as
a statistical measure of the compatibility between
a model and a data set is only valid if the data
represent a complete statistical distribution or if
the model fully describes the physics. Unfortu-
nately, in almost all physical applications, both
of these conditions break down. Therefore the x?
values should be considered as a quantitative
measure to distinguish between models. In addi-
tion, they provide the possibility of extracting
error bounds for the best-fit parameters.

IV. RESULTS

The procedure described above was applied to
three different sets of data. 2=1, 2, and 3 cor-
respond to relative energies of collision E/k
=916, 760, and 613 K, respectively. The parame-
ter C4 was fixed at the value C,/ #=908000 K A®,
in order to agree with the most recent theoretical
estimate.?® After some preliminary experimenta-
tion, the connection points were fixed at »,=4.5 A
and 7,=5.0 A. The parameters €, 7,, C=C,/C,,
and the normalization constant C, were left free
in the minimization procedure. Unfortunately, the
x?> were found to be energy dependent such that the
lowest energy produced the largest x>. However,
condensation of the primary beam, or other ener-
gy-dependent experimental errors, such as over-
estimation of energy resolution, could not be
excluded. We account for this by giving a greater
weight to the data at higher energies. The relative
importance of the measurements has been esti-
mated by comparing the amplitude of the calcu-
lated cross-section oscillations with the measured
ones at the three different energies.

The parameter 3 was fixed at the values 6.2
and 6.3, which were indicated as the most likely
values to give agreement with the slope of the
level spacings versus level number plot of the
spectroscopy data recently obtained by Tanaka.?*
Potential Nos. 2 and 3 of Table II were so ob-
tained. Afterwards all parameters were kept con-
stant and B changed to 6.1 and 6.4, obtaining po-
tential Nos. 1 and 4. If a Morse potential is
assumed in the bowl (as we did), the slope is
simply related to 3, but one has to keep in mind
that only for the first few levels can one approxi-

TABLE II. Results of the fitting of scattering and
virial data. xﬁ'z. 5 are the x? values corresponding to
the three experimental energies: 1=916 K, 2=760 K,
and 3=613 K. x,,3=x+ X3+ 3. X is the x? value ob-
tained by comparison with virial-coefficient data for Kr
obtained from Ref. 25. X0t = X}io43 + Xa

Potential €/k K) 7, @A) X B B Bz B e

Ref. 12 197.7  4.01 311 186 82 579 45 624

Ref, 17 1988 4,11 71 49 38 158 28 186

Present 1 200 4.03 46 53 49 148 30 178
B=6.1

Present 2 200 4,03 47 49 48 144 13 157
B=6.2

Present 3 200 4,03 49 47 48 144 18 162
B=6.3

Present 4 200 4.03 53 46 48 147 43 190
B=6.4

Solid state 200 4,012 61 52 49 162 19 181

mate the potential with a Morse form.

The results are summarized in Table II along
with the results of a fit to the virial coefficient
data for Kr.?® In the same table, corresponding
numbers are reported for the Kr potentials pro-
posed by Bobetic'? and Schafer.!” The x? value for
an “adequate” model and a “good” set of data
should be the expectation value; that is, the num-
ber of degrees of freedom (equal to the number of
data points minus the number of free parameters).

INTENSITY 3 [arb. units] 8§

-

% 0 1ap 20 [deq]

FIG. 1. Differential-collision cross-section data for
Kr compared with calculations (full line) using potential
No. 3 obtained with the best-fit procedure described in
the text (potential No. 2 gives indistinguishable results).
E/k =0, 916 K; V, 760 K; O, 613 K.
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TABLE OI. Potential parameters for potential No. 2
and 3.

Parameter Potential No 2 Potential No 3
Ce/k (K A9 908 000 908 000
Cy/Cq 10.922 10,922
e/k (K) 2004 2004
7 R) 4.03+0.04 4.03+0.04
7 R) 4.5 4.5

r, () 5.0 5.0

B 6.2 6.3

a, (K) -147.01 -145.84
a, K &) 76.856 78.034
a, K A?) 18,172 ~24.022
ag K &%) 4.8747 8.3822

The x? values of Table II are still too high. This
could be due to the inflexibility of the model or
the incompleteness of the data set (for instance
errors in the energy calibration and/or the aver-
aging procedure). Nevertheless, it is possible to
derive error bounds for the parameters by re-
normalizing the x? to the expectation values. Fi-
gure 1 displays in graphical form some of the re-
sults. Potential parameters for the two best po-
tentials (Nos. 2 and 3) are listed in Table III.

V. DISCUSSION
A. Possibility of an Inversion Procedure

Since an inversion procedure®°:?¢+?” ig the most
elegant tool for determining the potential from the
measured cross section, we first investigated
this possibility. At each of the three energies
two or three (at the lowest energy) rainbow maxi-
ma were resolved. Due to the finite-velocity re-
solution (15% FWHM) the positions of these ex-
trema were shifted and the amplitude of the oscil-

4 5 r 6A [A] 7

(K]
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-100]
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1] 108
k -
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_m k
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FIG. 2. Present potential No. 3 for Kr (full line) com-
pared with potential of Ref. 17 (broken line) and Ref. 12
(dash-dotted line).

lations damped. This could be verified by trial
calculations performed using the averaging proce-
dure described above. The procedure of Ref. 20
needs as input information a well-resolved rain-
bow structure (at least five extrema, this condition
being met by the present data), the rapid oscilla-
tions, and some additional requirements for the
continuity of the deflection function. If the rapid
oscillations are not resolved, some other informa-
tion can be used, such as the amplitudes of the
rainbow oscillations or the large-angle scatter-
ing.?®+?® Ag can be seen from Figs. 1 and 2, the
present data can only be inverted if the amplitudes
of the rainbow extrema, (i.e., the cross section
itself) are used as input. Nearly the same criteria
hold for other inversion procedures.?®'*” For
example, in Ref. 26 adjusting the poles in the
complex-momentum plane requires a comparison
with the cross-section data themselves.?® In all
cases the cross sections should not be affected by
any kind of an averaging process. Since the decon-
volution of our data seems to be impossible, there
remains the possibility of performing the averaging
of the cross section directly, but such a procedure
requires the generation of phase shifts at different
energies from the data at one energy, and hence
all the advantages of an inversion process are

lost.

B. Scattering data

As can be seen in Table II both our best-fit po-
tential and the potential of Ref. 17 describe the
scattering data quite well. Not unexpectedly, the
scattering results are rather insensitive to 7,,.
However, it is disappointing that both the present
minimalization procedure and that of Schafer et al.
should produce 7, values that differ by as much
as 2%. The fact that, this difference notwithstand-
ing, the two potentials, which are compared in
Fig. 2, give very similar differential collision
cross sections is, however, not surprising, and
is in agreement with the findings of Boyle,*! who
recently analyzed the reliability of potentials
extracted from rainbow data. A useful comple-
ment to the analysis of Boyle has been recently
reported by Farrar et al.* in a paper in which
they show the use of wide-angle scattering and/or
virial-coefficient data for the resolution of such
ambiguities. In the present work we have chosen
to constrain our fit with the spectroscopic prop-
erties of the dimer. In Fig. 2 the potential of Ref.
12 is also reported. The value of 7, is the same
as for our potential, but the outer attractive wall
has quite a different slope. Therefore, scattering
efficiently discriminates between the two (see
Table II and Ref. 14).
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C. Spectroscopy

Recently, Tanaka®* has extended the uv spectro-
scopy measurements already performed on argon®
to Kr dimers. As specified in Sec. IV., we
have already used part of the information con-
tained in the spectroscopy results as a constraint
to our potential model. Nevertheless, since the
slope of the level-spacing-versus-vibrational-
quantum-number plot (which gives 8 for our model)
is not the only information contained in the spec-
troscopic data, it is worthwhile to perform a di-
rect comparison of the experimental-level spac-
ings with the values calculated for ®*Kr ®Kr from
our potential. Sixteen bound levels were found in
this way, and their spacings are reported in
Table IV.

Figure 3 compares the experimental vibrational
spacings with those calculated by Docken and
Schafer' and with the ones calculated with our
potential No. 3. The agreement between the pre-
dictions of both potentials with experimental data
is rather good. The agreement between the two
sets of predictions notwithstanding, the differences
between the two potentials are once again not sur-
prising, since the level spacings are related only
to the width of the potential well. As can be seen
in Fig. 2, the well widths of the two potentials are
very similar, particularly for the deeper levels.
When spectroscopists succeed in resolving the
rotational structure of the vibrational spectrum,
they should be able to readily distinguish between
different 7, values. The €/k value obtained from
the experimental-level spacings using Le Roy’s

TABLE IV. ¥Kr, ground-state vibrational spacings:
a are the values calculated from present potential No. 2;
b are the values calculated from present potential No, 3;
c are the experimental values: Ref, 24,

AG, i/ em™)
b

<
0
o

0 21.08 21.39 21.56
1 19.06 19.26 19.09
2 16.83 16.81 16.76
3 14.86 14.74 14.76
4 13.17 13.10 12,23
5 11.13 11.07 10.49
6 9.07 9.00 8.92
7 7.18 7.11 6.92
8 5.48 5.42 5.54
9 4.00 3.94

10 2.74 2.69

11 1.72 1.68

12 0.94 0.90

13 0.39 0.38

14 0.09 0.08
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method® is 199.2 (+0.7) K, which is in pleasingly
good agreement with the present results.

D. Gaseous Bulk Properties

Comparisons between predictions of the present
Kr potentials and experimental virial-coefficient
data are reported in Fig. 4. Except for the lowest
temperatures, the agreement is generally good.
However, we do not attach too much importance to
this agreement because the experimental data do
not span a range of reduced temperatures wide
enough to offer a narrow constraint to the poten-
tial. For this reason we did not calculate viscosity
coefficients.

VI. SOLID-STATE PROPERTIES

Kr crystallizes into a face-centered cubic solid
at 115.8 K. The lattice constant,* isothermal
compressibility,®*+*® and heat capacity®” are known
as a function of temperature all the way down to
liquid-He temperatures, and some information is
also available on the elastic constants.® Proce-
dures for evaluating the partition function, and
hence the thermodynamic properties, exist.3°+4°
In particular, if the temperature is quite low
(less than 3 of the melting temperature) the
standard techniques of lattice dynamics apply,
while at higher temperatures it is necessary to

cm

Oe

20}
AG

Al

V'3

15¢

o>

e0p

10}

FIG. 3. 84Krz ground-state vibrational spacings: @,
experiment (Ref. 24); A, present potential No. 3; O,
potential of Ref. 17.
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FIG. 4. Virial-coefficient data for Kr (Ref. 25) com~
pared with values calculated from our potential Nos. 2
(a) and 3 (@). The vertical bars represent the error in
the experimental values.

use computer-simulation techniques such as
Monte Carlo calculations.

In this preliminary study of solid Kr we will
restrict ourselves to 0 K, where the complications
due to vibrational anharmonicity are reduced. We
shall adopt the working hypothesis that the poten-
tial energy of the solid can be expanded as

V= E ¢Eli2.)l)+ E ¢2142.31) )
£>4 i>i>k

where i, j, k label atoms in the crystal, ¢"'? is the
two-body potential just determined, and ¢**® is
the three-body potential. We shall further assume
that ¢(!?® is adequately approximated by the long-
range-triple-dipole—Axilrod-Teller-Muto (AT M)
form:

?32) . =v(1+3 cosb, cos, cosb,)(R,R,R;) ™,

with »=220.4x107'2 erg A°. This force can be
regarded as the screening of the pairwise long-
range induced dipole interactions between the
atoms by the other atoms of the solid. The third
virial coefficient of argon, as well as both its
solid and liquid properties, appears to be satis-

oo

factorily explained by this approach.* 1%

We have evaluated the free energy and pressure
as a function of the volume at 0 K using a self-
consistent phonon scheme, *' and in this way we
have obtained the ground-state energy, pressure,
and the bulk modulus (inverse compressibility).
The results are shown in Table V, both with and
without the three-body ATM force. As can be
seen, the scattering potential obtained in the pre-
sent paper with the three-body ATM force pro-
duces data in fairly good agreement with experi-
ment. The pressure-volume data, together with
some theoretical predictions, are displayed in
graphical form in Fig. 5.

Before concluding this section a few general
remarks are in order about the information on the
position of the potential minimum available
through solid-state properties.

In the classical solid at 0 K, if we have only
interactions between the 12 nearest neighbors in
the fcc lattice, and if the forces are pairwise
additive, the inversion symmetry of the crystal
demands that the atoms all sit at the potential
minimum 7,. In a real solid, the range of the
potential extends beyond the nearest neighbors and
is attractive [the six second-neighbors are at
v2'r,, where the potential is assumed to be
—(C¢/7®) —(Cq/7®)]. This causes the crystal to
collapse, so that the nearest-neighbor distance
7~ is less than 7,. The exact magnitude of this
effect can readily be evaluated, once Cos and C, are
known, and amounts to 7, 7Ny =0.08 A for Kr.
The next effect to be considered is that of three-
body forces. The long-range ATM forces arise
as a screening of the two-body London (van der
Waals) forces by the other atoms in the solid. This
effect is also exactly known and causes 7, _7yy
=-0.04 &in krypton. Little is known about short-
range-exchange many-body forces, except that
they are believed to be smaller than ATM forces.
Finally, we must consider the thermal motion of
the atoms, which at 0 K is due to the zero-point
energy. This causes the crystal to dilate such
that », —7\n=-0.02 A. These three effects are
essentially model indep’:ndent. The 7yy in Kr is

TABLE V. Values of energy E, pressure P, bulk modulus 1/x 5, and debye © at 27,10 cm® mole~! and 0K. Pot. A
=present 2; Pot, B=present 3; Pot. C =same form as present 3, shifting »,, to 4.012 A.

Pot. A +ATM Pot, A Pot, B+ATM Pot. B Pot, C+ATM Pot. C Expt.
E (K) -1340 —1459 -1338 -1457 -1344 -1463 -1342+52
P (bar) +445 —650 +497 -597 1 -1094 ~0b
1/x ¢ (Kbar) 36.2 31.8 37.7 33.3 34.6 30.2 34.4+0.4°¢
6p (K) 70.0 69.7 71.5 71.2 69.4 oo 71.9+0.2 9

2 Reference 35.
b Reference 32.

¢ References 33 and 34.
dReference 42.
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FIG. 5. Pressure-volume solid-state data for Kr. O
and A experiment (Ref. 43). Full lines represent calcu-
lations with potential (from low to high): No. 2, No. 3,
No. 3 (with 7, shifted to 4.012 + ATM force), No. 2 + ATM,
No. 3+ ATM.

known experimentally to be 3.99 225 +0.00 005 A
at 4.25 K. We then have the following equations:

¥ m=7xy+0.08 —0.04 —0.02=4.01 A
or
¥m=7xy +0.08 —0.02=4.05 A,

depending upon whether or not the three-bodyo
forces are present. Schafer’s value of 4.11 A for
7, Will produce about a 4% error in the zero-pres-
sure volume of the solid, even if there is no
three-body effect on the pressure. This result is
totally unacceptable.

From the foregoing we conclude that in contrast
to the work of Schafer ef al., our results are con-
sistent with the hypothesis that the ATM force is
the only one important for the energy, that at
least 50% of it contributes to the pressure, and
possibly slightly less to the bulk modulus. This
conclusion, if taken at face value, appears to

DETERMINATION OF THE INTERATOMIC POTENTIAL OF... 2415

complement the finding of Dymond and Alder** for
argon. Nevertheless, on these grounds alone we
cannot claim strictly that for the pressure and the
bulk modulus the hypothesis is either demon-
strated or refuted, since the errors in our 7,,,
although roughly equal to 1%, . are still too large.
More convincing evidence for this hypothesis can
be obtained by examining Table V and Fig. 5 in
detail. Here we see that a mere shift of 7, from
4.03 to 4.012 A gives an almost perfect fit to the
zero-temperature PV data of the solid if the ATM
three-body force is included. Moreover, this
“solid-state” potential is only marginally worse
for gas properties than our best two potentials
(see Table II). Unfortunately, this “solid-state”
MSV potential gives the worst value for the low-
temperature Debye © in the solid! (see Table V).
Since this latter property is relatively insensitive
to three-body forces, it appears to add weight to
our “gas” potentials. It is therefore impossible
at present to reconcile completely a single MSV
potential plus the three-body ATM forces with all
the gas and solid-state data. The difficulty may
be due to inadequacies in the MSV functional form,
the ATM three-body approximation, errors in the
experiments, or any suitable combination of the
three.

VII. CONCLUSIONS

Through the analysis of scattering measure-
ments, a potential has been obtained for Kr that
also describes spectroscopic and bulk gaseous
properties quite well. Solid-state data are con-
sistent with the hypothesis that three-body forces
are present in the solid, and that for the energy
they are quantitatively accounted for by the ATM
triple-dipole term. For the pressure this happens
to be at least good to 50%. In order for this latter
hypothesis to be tested with 10% precision a non-
condensed state property is needed that yields the
7. Parameter of the potential with about a 1% pre-
cision. This must await a new generation of ex-
periments.

Within the limits outlined in Sec. V, the present
potential is believed to be accurate in the attrac-
tive and the low-energy repulsive region. Modifi-
cations of the higher-energy repulsive branch may
be needed in order to describe high-temperature
transport properties or other properties that are
sensitive to changes in that part of the potential.
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