Z_1^3 -Dependent Stopping Power and Range Contributions*

J. C. Ashley and R. H. Ritchie

Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

Werner Brandt

Department of Physics, New York University, New York, New York 10003 (Received 12 March 1973)

The theory of the Z_1^3 -dependent contribution to the stopping of charged particles in matter is cast into simple formulas for stopping powers and range-energy relations which apply in a comprehensive manner to all targets. Formulas are given for compound targets and applied to the standard nuclear emulsion.

I. Z_1^3 -DEPENDENT STOPPING-POWER CONTRIBUTIONS

The stopping power of a target composed of atoms with atomic number Z_2 , for a projectile of atomic number Z_1 and velocity v_1 , depends in first Born approximation on the projectile charge as $(Z_1 e)^2$. Recently^{1,2} we extended this theory to include the $(Z_1 e)^3$ dependence in a classical treatment which is equivalent to a second Born approximation.³ The Z_1^3 contribution was calculated for the statistical model of the target atom in the Lenz-Jensen approximation. Expressing the projectile energy E_1 in terms of the reduced parameter $x \equiv v_1^2 / v_0^2 Z_2$ = 40.2 E_1 (MeV)/ M_1Z_2 , where v_0 is the Bohr velocity and M_1 the projectile mass in amu, we write the stopping power S(x) in terms of the stopping power in first Born approximation, ${}^{4}S_{0}(x)$, in the form

$$S(x) = S_0(x) \left(1 + \frac{Z_1}{Z_2^{1/2}} \frac{\kappa(b, x)}{x} \right).$$
(1)

Since $S_0(x) \propto Z_1^2$, the second term in the parentheses represents the Z_1^3 contribution. In the statistical approximation, with the abbreviation $b \equiv \chi \eta Z_2^{1/6}$, the function $\kappa(b, x)$ becomes

$$\kappa(b, x) = \frac{F(b/x^{1/2})}{x^{1/2}L(x)} , \qquad (2)$$

where $\chi \simeq 1.3$ is a constant of the statistical model of the atom and η is related to the choice of the lower impact-parameter cutoff in the classical description. The function F(w) is derived and displayed in Ref. 2. The function L(x), also derived and displayed in Ref. 2, is the stopping number per target electron; for x > 1 we have

$$L(x) = \ln\left(\frac{2m_g v_1^2}{K_B Z_2}\right) = \ln\left(\frac{x}{q}\right),\tag{3}$$

where $q = K_B/4$ R. K_B denotes Bloch's constant

defined such that $I_2(Z_2) = K_B Z_2$ is the mean excitation energy for stopping, and $\Re = 13.6$ eV. As discussed presently, K_B varies slowly with Z_2 .⁵ For application of Eq. (3), a value q = 0.18 gives good agreement with the statistical model when x > 1. When $x \le 1$, inner-shell corrections to Eq. (3) appear which we have taken into account in a statistical approximation.²

The oscillator-strength distribution in real atoms is always shifted to higher frequencies, with decreasing Z_2 , compared with that of the statistical atom.⁶ Therefore, η has a weak Z_2 dependence similar to that of Bloch's constant,² viz., $\eta = \eta_0 (1.23 + 0.717 Z_2^{-1})$ for $Z_2 < 13$ and $\eta = \eta_0 (1 + 6.02 Z_2^{-1.19})$ for $Z_2 \ge 13$, where η_0 is a constant of order unity. With this trend in η , the product $\eta Z_2^{1/6}$ becomes practically independent of Z_2 . Quantitatively, $\eta Z_2^{1/6} = (2.0 \pm 0.2)\eta_0$ for $1 \le Z_2$ \leq 100. This fact makes b in Eq. (1) a constant for all target elements.7 Comparison with the available two sets of experiments⁸ on Al ($Z_2 = 13$) and Ta $(Z_2 = 73)$ yields the presently "best" trial value, $b = 1.8 \pm 0.2$. The function $\kappa(b, x)$ is tabulated in Table I. Figure 1 shows a plot of $\kappa(b, x)/x$ versus x and compares it, according to Eq. (1), with the data⁸ on Al and Ta in the form $Z_2^{1/2}\Delta S(x)/$ $Z_1 S_0(x) \equiv Z_2^{1/2} (S - S_0) / Z_1 S_0.$

We note from Table I that $\kappa(b, x)$ is a very slowly varying function of x. For many applications, at x>1, it suffices to set κ equal to a mean constant, $\kappa_0 \simeq 0.32$, because when x>10, the Z_1^3 contribution normally is too small to be retained, and deviations of κ from κ_0 become irrelevant.

The Z_1^3 contribution accounts for the shorter ranges of positive particles (e.g., π^+) compared to the ranges of their antiparticles (π^-).² Most of these observations are made in nuclear emulsions.⁹ We derive the Z_1^3 contribution for a compound target under the assumption that Bragg's additivity rule of stopping power applies.¹⁰ For a target consisting of atomic constituents Z_{2i} , present

8

in atomic concentrations n_i , the stopping power becomes $S_0 = \sum n_i S_{0i}(x_i) / \sum n_i$, where $x_i \equiv v_1^2 / v_0^2 Z_{2i}$. S_0 and the corresponding range R_0 are tabulated for many compounds.^{4,11} Noting that $S_{0i} \propto L(x_i) / x_i$, the Z_1^3 contribution takes the form

$$\frac{S-S_0}{S_0} \equiv \frac{\Delta S}{S_0} \equiv Z_1 \left(\frac{v_0}{v_1}\right)^2 \frac{\sum n_i Z_{2i}^{3/2} L(x_i) \kappa(b, x_i)}{\sum n_i Z_{2i} L(x_i)}$$
(4)

With $\kappa(b, x_i) \simeq \kappa_0$, Eq. (4) reduces to the convenient formula

TABLE I. Function $\kappa(b, x)$ [Eq. (2)] for the parameter values $b = 1.8 \pm 0.2$.

x	<i>b</i> =1.6	$\kappa(b, x)$ $b = 1.8$	<i>b</i> =2.0
0 115	0 1944	0 1331	0.095.11
0 165	0.2161	0.1478	0 1052
0.215	0.2363	0 1620	0.1153
0.210	0.2544	0.1020	0.1251
0.315	0.2706	0 1877	0 1343
0.365	0.2851	0.1990	0 1431
0.415	0.2001	0.2095	0 1513
0.465	0.3095	0.2191	0.1590
0.515	0.3198	0.2279	0 1662
0.565	0.3290	0.2360	0.1729
0.615	0.3373	0.2434	0 1793
0.665	0.3447	0.2503	0.1852
0.715	0.3514	0.2566	0.1908
0.765	0.3575	0.2625	0.1960
0.815	0.3629	0.2679	0.2009
0.865	0.3679	0.2729	0.2055
0.915	0.3724	0.2774	0.2099
0.965	0.3765	0.2818	0.2139
1	0.3792	0.2846	0.2166
1.3	0.3967	0.3043	0.2361
1.7	0.4081	0.3201	0.2534
2	0.4123	0.3277	0.2626
- 3	0.4134	0.3389	0.2794
4	0.4064	0.3396	0.2854
5	0.3970	0.3364	0.2865
6	0,3871	0.3316	0.2853
7	0.3774	0.3260	0.2829
8	0.3682	0.3203	0.2798
9	0.3596	0.3146	0.2763
10	0.3514	0,3090	0.2727
13	0.3304	0.2938	0.2622
17	0.3072	0.2760	0.2489
20	0.2930	0.2647	0.2400
30	0.2578	0.2359	0.2166
40	0.2337	0.2154	0.1993
50	0.2157	0.1999	0.1859
60	0.2016	0,1876	0.1751
70	0.1901	0,1774	0.1661
80	0.1806	0.1689	0,1586
90	0.1724	0.1616	0.1520
100	0.1653	0,1553	0.1463

$$\frac{\Delta S}{S_0} = \frac{Z_1}{Z_c^{1/2}} \frac{\kappa_0}{\kappa_c} f(Z_c, x_c) , \qquad (5)$$

where for the compound target (subscript c)

$$f(Z_c, x_c) = \frac{Z_c^{1/2}}{\overline{Z}_c^{1/2}} \left(1 + \frac{\ln(\overline{Z}_c/\overline{Z}_c')}{L(x_c)} \right),$$
(6)

with the abbreviations

$$Z_{c}^{1/2} = \frac{\sum n_{i} Z_{2i}^{3/2}}{\sum n_{i} Z_{2i}},$$
(7)

$$\ln \overline{Z}_{c} = \frac{\sum n_{i} Z_{2i} \ln Z_{2i}}{\sum n_{i} Z_{2i}} , \qquad (8)$$

$$\ln \bar{Z}_{c}' = \frac{\sum n_{i} Z_{2i}^{3/2} \ln Z_{2i}}{\sum n_{i} Z_{2i}^{3/2}} , \qquad (9)$$

$$x_c = v_1^2 / v_0^2 \overline{Z}_c . (10)$$

For illustration we have evaluated Eq. (4) for the important case of standard emulsion for which S_0 is tabulated.¹¹⁻¹³ In units of 10^{20} atoms/cm³, it is defined by $n_1 = 321.56$ (the index denotes the atomic number of the element; here $Z_2 = 1$ for H), $n_6 = 138.30$, $n_7 = 31.68$, $n_8 = 94.97$, $n_{16} = 1.353$, $n_{35} = 100.41$, $n_{47} = 101.01$, and $n_{53} = 0.565$.^{11,12} The result is plotted as the solid curve in Fig. 2, in the form $\beta^2 \Delta S(\beta)/Z_1 S_0(\beta)$ versus $\beta \equiv v_1/c = \alpha [40.2E_1 (MeV)/M_1]^{1/2}$, where $\alpha \equiv v_0/c = 1/137$. We find a difference of 6.3% in the emulsion stopping power

FIG. 1. Comparison of $\kappa(b, x)/x$ [Eq. (1)] for b = 1.8(solid curve) with experiments by Andersen, Simonsen, and Sørensen, (Ref. 8.) The upper and lower dashed curves correspond to 10% changes in b, viz., b = 1.6 and b = 2.0, as tabulated in Table I. The group of data near x = 2 comes from measurements on a Ta ($Z_2 = 73$) target, the group near x = 10 from measurements on an Al ($Z_2 = 13$) target.

2403

for π^+ versus π^- at 1.2 MeV/amu, a value slightly smaller than the tentative estimate of 8–9% given in Ref. 2. The approximate Eq. (5), with the parameter values listed in Table II, is shown as the dashed curve in Fig. 2.

We make contact with Eq. (1) by *ex post facto* replacing κ_0 in Eq. (5) with $\kappa(b, x_c)$ as tabulated in Table I. This then yields the stopping-power formula for compounds:

$$S(x_c) = S_0(x_c) \left(1 + \frac{Z_1}{Z_c^{1/2}} \frac{\kappa(b, x_c)}{x_c} f(Z_c, x_c) \right) .$$
(11)

We illustrate in Fig. 2 the equivalence of Eq. (11) (dot-dash curve) with the exact equation (4) (solid curve). For elemental targets, Eq. (11) reduces to Eq. (1).

The Z_1^3 contribution was recently extended to the stopping power of heavy ions by Kelley *et al.*¹⁴ As a first approximation to a description of this situation we simply replace Z_1 by an effective charge for the heavy ion. If $S_0(x, Z_1)$ is taken to be the "best" theoretical Z_1^2 stopping power of the ions (i.e., with no Z_1^3 contribution), Eq. (1) can be written in the form

$$S(x, Z_{1}) = S_{0}(x, Z_{1})$$

$$\times \left(1 + \frac{q_{1 \text{ eff}}(v_{1}/v_{0}, Z_{1})}{Z_{1}} \frac{Z_{1}}{Z_{2}^{1/2}} \frac{\kappa(b, x)}{x}\right), \quad (12)$$

which applies as long as $q_{1 \text{ eff}} \ll Z_2^{1/2} x/\kappa_0$. In terms of the probability $m_i(v_1/v_0, Z_1)$ that the ion

FIG. 2. Z_1^3 effect on the stopping power of a compound [Eq. (4)] as applied to the standard emulsion (solid curve). The dashed line represents Eq. (5) with the coefficients listed in Table II. The dot-dash curve depicts Eq. (11) for b = 1.8.

of atomic number Z_1 and velocity v_1 is in the charge state q_{1i} , we have

$$\frac{q_{1 \text{ eff}}(v_{1}/v_{0}, Z_{1})}{Z_{1}}$$

$$= \sum_{i=0}^{Z_{1}} m_{i}(v_{1}/v_{0}, Z_{1})q_{1i}^{3} / Z_{1} \sum_{i=0}^{Z_{1}} m_{i}(v_{1}/v_{0}, Z_{1})q_{1i}^{2} ,$$
(13)

The effective charge state for the stopping power in dense targets is known to be essentially independent of Z_2 , so that the substitution of $q_{1\text{eff}}$ for Z_1 in Eq. (12) applies also to compounds, provided $q_{1\text{eff}} < Z_c^{1/2} x_c / \kappa(b, x_c)$. The distribution of m_i can be assumed to be sufficiently narrow for us to set $\langle q_1^2 \rangle = \langle q_1^2 \rangle^{3/2}$. The function $q_{1\text{eff}} (v_1 / v_0,$ $Z_1)$ [Eq. 13] is then equal to $\langle q_1^2 \rangle^{1/2}$ as determined from stopping-power measurements. Best fits to existing data^{15,16} can be summarized in the form

$$\frac{q_{1\,\text{eff}}(v_1/v_0, Z_1)}{Z_1} = 1 - Ce^{-v_1/v_0\gamma(Z_1)}, \qquad (14)$$

where

$$C = 1.0, \quad \gamma(Z_1) = \frac{1}{2}(Z_1 - 0.35)$$

for $4 < Z_1 \le 10$ and $(v_1/v_0) > 0.25Z_1$; (15a)

$$C = 1.032, \quad \gamma(Z_1) = Z_1^{0.69}$$

for $Z_1 \ge 35$ and $(v_1/v_0) > 0.1Z_1^{0.69}$. (15b)

The analysis of the stopping-power data for C, N, and O in silicon by Kelley $et \ al.^{14}$ along these lines agrees with Eqs. (12), (14), and (15a).

In light of Eq. (1), presently available precision values of the mean excitation energy for stopping, I'_2 , must be corrected to obtain the excitation energy I_2 , central to the first-Born-approximation stopping-power theory, as it appears in Eq. (3). Specifically, for x > 1, we have

$$I_{2} \simeq I_{2}' \left(1 + \frac{Z_{1}}{Z_{2}^{1/2}} \frac{\kappa(b, x)}{x} L(x) \right) \quad . \tag{16}$$

 I_2 values, so derived from experiment, will have

TABLE II. Parameters of standard nuclear emulsion, as defined in the text, for use in Z_1^3 contributions to stopping powers [Eqs. (5) and (6)] and to ranges [Eqs. (22) and (23)].

$7^{1/2} - 5 62$	a = 0.18
$\overline{Z}_{c} = 3.02$	Q = 0.10 Q = (MeV) = 0.1234 M. (amu)
$\overline{Z}_{c} = 35 \ A7$	V = 270 eV
$z_c = -0.2706$	$E_{2} = 210 \text{ CV}$
$\kappa_0 = 0.32 \pm 0.05$	n=0.59
$x_{1} = 1.49 E_{1}$ (MeV)/ M_{1} (amu)	.,

a somewhat different Z_2 dependence than the I'_2 values known at present. Practical implications aside, this will bear on the experimental tests of the theory of K_B and of inner-shell corrections.

II. Z_1^3 -DEPENDENT RANGE CONTRIBUTIONS

With Eq. (1) the range R(x), including the Z_1^3 contribution, becomes

$$R(x) = \int^{x} \left(\frac{M_{1} \Re Z_{2}}{m}\right) \frac{dx'}{S(x')} = R_{0}(x) \left[1 - \frac{Z_{1}}{Z_{2}^{1/2} R_{0}(x)} \int^{x} \frac{\kappa(b, x')}{x' S_{0}(x')} \left(\frac{M_{1} \Re Z_{2}}{m}\right) dx'\right] \simeq R_{0}(x) \left(1 - \frac{Z_{1} \kappa_{0}}{Z_{2}^{1/2}} \frac{r_{0}(x)}{R_{0}(x)}\right) + \frac{1}{2} \left(\frac{M_{1} \Re Z_{2}}{m}\right) dx'$$
(17)

where R_0 are tabulated theoretical ranges.^{4,11,13,17,18} In the last expression, $\kappa(b, x)$ is approximated by κ_0 ; $r_0(x)$ denotes the integral

$$r_{0}(x) = \int^{x} \left(\frac{M_{1} \Re Z_{2}}{m}\right) \frac{dx'}{x' S_{0}(x')} .$$
 (18)

For x > 1 Eq. (3) dominates the range integration. Then, since $S_0(x) \propto x^{-1} \ln(x/q)$, Eq. (18) obeys the transformation

$$qr_0(x) = R_0((qx)^{1/2}), (19)$$

so that Eq. (17) reduces to the simple form

$$R = R_{0}(x) \left(1 - \frac{Z_{1}\kappa_{0}}{Z_{2}^{1/2}q} \frac{R_{0}((qx)^{1/2})}{R_{0}(x)}\right)$$
$$= R_{0}(E_{1}) \left(1 - \frac{4Z_{1}\kappa_{0}\Re}{Z_{2}^{1/2}K_{B}} \frac{R_{0}((QE_{1})^{1/2})}{R_{0}(E_{1})}\right), \quad (20)$$

in terms only of known ranges R_0 . The constant κ_0/q has the value $\simeq 1.78$. In the last version, E_1 is given in MeV, and Q (MeV) = $4.57 \times 10^{-4} M_1$ (amu) I_2 (eV).

It is well established, over wide intervals of E_1 ,

that the range-energy relation can be approximated accurately by $R_0 = (E_1/k)^{1/\eta}$, where k is a constant and $\eta(E_1)$ is the range-energy index which is tabulated.¹³ For $5 \leq E_1$ (MeV)/ $M_1 \leq 200$, $\eta(E_1)$ varies only very slowly and has a mean value close to $\eta = 0.6$ [compared to Geiger's rule $\eta_G = 2/3$, applicable to the low energies of natural α particles corresponding to $(E_1/M_1) \simeq (1-2)$ MeV/amu]. Then we have

$$R = R_{0}(x) \left[1 - \frac{Z_{1}\kappa_{0}}{Z_{2}^{1/2}q} \left(\frac{q}{x}\right)^{1/2\eta} \right]$$
$$= R_{0}(E_{1}) \left[1 - \frac{4Z_{1}\kappa_{0}\Re}{Z_{2}^{1/2}K_{B}} \left(\frac{Q}{E_{1}}\right)^{1/2\eta} \right]$$
(21)

in the notation of Eq. (20). The effect of the slow variation of κ with x can be incorporated approximately by replacing κ_0 in Eq. (21) with $\kappa(b, x)$ and, in the following range formulas for compounds, with $\kappa(b, x_c)$.

Range formulas for compounds, including the Z_1^3 contribution, follow directly from Eq. (17), using Eqs. (5), (6), (19), and the definitions in Eqs. (7)-(9). For E_1 in MeV, the result is¹⁹

$$R(E_{1}) = R_{0}(E_{1}) \left\{ 1 - \frac{Z_{1}Z_{c}^{1/2}}{\overline{Z}_{c}} - \frac{\kappa_{0}}{q} \left[\frac{R_{0}((QE_{1})^{1/2})}{R_{0}(E_{1})} \left(1 + \ln \frac{\overline{Z}_{c}}{\overline{Z}_{c}'} \right) - \frac{Q\ln(\overline{Z}_{c}/\overline{Z}_{c}')}{S_{0}(E_{1})R_{0}(E_{1})} \right] \right\}.$$
(22)

With $R_0(E_1) = (E_1/k)^{1/\eta}$, Eq. (22) simplifies to

$$R(E_1) = R_0(E_1) \left\{ 1 - \frac{Z_1 Z_c^{1/2}}{Z_c} \frac{\kappa_0}{q} \left[\left(\frac{Q}{E_1} \right)^{1/2\eta} \left(1 + \ln \frac{Z_c}{Z_c'} \right) - \frac{Q}{\eta E_1} \ln \frac{Z_c}{Z_c'} \right] \right\}$$
(23)

Equations (22) and (23) reduce to Eqs. (20) and (21) for elemental targets. With the aid of tables of $S_0(E_1)$ and $R_0(E_1)$,^{4,11,13,17,18} Eq. (22) is a convenient and accurate formula for calculating $R(E_1)$, or for constructing curves of $(R - R_0)$ versus R_0 by using E_1 from tables of $R_0(E_1)$ as the connecting parameter, or for pairs of antiparticles ΔR = $(R_- - R_+) = 2 | R - R_0 |$ versus R_0 . Equations (21) and (23) are somewhat less accurate, but useful for ready calculations when the range-energy index η is known. Note that in calculating R from tabulated ranges and stopping powers care should be taken to use only theoretical values, since values derived from experiment will already contain a Z_1^3 contribution. However, for calculating $R - R_0$ and range differences between a particle and its antiparticle, values of S_0 and R_0 derived from experiment may be used, since the inclusion of a Z_1^3 contribution in S_0 and R_0 here will produce only a small higher-order contribution to the

range differences.

We have performed calculations of ΔR for $\pi^$ versus π^+ as a function of R_0 in nuclear emulsion from Eq. (22), using Tables II and III of Ref. 13, and from Eq. (23). The constants for nuclear emulsion were taken from Table II. The results are shown graphically in Fig. 3. Slightly lower values are found from the expedient formulas [Eqs. (21) and (23)] compared to the results of the more accurate equations (20) and (22), as a consequence of employing the value of the range-energy index η , appropriate for E_1 , for both R_0 $((QE_1)^{1/2})$ and $R_0(E_1)$. The results calculated with the analytical formulas agree quite well with the results found in Ref. 7 by numerical integration. The values estimated from Fig. 4 in Ref. 7 are shown as cross marks in Fig. 3. The small difference in the results at the higher energies is due to relativistic corrections which are not included in our analytical formulas.

The theoretical ΔR_{π} values from Eq. (22) are about 40% smaller than the range differences measured by Barkas *et al.*²⁰ at the π^+ ranges 80 and 90 μ m. The theoretical value $\Delta R_{\pi} = 1.69$ at $R_{\pi} + = 80 \ \mu$ m (see Fig. 3) agrees satisfactorily with the recent measurement $\Delta R_{\pi} = (2.0 \pm 0.3) \ \mu$ m by Tovee *et al.*²¹ At $R_{\pi} + = 725 \ \mu$ m, the theoretical

FIG. 3. Range difference for π^+ and π^- mesons in nuclear emulsion, $\Delta R_{\pi} \equiv R_{\pi-} - R_{\pi^+}$, as a function of R_{π^+} and E_{π^+} , calculated according to Eqs. (22) and (23) with the constants listed in Table II and range-energy tables given in Ref. 13. The cross marks are estimates of the range difference derived from results presented in Ref. 7.

value $\Delta R_{\pi} = 4.35 \ \mu \text{m}$ agrees, within the uncertainties, with the measured value $\Delta R_{\pi} = (5.5 \pm 3.2) \ \mu \text{m}$ reported by Barkas *et al.*²⁰

III. USE OF TABLES

Extensive tables of the functions F, L, and of the central function $I(\xi)$ defined in Ref. 2 can be obtained from the National Auxiliary Publication Service.²² From these tables, with Eq. (2), the function $\kappa(b, x)$ for parameter values not listed in Table I can be calculated readily.

ACKNOWLEDGMENT

The authors are grateful to V. E. Anderson for his careful work in evaluating numerically the functions used here.

APPENDIX: APPLICATIONS

In the following appendix we present in detail three examples illustrating the use of the formulas derived in this paper for the calculation of Z_1^3 contributions to stopping power and range. For practical applications one should be aware that the tabulated theoretical stopping powers and ranges are to some extent uncertain owing to uncertainties in mean excitation energies, shell corrections, nonadditivity in the case of compounds, etc. Thus, the addition of the Z_1^3 contribution may or may not be meaningful, depending on the size of the Z_1^3 contribution compared with the uncertainty in the theoretical stopping-power or range values. In the examples we do not consider these questions, but simply provide the examples as guides to the use of the analytic formulas.

A. Example (i): Stopping Power of 8-MeV α Particle in Water (H₂O)

Procedure. Use, e.g., Eq. (11). Calculate the target constants $Z_c^{1/2}$, \overline{Z}_c , and $\ln(\overline{Z}_c/\overline{Z}'_c)$ according to Eqs. (7)-(9) and $x_c = 40.2E_1$ (MeV)/ M_1 (amu) \overline{Z}_c . Then $f(Z_c, x_c) = (Z_c^{1/2}/\overline{Z}_c^{1/2}) \{1 + [\ln(\overline{Z}_c/\overline{Z}'_c)]/L(x_c)\}$ by Eq. (6), with $L(x_c) = \ln(x_c/q)$ by Eq. (3). [If $x_c \leq 1$, Eq. (3) does not apply; instead, read $L(x_c)$ from Fig. 3 in Ref. 2 or from Table I. [Note that the value b = 1.8 should be used as long as the present data and new data confirm the curve in Fig. 1. If changes are necessary, read $\kappa(b, x)$ for the new b from Table I by interpolation between b = 1.6 and b = 1.8] Calculate the term $[1 + Z_1 f(Z_c, x_c)\kappa(b, x_c)/\overline{Z_c}^{1/2}x_c]$ and multiply with the best-tabulated stopping power for this particle-target combination at E_1 to obtain the

stopping power, including the Z_1^3 contribution.

Results. For water of density n_0 molecules per unit volume, the hydrogen-atom density is $n_1 = 2n_0$ and the oxygen-atom density is $n_8 = n_0$, so Eqs. (7)-(9) give $Z_c^{1/2} = [(2)(1^{3/2}) + (1)(8^{3/2})] / [(2)(1) + (1)(8)] = 2.4627$, $\ln Z_c = [(1)(8) \ln 8] / [(2)(1) + (1)(8)]$ = 1.6636, and $\ln Z_c' = [(1)(8)^{1/2}) \ln 8] / [(2)(1)^{3/2}) + (1)(8^{3/2})] = 1.9106$. Thus, $\overline{Z}_c = 5.278$ and $\ln (\overline{Z}_c / \overline{Z}_c') = -0.2470$. Also, $x_c = (40.2)(8)/(4)(5.278) = 15.2$, so with q = 0.18, $L(15.2) = \ln(15.2/0.18) = 4.44$. With these values, $f(Z_c, x_c) = (2.463/2.297) \times [1 + (-0.2470)/(4.44)] = 1.01$. From Table I $\kappa(1.8, 15.2) = 0.2840$ by linear interpolation. Thus we have $[1 + Z_1 f(Z_c, x_c)\kappa(1.8, x_c)/\overline{Z}_c^{1/2}x_c] = [1 + (2) (1.01)(0.284)/(2.30)(15.2)] = 1.016$, or a contribution to the stopping power of 1.6%.

B. Example (ii): Range of 16-MeV Proton in Aluminum

Procedure. Use, e.g., Eq. (20). Calculate $QE_1 = 4.57 \times 10^{-4} M_1 \text{ (amu)} I_2 \text{ (eV)} E_1 \text{ (MeV)}$. From a table of calculated ranges find $R_0(E_1)$ and $R_0((QE_1)^{1/2})$, and with $\kappa_0/q = 1.78$ calculate the factor $[1 - Z_1(\kappa_0/q)R_0((QE_1)^{1/2})/Z_2^{1/2}R_0(E_1)]$. The tabulated theoretical range multiplied by this factor gives the range including the Z_1^3 contribution.

Results. For Al with $I_2 = 166 \text{ eV}$, $QE_1 = (4.57 \times 10^{-4})(1)(166)(16) = 1.214 (MeV)^2$. From a table of proton ranges in aluminum (Ref. 18, p. 8-161), we find R_0 (16-MeV p) = 0.3879 g/cm² and

 $R_0((QE_1)^{1/2}) = R_0(1.102 - \text{MeV } p) = 0.0048 \text{ g/cm}^2$. Thus, with $Z_1 = +1$, the factor is $[1 - (1)(1.78) \times (0.0048)/(13^{1/2})(0.3879)] = 0.994$, and the range for a 16-MeV proton in aluminum, including the Z_1^3 contribution, becomes $R(16 - \text{MeV } p) = (0.3879) \times (0.994) = 0.3856 \text{ g/cm}^2$.

C. Example (iii): Range Difference Due to
$$Z_1^3$$

Effect Between π^+ and π^- Mesons for Theoretical
Pion Range of 80 μ m in Emulsion

Procedure. Use, e.g., Eq. (22). Find the energy E_1 corresponding to the given range from tables of calculated ranges. The constants for standard emulsion are found in Table II. Calculate for emulsion Q (MeV) = 0.1234 M_1 (amu) and $(QE_1)^{1/2}$. From tables, find $S_0(E_1)$ and $R_0((QE_1)^{1/2})$. The range difference is given by $\Delta R = 2|R - R_0|$.

Results. The energy of a π meson with a theoretical range of 80 μ m is $E_1 = 1.448$ MeV by linear interpolation from Table III of Ref. 13. $M_1(\pi) = 0.14985$ amu, so Q = (0.1234)(0.14985) = 0.01849 MeV and $(QE_1)^{1/2} = [(0.01849)(1.448)]^{1/2} = 0.1636$ MeV. From Ref. 13, Table III, $R_0((QE_1)^{1/2}) = 2.50$ μ m by interpolation. $S_0(E_1)$ for π is the same as S_0 for an equal-velocity proton, so a 1.448-MeV π has the same S_0 as a proton of energy $[M_1$ (proton) $/M_1(\pi)](1.448) = 9.73$ MeV. From Ref. 13, Table II, $S_0(1.448) = 107 \times 10^{-4}$ MeV/ μ m. With the emulsion constants from our Table II, we have

$$\Delta R = 2 \frac{Z_1 Z_c^{1/2}}{\overline{Z}_c} \frac{\kappa_0}{q} \left[R_0 \left((QE_1)^{1/2} \right) \left(1 + \ln \frac{\overline{Z}_c}{\overline{Z}_c'} \right) - \frac{Q \ln(\overline{Z}_c / \overline{Z}_c')}{S_0(E_1)} \right]$$
$$= 2 \frac{(1)(5.62)(0.32)}{(27.06)(0.18)} \left((2.50)(1 - 0.2706) - \frac{(0.01849)(-0.2706)}{107 \times 10^{-4}} \right)$$

 $= 1.69 \ \mu m.$

This value of ΔR_{π} for the theoretical range 80 μ m compares well with the value 2.0 ± 0.3 μ m obtained

by Tovee *et al.*²¹ for the experimental range R_{π^+} = 80 μ m.

- *Research sponsored in part by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.
- ¹J. C. Ashley, W. Brandt, and R. H. Ritchie, Bull. Am. Phys. Soc. <u>15</u>, 1338 (1970).
- ²J. C. Ashley, R. H. Ritchie, and W. Brandt, Phys. Rev. B <u>5</u>, 2393 (1972).
- ³K. W. Hill and E. Merzbacher [Bull. Am. Phys. Soc. <u>16</u>, 1349 (1971); and private communication] have demonstrated that in the harmonic-oscillator approximation our classical results are identical with those of the

quantum-mechanical treatment.

- ⁴Cf., e.g., Studies in Penetration of Charged Particles in Matter (National Academy of Sciences-National Research Council, Washington, D. C., 1964, Publ. No. 1133), and references cited therein.
- ⁵Reference 4, p. 115.
- ⁶W. Brandt and S. Lundqvist, Phys. Rev. <u>139</u>, A612 (1965).
- ⁷J. D. Jackson and R. L. McCarthy [Phys. Rev. B <u>6</u>, 4131 (1972)] have repeated our treatment for a somewhat different small impact-parameter cutoff and arrive at

the same conclusion. Therefore, their Fig. 1 contains a display essentially of the function $\kappa(b, x)$ as given in Table I.

- ⁸H. H. Andersen, H. Simonsen, and H. Sørensen, Nucl. Phys. <u>A125</u>, 171 (1969).
- ⁹H. H. Heckman and P. J. Lindstrom, Phys. Rev. Lett. <u>22</u>, 871 (1969), and references cited therein.
- ¹⁰W. Brandt, Health Phys. <u>1</u>, 11 (1958).
- ¹¹W. Brandt, Energy Loss and Range of Charged Particles in Compounds, Dupont Research Report 1960. NAPS Document No. 02194, to be ordered from ASIS NAPS, c/o Microfiche Publications, 305 E. 46th St., New York, N.Y. 10017, remitting \$1.50 for microfiche or \$5.00 for photocopies up to 30 pages and \$0.15 per each additional page over 30. Estimate 50 pages.
- ¹²W. H. Barkas, Nuovo Cimento <u>8</u>, 201 (1958).
- ¹³M. M. Shapiro, in *Handbuch der Physik*, edited by
 S. Flügge (Springer-Verlag, Heidelberg, 1958), Vol.
 45, p. 361ff.
- ¹⁴J. G. Kelley, B. Sellers, and F. A. Hanser (unpublished).
- ¹⁵L. C. Northcliff, Phys. Rev. <u>120</u>, 1744 (1960).

- ¹⁶H. D. Betz, Rev. Mod. Phys. <u>44</u>, 465 (1972), Fig. 5.30.
 ¹⁷C. F. Williamson, J. P. Boujot, and J. Picard, Tables of Range and Stopping Power of Chemical Elements for Particles of Energy 0.5 to 500 MeV, Saclay Report No. R3042, 1966 (unpublished).
- ¹⁸H. Bichsel, in *American Institute of Physics Handbook*, 3rd edition (McGraw-Hill, New York, 1972), p. 8-142.
- ¹⁹Making use of the approximate relation $\int^x dx' L^{-2}(x') = \int^x dx' L^{-1}(x') -xL^{-1}(x)$.
- ²⁰W. H. Barkas *et al.*, Phys. Rev. <u>101</u>, 778 (1956); Phys. Rev. Lett. <u>11</u>, 26 (1963); CERN Report No. 65-4 (unpublished).
- ²¹D. N. Tovee *et al.*, Nucl. Phys. B <u>33</u>, 493 (1971); and private communication.
- ²²J. C. Ashley, V. E. Anderson, R. H. Ritchie, and W. Brandt, Z³₁ Effect in the Stopping Power of Matter for Charged Particles: Tables of Functions, NAPS Document No. 02195, to be ordered from ASIS NAPS, c/o Microfiche Publications, 305 E. 46th St., New York, N.Y. 10017, remitting \$1.50 for michrofiche or \$5.00 for photocopy up to 30 pages and \$0.15 per each additional page over 30. Estimate 17 pages.