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The theory of the Z, -dependent contribution to the stopping of charged particles in matter is cast
into simple formulas for stopping powers and range-energy relations which apply in a comprehensive
manner to all targets. Formulas are given for compound targets and applied to the standard nuclear
emulsion.

S(x) = S,(x)
i

1+ Z, «(b, x}&
0 Zl /2

Since So(x) ~ Z'„ the second term in the parenthe-
ses represents the Z,' contribution. In the statis-
tical approximation, with the abbreviation b = XgZ2
the function x(b, x) becomes

E(b/x'/2)
x(b x) (2)

where g~ 1.3 is a constant of the statistical model
of the atom and g is related to the choice of the
lower impact-parameter cutoff in the classical
description. The function F(w) is derived and
displayed in Ref. 2. The function L(x}, also de-
rived and displayed in Ref. 2, is the stopping
number per target electron; for x) 1 we have

2m g
(3)

where @=K'/4$. Ks denotes Bloch's constant

I Z1 DEPENDENT STOPPING POWER
CONTRIBUTIONS

The stopping power of a target composed of atoms
with atomic number Z„ for a projectile of atomic
number Z, and velocity u„depends in first Born
approximation on the projectile charge as (Z,e)'.
Recently" we extended this theory to include the
(Z,e)' dependence in a classical treatment which
is equivalent to a second Born approximation. '
The Z', contribution was calculated for the statis-
tical model of the target atom in the Lenz-Jensen
approximation. Expressing the projectile energy
E, in terms of the reduced parameter x=-v,'/v', Z,
=40.2E, (MeV)/M, z„where v, is the Bohr veloc-
ity and M, the projectile mass in amu, we write
the stopping power S(x) in terms of the stopping
power in first Born approximation, ~ S,(x), in the
form

defined such that I,(Z,) =Ks Z, is the mean excita-
tion energy for stopping, and 8=13.6 eV. As
discussed presently, K~ varies slowly with Z, .'
For application of Eq. (3), a value q= 0.18 gives
good agreement with the statistical model when
x)1. When x & 1, inner-shell corrections to
Eq. (3) appear which we have taken into account
in a statistical approximation. '

The oscillator-strength distribution in real
atoms is always shifted to higher frequencies,
with decreasing Z„compared with that of the
statistical atom. ' Therefore, g has a weak Z,
dependence similar to that of Bloch's constant, '
viz. , q=qo(1.23+0.717Z2') for Z2(13 and
q=qo(1+6.02Z, '") for Z, ) 13, where q, is a
constant of order unity. With this trend in q, the
product gZ', ' becomes practically independent of
Z, . Quantitatively, qz', i'=(2.0+0.2)q, for 1(Z,
(100. This fact makes b in Eq. (1) a constant for
all target elements. ' Comparison with the avail-
able two sets of experiments' on Al (Z, = 13) and
Ta (Z, =. 73) yields the presently "best" trial val-
ue, b = 1.8 +0.2. The function a(b, x} is tabulated
in Table I. Figure 1 shows a plot of «(b, x)/x
versus x and compares it, according to Eq. (1),
with the data' on Al and Ta in the form Z', i'As(x}/
Z,S,(x) =- Z", (S —S,)/Z, S,.

We note from Table I that tc(b, x} is a very slowly
varying function of x. For many applications, at
x)1, it suffices to set c equal to a mean constant,
Kp 0.32, because when x) 10, the Z,' contribution
normally is too small to be retained, and devia-
tions of ~ from zp become irrelevant.

The Z,' contribution accounts for the shorter
ranges of positive particles (e.g., v+) compared to
the ranges of their antiparticles (v ).2 Most of
these observations are made in nuclear emulsions. '
We derive the Z,' contribution for a compound
target under the assumption that Bragg's additivity
rule of stopping power applies. ' For a target
consisting of atomic constituents Z,&, present
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in atomic concentrations n&, the stopping power
becomes S,=Q n, S«(x,)/g n&, where x, =v,'/v', Z„.
S, and the corresponding range R, are tabulated
for many compounds. '" Noting that S„O-L(x,)/x„
the Z', contribution takes the form

s —s Es (~u) r n z„'L(x,)lr(be&),=Z,
iS, S,
~

v, Q n&Z„L(x()

(4)

With «(b, xq)~»0, Eq. (4) reduces to the convenient
formula

TABLE I. Function e(b, x) [Eq. (2)] for the parameter
values b =1.8+0.2.

hS Z~ ~tc f(Z„x,},
0 C C

where for the compound target (subscript c}

I', (z./z. ) &

cl (' Z1/2 ( L(» ) )~
t

with the abbreviations

Zx/2 5 «Z«S/2

Q ngz, g

g n&Z, &
Inz,

&lnZ, =
Z «z«

, gn(Z'„"I Zn„

Q n, Z,'j'

(5)

(6)

(6)

0,115
0.165
0,215
0.265
0.315
0.365
0.415
0.465
0.515
0.565
0.615
0.665
0.715
0.765
0.815
0.865
0.915
0.965
1.
1.3
1.7
2
3
4
5
6
7
8
9

10
13
17
20
30
40
50
60
70
80
90

100

b =1.6

0.1944
0.2161
0.2363
0.2544
0.2706
0.2851
0.2980
0.3095
0.3198
0.3290
0.3373
0.3447
0.3514
0.3575
0.3629
0.3679
0.3724
0.3765
0.3792
0.3967
0.4081
0.4123
0.4134
0.4064
0.3970
0.3871
0.3774
0.3682
0.3596
0.3514
0.3304
0.3072
0.2930
0.2578
0.2337
0.2157
0.2016
0.1901
0.1806
0.1724
0.1653

tc(b, x)
b =1.8

0.1331
0.1478
0.1620
0.1754
0.1877
0.1990
0.2095
0.2191
0.2279
0.2360
0.2434
0.2503
0.2566
0.2625
0.2679
0.2729
0.2774
0.2818
0.2848
0.3043
0.320k
0.3277
0.3389
0.3396
0.3364
0.3316
0.3260
0,3203
0.3146
0.3090
0.2938
0.2760
0.2647
0.2359
0.2154
0.1999
0.1876
0.1774
0.1689
0.1616
0.1553

b =2.0

0..095 11
0.1052
0.1153
0.1251
0.1343
0.1431
0.1513
0.1590
0.1662
0.1729
0.1793
0.1852
0.1908
0.1960
0.2009
0.2055
0.2099
0.2139
0.2166
0.2361
0.2534
0.2626
0.2794
0.2854
0.2865
0.2853
0.2829
0,2798
0.2763
0.2727
0.2622
0.2489
0.2400
0.2166
0.1993
0.1859
0.1751
0.1661
0.1586
0.1520
0.1463

x~ —v ~/v oz~ ~ (10)

10

10
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FIG. 1. Comparison of tc(b, x)/x [Eq. (1)l for b =1.8
(solid curve) with experiments by Andersen, Simonsen,
and Sgrensen, (Ref. 8.) The upper and lower dashed
curves correspond to 10% changes in b, viz. , b =1.6 and
b =2.0, as tabulated in Table I. The group of data near
x=2 comes from measurements on a Ta @2=73) target,
the group near x =10 from measurements on an Al
(Z2 =13) target.

For illustration we have evaluated Eq. (4) for the
important case of standard emulsion for which So
is tabulated. "" In units of 10"atoms/cm', it is
defined by n, = 321.56 (the index denotes the atomic
number of the element; here Z, =1 for H), n,
=138.30, n7 =31.68, n8=94 97 nx6=1 3 3~ nss
=100.41, n, =101.01, and n„=0.565 "'" The
result is plotted as the solid curve in Fig. 2, in
the form P'KS(P)/Z, SO(P) versus P=v, /c= a[40.2E,
(MeV}/M, ]'", where a=-v, /c=l/13'I. We find a
difference of 6.3% in the emulsion stopping power
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for s+ versus s at 1.2 MeV/amu, a value slightly
smaller than the tentative estimate of 8-9% given
in Ref. 2. The approximate Eq. (5}, with the pa-
rameter values listed in Table II, is shown as the
dashed curve in Fig. 2.

We make contact with Eq. (1}by e» Post facto
replacing s, in Eq. (5) with»(b, », }as tabulated in
Table I. This then yields the stopping-potwer for-
mula for compounds:

S(», )=S,(»,)
~

1+ ~~ ' ' f(Z„»,}
~

. (11)( z, g5, ».)

We illustrate in Fig. 2 the equivalence of Eq. (11)
(dot-dash curve) with the exact equation (4) (solid
curve). For elemental targets, Eq. (11}reduces
to Eq. (1}.

The Z,' contribution was recently extended to the
stopping power of heavy ions by Kelley et al. '
As a first approximation to a description of this
situation we simply replace Z, by an effective
charge for the heavy ion. If S,(», Z, ) is taken to
be the "best" theoretical Z,' stopping power of the
iona (i.e., with no Z,' contribution), Eq. (1) can be
written in the form

s(», z, ) =s,(», z, )

( I qg&s(vl/Voy Zg) Z~ K(b, »)
~

(12}

which applies as long as q, ,s «Z,' '»/sa. In
terms of the probability m&(v, /vo, Z, ) that the ion

of atomic number Z, and velocity v, is in the
charge state q«, we have

qa, s(vx/vo~ Z, )
1

sl g(vg/vo~ Zg)q
Zf

Z, Q m&(v, /v„z, )q'„.

(13)
The effective charge state for the stopping power
in dense targets is known to be essentially inde-
pendent of Z„so that the substitution of qg ff for
Z, in Eq. (12) applies also to compounds, pro-
vided q„s«Z', '», /a(b, »,). The distribution of
m~ can be assumed to be sufficiently narrow for
us to set (qs}=(q', )s '. The function q„s(v, /vo,
Z, ) [Eq. 18] is then equal to (q',}' ' as determined
from stopping-power measurements. Best fits
to existing data"'" can be summarized in the form

qxofr ( x/ os Zt} - v /o yg )=i-Ce
1

(14}

C =1.082, y(z, ) = Z,'"
for Z, ~ 35 and (v, /vo) &O. lz~o'89 . (15b)

where

C = 1.0, y(z~) = s(Z~ —0.35)

for 4& Z, ~ 10 and (v, /v, ) & 0.25Z, ; (15a)

1.5

O
1.0-

N

V)0

O 0.5-

"STANDARD NUCLEAR EMULSION

EQ. (4)
EQ ( 5 )—EQ (11)

Is~Is'
I
1+ ~~

' I( )
~X j

(18)

I, values, so derived from experiment, will have

The analysis of the stopping-power data for C, N,
and 0 in silicon by Kelley e~ al. ' along these lines
agrees with Eqs. (12), (14), and (15a).

In light of Eq. (1), presently available precision
values of the mean excitation energy for stopping,
I,', must be corrected to obtain the excitation en-
ergy I„central to the first-Born-approximation
stopping-power theory, as it appears in Eq. (3).
Specifically, for x&1, we have

0 l

0.03 0.05
I l l

0.07 0.09 0.11

P

I

0.13 0.15

FIG. 2. S~~ effect on the stopping power of a compound
[Eq. (4) J as applied to the standard emulsion (solid
curve). The dashed line represents Eq. (5) with the
coefficients listed in Table II. The dot-dash cuxve de-
picts Eq. (11) for b =1.8.

Z,'"=5.62
Zc 27.06
S ' =35.47
ln (Zc/Zc ) 0.2706
Kp =0,32 + 0 05

=1.49E& (MeV)/M& (amu)

q =0.18
Q (MeV) =0.1234M& (amu)
I2 =270 eV
S, (Mev)
g= 0.59

TABLE II. Parameters of standard nuclear emulsion,
as defined in the text, for use in Zsl contributions to
stopping powers [Eqs. (5) and (6)J and to ranges [Eqs.
(22) and (23)].
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a somewhat different Z, dependence than the I,'
values known at present. Practical implications
aside, this will bear on the experimental tests of
the theory of K~ and of inner-shell corrections.

II. Z, -DEPENDENT RANGE CONTRIBUTIONS

With Eq. (1}the range R(x), including the Z,'
contribution, becomes

R(q) f (-'*' =R(q) 1- ' '" ' ( ' ' (Eq' =R(&(l
m ) S(x') ' Z' R,(x) x'S,(x'}

~
m )

'
(, Z,' R,(x)) '

(17)

where p are tabulated theoretical ranges
In the last expression, «(b, x) is approximated by

«» ro(x) denotes the integral

( ) ~/M, 6IZ,
l~

dx'
m ) x'S0(x') (18)

For x&1 Eq, (3) dominates the range integration.
Then, since S,(x) EEx 'In(x/q), Eq. (18) obeys the
transformation

q~.(x) =R.((qx)"'},
so that Eq. (17) reduces to the simple form

(19)

(„) E,q. R((q )"q')

)Z'"q R,(x)

R (E ) 1 4Z, «,6i R, ((QE,)"R)
Z +Ks Ro(E, )

(20)

in terms only of known ranges R,. The constant
«,/q has the value=1. 78. In the last version, E,
is given in MeV, and Q (MeV) = 4.57 x10 'M,
(amu)I, (eV).

It is well established, over wide intervals of E„
I

R(R)=1-, ,,q " '

( ) (21)

in the notation of Eq. (20). The effect of the slow
variation of ~ with x can be incorporated approxi-
mately by replacing «, in Eq. (21) with «(b, x) and,
in the following range formulas for compounds,
with «(b, x, ).

Range formulas for compounds, including the
Z,' contribution, follow directly from Eq. (17),
using Eqs. (5), (6), (19), and the definitions in
Eqs. (7)-(9). For E, in MeV, the result is"

that the range-energy relation can be approximated
accurately by R, =(E,/k)' ", where k is a constant
and )7(E,} is the range-energy index which is tab-
ulatedP' For 5sE, (MeV)/M, s200, )I(E,) varies
only very slowly and has a mean value close to
q =0.6 [compared to Geiger's rule qe =2/3, appli-
cable to the low energies of natural a particles .
corresponding to (E,/M, ) = (1-2) MeV/amu]. Then
we have

Z Zx/2
11(R,) =R,(E,) I

1-
~c

R, ((QE,)"'}
1 I Z, Qln(Z, /Z.')

R,(E,) Z,', S,(E,)R,(E,), (22)

With R,(E,) =(E,/k)' ", Eq. (22) simplifies to

R(E,)=R (E) Il- E
' -E

( j (1+(q E,') — (q R,
' (23)

Equations (22) and (23) reduce to Eqs. (20) and (21)
for elemental targets. With the aid of tables of
So(E,) and Ro(E,) '"'"'"'"Eq. (22) is a con-
venient and accurate formula for calculating R(E,),
or for constructing curves of (R -RD) versus Ro
by using E, from tables of R,(E,) as the connecting
parameter, or for pairs of antiparticles 4R
=(R R+) = 2 ) R - -Ro j versus RR. Equations (21)
and (23) are somewhat less accurate, but useful
for ready calculations when the range-energy

index g is known. Note that in calculating R from
tabulated ranges and stopping powers care should
be taken to use only theoretical values, since
values derived from experiment will already con-
tain a Z,' contribution. However, for calculating
R Rp and range diff erences between a particle
and its antiparticle, values of Sp and Rp derived
from experiment may be used, since the inclusion
of a Z,' contribution in Sp and Rp here will produce
only a small higher-order contribution to the
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range dIfferences.
We have performed calculations of AR for m

versus m' as a function of 8, in nuclear emulsion
from Eq. (22), using Tables II and III of Ref. 13,
and from Eq. (23). The constants for nuclear
emulsion were taken from Table II. The results
are shown graphically in Fig. 3. Slightly lower
values are found from the expedient formulas
[Eqs. (21) and (23)] compared to the results of the
more accurate equations (20) and (22), as a con-
sequence of employing the value of the range-en-
ergy index g, appropriate for Ey for both Ao

((QE,)"'}and R,(E,). The results calculated with
the analytical formulas agree quite well with the
results found in Ref. 7 by numerical integration.
The values estimated from Fig. 4 in Ref. 7 are
shown as cross marks in Fig. 3. The small dif-
ference in the results at the higher energies is
due to relativistic corrections which are not
included in our analytical formulas.

The theoretical hB„values from Eq. (22) are
about 40% smaller than the range differences
measured by Barkas e~ al."at the n+ ranges 80
and 90 p, m. The theoretical value ~„=1.69 at
R„+ =80 gm (see Fig. 3) agrees satisfactorily
with the recent measurement 4R„=(2.0 +0.3) pm
by Tovee e~ al." At 8„+ = 725 pm, the theoretical

0.5
I

0.75 1
I

E +( MeV)

15 2
I I

3 4 5
I I I

EQ (2

r.
—-EQ(25)

X

0
10 20 50 100 200

R y(p. m)

500 1000

FIG. 3. Range difference for n+ and x mesons in nu-
clear emulsion, AR =—R~ -R~+, as a function of R + and

E„+, calculated according to Eqs. (22) and (23) with the
constants listed in Table II and range-energy tables
given in Ref. 13. The cross marks are estimates of the
range difference derived from results presented in Ref.
7.

value 4R„=4.35 p,m agrees, within the uncer-
tainties, with the measured value 4R„=(5.5 +3.2)
p.m reported by Barkas et al.

III. USE OF TABLES

Extensive tables of the functions E, L, and of the
central function I(g) defined in Ref. 2 can be ob-
tained from the National Auxiliary Publication
Service 2' From these tables, with Eq. (2), the
function x(b, x) for parameter values not listed
in Table I can be calculated readily.
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APPENDIX: APPLICATIONS

In the following appendix we present in detail
three examples illustrating the use of the formulas
derived in this paper for the calculation of Z,'
contributions to stopping power and range. For
practical applications one should be aware that
the tabulated theoretical stopping powers and
ranges are to some extent uncertain owing to
uncertainties in mean excitation energies, shell
corrections, nonadditivity in the case of com-
pounds, etc. Thus, the addition of the Z,' con-
tribution may or may not be meaningful, depending
on the size of the Z,' contribution compared with
the uncertainty in the theoretical stopping-power
or range values. In the examples we do not con-
sider these questions, but simply provide the
examples as guides to the use of the analytic
formulas.

A. Example (i): Stopping Power of 8-MeV 0(

Particle in Water (H~ 0)

Procedure. Use, e.g. , Eq. (11). Calculate the
target constants Z', ', Z„and ln (Z, /Z,') ac-
cording to Eqs. (7}-(9}and x, = 40.2E, (MeV)/M,
(amu) Z, , Then f(Z, , x~) =(Z', 2/Z~ ') f 1+[in
(Z, /Z,')]/L(x, )j by Eq. (6), with L(x, ) =In(x, /q)
by Eq. (3). [If x, s1, Eq. (3) does not apply; in-
stead, read L(x, ) from Fig. 3 in Ref. 2 or from
the tables in Ref. 22.] Determine x(1.8, x, ) from
Table I. [Note that the value b =1.8 should be used
as long as the present data and new data confirm
the curve in Fig. 1. If changes are necessary,
read x(b, x) for the new b from Table I by inter-
polation between b = 1.6 and b = 1.8] Calculate the
term [1+Z,f(Z, , x, )x(b, x )/Z mx, ] and multiply
with the best-tabulated stopping power for this
particle-target combination at E, to obtain the
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stopping power, including the Z', contribution.
Results .For water of density s, molecules per

unit volume, the hydrogen-atom density is n, = 2sp
and the oxygen-atom density is s, =s„so Eqs.
(7}-(9)give Z 2 =[(2)(1'.') +(1)(8' ",]/[(2)(1)
+(1)(8)]=2.4627, lnZ, =[(1}(8)ln8]/[(2)(1)+(1)(8)]
= 1..6636, and lnZ,' = [(1)(8' ') ln8] /[(2)(1' ')
+(I)(P~')] = 1.9106. Thus, Z, = 5.278 and In(Z,
/Z,') = —0.2470. Also, x, = (40.2)(8)/(4)(5.278)
=15.2, so with q =0.18, L(25.2) = ln(15.2/0. 18)
=4.44. With these values, f(Z„x,) =(2.463/2. 297)
x[1+(—0.2470)/(4. 44)] = 1.01. From Table I x(1.8,
15.2) = 0.2840 by linear interpolation. Thus we .

have [1+Z~ f(Z„x,)x(1.8, x, )/Z,'~'x, ]= [1+(2)
(1.01)(0.284)/(2. 30)(15.2)]= 1.016, or a contribution
to the stopping power of 1.6%.

B. Example (ii): Range of 16-MeV Proton in

Aluminum

Procedure. Use, e.g., Eq. (20). Calculate QE,
=4.57x10 4M, (amu)I, (eV)E, (MeV). From a
table of calculated ranges find Ro(E,) and

R, ((QE,)"'), and with «,/q =1.78 calculate the fac-
tor [1 -Z, (xo/q}R, ((QE,)' 'QZ,"'Ro(E,)]. The tabu-
lated theoretical range multiplied by this factor
gives the range including the Z,' contribution.

Results. For Al with I, = 166 eV, QE, = (4.57
x10 4)(1)(166)(16)=1.214 (MeV)'. From a table
of proton ranges in aluminum (Ref. 18, p. 8-161},
we find R, (16-MeV p) = 0.3879 g/cm' and

R, ((QE,)'I') =R,(1 10.2 M-eV P) =0.0048 g/cm'.
Thus, with Z, =+1, the factor is [1 —(1)(1.78)
x (0.0048}/(13"~)(0.3879)]=0.994, and the range for
a 16-MeV proton in aluminum, including the Z,'
contribution, becomes R(16-MeV P) = (0.3879)
x,(0.994) =0.3856 g/cm'.

C. Example (iii): Range Difference Due to Z,
Effect Between x' and m Mesons for Theoretical

Pion Range of 80 pm in Emulsion

Procedure Use. , e.g., Eq. (22). Find the energy
E~ corresponding to the given range from tables of
calculated ranges. The constants for standard
emulsion are found in Table II. Calculate for
emulsion Q (MeV) = 0.1234M, (amu) and (QE,)' '.
From tables, find So(E,) and RD((QE, )' ~). The
range difference is given by nR =2 (R -R,

~
.

Results. The energy of a g meson with a theo-
retical range of 80 pm is E, = 1.448 MeV by linear
interpolation from Table III of Ref. 13. M, (x)
= 0.14985 amu, so Q = (0.1234)(0.14985}= 0.01849
MeV and (QE )' ' = [(0.01849)(1.448) ]'~' = 0.1636
MeV. From Ref. 13, Table III, RD((QE, )' ') =2.50

y, m by interpolation. S,(E,) for v is the same as
S, for an equal-velocity proton, so a 1.448-MeV
v has the same So as a proton of energy [I, (proton}
/M, (v)](1.448) = 9.73 MeV. From Ref. 13, Table II,
S,(1.448) = 107x10 4 MeV/pm. With the emulsion
constants from our Table II, we have

2
(1)(5.62)(0.32),/ 0 2706 (0.01849)( —0.2706)

i(27 06)(0 18) I& 107x10-4

=1.69 p,m.

This value of tkR„ for the theoretical range 80 p.m
compares well with the value 2.0+0.3 pm obtained

by Tovee et al."for the experimental range R,+

=80 pm.
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