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Elastic- and inelastic-scattering cross sections for low~ergy elective+ in Hg have been obtained

through comparison of experimental and calculated transport data Electron&ectlun interactions and

superelastic collisions are incorporated into the numerical solution for the electron~ergy distribution.
The electron-electron intentions are shown to have a pronounced efFect upon computed drift velocity

and characteristic energies at low E/N, while superelastic collisions principally alter the cascade
ionization rate. Details of the present method for solving the dc Boltzmann equation, including the

above process, are discussed.

I. INTRODUCTION

The seaxch for efficient lasers in the visible
and ultraviolet yortions of the frequency syectrum
has recently generated considerable interest in a
class of devices which may be termed dissociation
lasers. ' These laser systems utilize molecules
which possess bound excited states and unbound
ground states. Molecular Hg, is a member of
this class of molecules and represents an inter-
esting laser candidate, particularly when one
considers the quantity of excited Hg* produced in
electrical discharges. In order to perform a
kinetic analysis of the Hg-Hg, system it is neces-
sary to have accurate values for the rates of ex-
citation of low-lying states of Hg through electron
impact, w'hich in turn requires energy-dependent
cross sections for both elastic and inelastic scat-
tering. Contrary to what one might expect, the
required cross sections for Hg are not available
from the literature; hence, the present investiga-
tion has been directed toward generating a self-
consistent set of cross sections from transport
data following the approach of Phelps and co-

workers. ' The numerical techniques used for
solving the dc Boltzmann equation in the present
work Refer from those of Befs. 2 and 3, and are
described in detail in the next sections. It has
also been necessary to incorporate electron-elec-
tron interactions into the calculation, since most
of the characteristic energy data for Hg has been
obtained in electrical arcs where account of such
collisions is required to make the quoted electron
temperature meaningful. Electron-electron inter-
actions were not required in Refs. 2 and 3, and
their formulation in the present work will be dis-
cussed in the following section.

H. BOI.TZMANN EQUATION

A. Basic Formu1ation

The basic approach for solving the dc Boltzmann
equation employed in this investigation extends
the formulation of Canavan and Proctor described
in Ref. 4. The time evolution of the number den-
sity s(», f}d» of electrons with energy between»
and a +de in a mixture of gases of total number
density N is determined by
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The first term on the right-hand side of Eq. (1)
is the flux of electrons in energy space driven
by the applied field E,
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the cross section for momentum transfer from
electrons at energy z to molecules N, , and e and
m are the electron charge and mass. The second
term on the right-hand side of Eq. (1) is the flux
of electrons along the energy axis driven by elastic
collisions,
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where q, is the mole fraction of species s, o,(») v = 2m'(2»/m)"' Q q, g, (»)/M, ,
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where M, is the mass of species s and T is the
gas temperature. Both fluxes Jz and J„may be
noted to contain a current term proportional to
n(e) and a diffusion term proportional to the gra-
dient dn/de.

The final terms on the right-hand side of Eq. (1)
describe the inelastic and superelastic collisions
which give rise to nonlocal interactions in energy
space T.he quantity R~(e}=o„(e}v{e}is the rate
at which electrons with velocity v(e) produce ex-
citation from the ground state of species s to ex-
cited state j losing energy e,*, in the processes
while R,'~(e}=[( e+e,*,)/e]o„( e+c,*~)v(e) is the rate
at which electrons at ~ suffer superelastic colli-

sions with molecules in state N~ and gain energy
e,*,. Rt(e) is the ionization rate for species s and
the term multiplied by 6(e) indicates that all sec-
ondary electrons are produced at zero energy.
The present formulation of the Boltzmann equation
as given by Eq. (1) differs from Eq. (2) of Ref.
2(a) only through the retention of the time depen-
dence and inclusion of the secondary electrons
produced by ionization.

Equation (1) is converted to a set of K-coupled
ordinary differential equations by finite differenc-
ing the electron energy axis into K cells of width

From the details as presented in Appendix A

one obtains

n =a. . . b „„,—(a, ~ b, )n +g N, (Rnn, , +Rn n, N)/N
SeJ

~R', , n ~ b, g R',„n -{R,~, +R,'~, R)n)+'
with
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ak is interpreted as the rate at which electrons at
energy ek are promoted to energy e„„while bk

is the rate for demotion from ck to ck, . Notice
that all the rates a, , 5, , R,», R,'» are constants
which only need to be evaluated once per calcula-
tion.

Equation (4) may be expressed in matrix nota-
tion as

nk = ~Ck, n, , (5)

where the elements of the matrix C» are readily
identified.

When the excited-state populations N,' are neg-
ligible an important simplification occurs, for
now all the elements of C are constants and fur-
thermore C has upper Hessenberg form with only
one diagonal of nonzero elements below the princi-
pal diagonal. ' In this case in the present work,
an implicit Euler algorithm is applied to Eq. (5}
such that

(I —C h} n(t+ h) = n(t),

where I,~
= 5,~ is the identity matrix and h is an

integration time step. Since the matrix (I —C h)
is a constant if k is constant, the problem is con-
verted to solving a set of linear algebraic equa-
tions to obtain n (t+ h) given n(t). This is readily

I

accomplished by converting (I —C h) to upper
triangular form using column pivoting and solving
for n(t+ h) by back substitution explicitly account-
ing for the fact that (I —C h) is an upper Hessen-
berg matrix. ' In practice, the convergence prop-
erties of this relaxation scheme have proven to
be extremely good for arbitrary choices of n(0}.
The calculation of one steady-state distribution
on a 300-point energy grid typically requires
-2 sec on a CDC 7600.

If superelastic collisions are not negligible, then
C is no longer a sparse matrix of upper Hessen-
berg form. However, if its elements are con-
stants, Eq. (6) still represents a system of linear
equations and may be solved by converting C to
upper triangular form and using back substitution.

To maintain the linearity of Eq. (4) it is neces-
sary to assume that the excited-state populations
N~ do not vary during the time the electron dis-
tribution nk relaxes to steady state. In practice
this is a very good approximation, since the time
scale for establishing a steady-state electron
distribution is set by the electron neutral collision
frequency, which is typically a few picoseconds
with neutral densities of N, =10" cm ', while the
time scale for molecular excitation in glow dis-
charges is on the order of 100 nsec or longer.
The effect of superelastic collisions on the elec-
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tron distribution may be evaluated by inputting a
selected excited-state population distribution N,'
and observing the resulting equilibrium n~. In
most cases of interest the effect is quite small,
as will be discussed in Sec. III. The coupled solu-
tion for self-consistent electron and excitation
distributions has also been performed as follows:
Starting from an initial distribution N~ a steady-
state electron distribution e, is computed. From
this distribution excitation rates

f v„(c)v(e)n(e)de
Jn(e)de

are computed and using these rates the excited-
state populations %' are advanced in time by solu-
tion of the appropriate rate equations. ' At a select-
ed time a new steady-state electron distribution
is computed using the new values of N~, new rates
g,' are found and the processes repeated until the
system has reached steady state or the desired
transient time. This approach of assuming a
steady-state electron distribution at each instant
in time based upon the instantaneous values of
N~(t) has the advantage of filtering out the very
rapid relaxation processes in the electron dis-
tribution and allows the entire calculation to pro-
ceed with a time scale set only by the rate equa-
tion governing N,'.

nonlinear, for the contraction of the constant
matrices A and 8 with n~ to obtain a~ and b~ must
be performed each iteration. The differential
equations for ~~ may be solved by a conventional
forward-marching numerical integration scheme,
such as an Adam's method, ' or alternatively, the
steady-state solution approached by relaxation
techniques. In this investigation the latter ap-
proach has been employed using a partially im-
plicit algorithm

(I -Ca) n(i+I)=[1+a T(n)] n(f)

where T(s(t)}is a tridiagonal matrix with ele-
ments a' and b' describing e-e interactions. The
utility of Eq. (9) lies primarily in the fact the
large matrix (I —C k) is only triangularized once
per calculation.

(9)

C. Computational Diagnostics

(10}

The principal diagnostic employed to assess the
validity of the numerical solutions has been energy
conservation. Refer to Eq. (4}and note that the
first term in the expressions for a, and b~„gov-
erns the rate at which electrons exchange energy
with the dc electric field. Defining the terms
u~ and 5, as

8. Electron-Electron Interactions

For conditions of low E/N and high fractional
ionization, electron-electron (e-e} interactions
will become important and tend to drive the dis-
tribution function towards a Maxwellian. Since
the conditions stated above may be expected in
ares and much of the characteristic energy data
for Hg is derived from arcs it has been necessary
to include e-e interactions in the ealeulation.
Having observed the useful numerical properties
of formulating the time rate of change of a quantity
as the negative of the divergence of a flux, the
same approach wQ1 be followed in the incorpora-
tion of e-e interactions into Eq. (4). The details
as developed in Appendix B follow the formalism
presented by Proctor' and show that e-e inter-
actions may be incorporated by adding to u~ and

6, of Eq. (4) the terms

The elements of A are computed from Eq. (BV)
and modified by Eq. (B13);then B is set equal to
the transpose of A as required by Eq. (89). This
results in a finite-difference formulation of e-e
interactions which conserves particles and energy
exactly. However, the resulting equations are now

the rate of energy gained by the electrons from
the de field is then given by

E,=g(a, —F„}s,«.
This energy source is balanced by losses through
elastic collisions

&.I =-Z [(sa -sa) -(~a -fA)]no«

and inelastic losses

(14)I
A~A ggy Fly ~ Bl~~)6E'

sj sg

For all computations accepted in this investigation
the difference between E~ and k,&

+E. „, was less
than one part in 106.

The coding of the electron-electron interaction
was subjected to two test eases. First it was
verified that with only e- e interactions, a Max-
wellian was indeed a steady-state solution of the

~inc) ~ %~sfQ+m +p+m ~~s +gg+++sp+m +Q+m +s +sjsj sj sj
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(15)

e, =eD/g

after Ref. 2 where the mobility

u =I &/(EIN)

and the diffusion coefficient

(16)

(16)

f, =II,/(eI, "Jan, ).

Finally

aI Q,I, R,',N, n, /n, (20)

where RI~ is the ionization rate (cm'/sec) for
species s at energy k.

difference equations. Secondly an initially non-
Maxwellian distribution containing a known energy
density Q, and electron number density n„was
observed to relax to a Maxwellian distribution
with a temperature &~& = 3Q/IIO.

The transport coefficients which were computed
for comparison with experimental data included
the drift velocity v~(cm/sec), the characteristic
energy e~(eV), and the ionization coefficient per
molecule al/N(cm'). These parameters are de-
fined as follows:

III. RESULTS AND DISCUSSION

Exercising the techniques developed in Sec. II,
steady-state distributions have been computed
in the range 10 Is & E/¹10 '4 Vcm'. The inelas-
tic processes considered were excitation from
the Hg ground state to the 6 'Po, , states, the
6IP, state, a lumped-state representative of higher
electronic levels, and ionization. Initial estimates
for the required cross sections were obtained
from the work of McCutchen' for momentum trans-
fer, the data of Borst' for near threshold ioniza-
tion fitted to the results of Harrison'0 for higher
energies, and the work of Bors' for the 6'P, ex-
citation cross section. The relative cross sec-
tion obtained by Ottley, et al."was taken for the
6'P, state and normalized to the 6'P, cross sec-
tion using the results quoted by von Engel." Ini-
tial estimates for the remaining cross sections
were also taken from von Engel. Adjusting the
initial cross sections for momentum transfer and
electronic excitation to the values displayed in
Fig. 1 yielded the comparison between computed
and experimental v~ and ek given in Fig. 2. Figure
3 compares the computed ionization coefficient
(solid curve) with experimental data. These dis-
played results represent a best fit with the cur-
rently available experimental data. However, as
one can observe from Figs. 2 and 3 considerable
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FIG. 1. Elastic- and inelastic-scattering cross sec-
tions for electrons in Hg as a function of energy.
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FIG. 2. Comparison of computed values (solid curve)
and experimental data from Refs. 8 and 13-15for drift
velocity ez (cm/sec) and characteristic energy ek (eV)
as a function of E/N (V cm2). ,
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scatter is present in the data and in particular
little data for ~, exist. Since so little data rele-
vant to inelastic scattering were available, the
decision was made to assume the ionization cross
sections obtained from Borst and Harrison were
accurately known and would not be varied. Having
made this choice, the values of a, may be used to
determine the magnitude of the excitation cross
sections for their values determine the fractional
number of electrons which are able to reach the
ionization threshold. The method employed herein
for obtaining cross sections from transport data
can only yield a value for the total excitation cross
section at any energy. The partitioning of the
total cross section among individual levels re-
quires additional information. In the present case
the relative magnitudes of the cross sections given
in von Engel have been employed.

The maximum values of the 6'P, , cross sections
as given in Fig. 1 are virtually the same as those
reported by Kenty in his investigation of Hg-Ar
discharges, whQe the maximum value of the
6'Po cross section used in the present work is
smaller by approximately 55%. Notice, however,
that the 'Po cross section is small in comparison
to the others, and as a consequence, the total
inelastic cross section for 6'P excitation in the

~ Ooviee 8 Smith

w pverton 5 Ooviee

ohneon 5 Porlter

oviea 5 Smith (formulo)

lp-I7

present work agrees with that of Ref. 19 to within
25@ above e =5 eV.

With the cross sections displayed in Fig. 1 the
binary rate for excitation of each level has been
computed according to

R, =Q o, (~,)v(c,)s,/n, (21)

and the results are displayed in Fig. 4. Notice
that over the E/N range consMered here the 6 'P,
state receives most of the energy while the ex-
citation of states higher than 6'P, represented
by the lumped state accounts for less than 5
of the total excitation energy. As a consequence,
the computed transport coefficients are quite in-
sensitive to the behavior of this lumped cross
section and the neglect of explicitly following ex-
citation to levels other than the 6P states is justi-
fied.

The partition of the total energy deposition rate
among the various modes of excitation is shown
in Fig. 5. Notice that for E/¹10 ' Vcm' vir-
tually all of the energy is going into electronic
excitation. Furthermore, Hg is somewhat unique
in that the ionization rate remains quite low until
very large values of E/N are reached. This gives
a wide operating range on E/N for which the dis-
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FIG. 3. Comparison of computed values (solid curve)
and experimental data from Refs. 16-18 for ionization
coefficient per Hg atom, u&/N (cm ), as a function of
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charge should remain stable and a maximum
amount of energy is given to excited states. These
facts make Hg quite attractive as a potentially
efficient dissociation laser medium.

To elucidate the manner in which the measured
transport coefficients reflect the behavior of the
cross sections, consider the details of v~ and e,
displayed in Fig. 2. Beginning from the lowest
E/N, v~ and»» are determined entirely by the
functional form of the momentum-transfer cross
section o . The plateau in v~ for E/N between
2x10-" and 6x10 ' Vcm is a result of the rapid
rise in o between 0.32 and 0.6 eV. The magnitude
of v„ in the plateau and position of the knee in v~

at E/N= 10 "V cm' is quite sensitive to the energy
and initial slope of the rise in v . For example,
if cr is allowed to rise abruptly at 0.2 eV instead
of 0.32 eV, then the knee in v, is shifted to E/N
=6x10 ' Vcm and the value of v~ drops to
3x 10 cm/sec in the plateau region. As a conse-
quence of this sensitivity, the values for o be-
tween 0 and 1 eV are the most accurately deter-
mined cross sections with accuracy limited princi-
pally by scatter or absence of experimental data.

As E/N is increased beyond 10 "V cm', e»
initially remains bound to a value of 0.'7 eV by
elastic losses in the large barrier of v . This
continues until E/N= 3x 10 ", at which point elec-
trons begin to penetrate the "elastic loss barrier"
and the tail of the distribution moves rapidly to
values near 4.8 eV where the barrier presented by
inelastic losses is encountered. The value of
E/N at which e» begins to rise from its initial
plateau is set by the magnitude of the peak in o,
while the range in E/N for which e» is held fixed
near the value of ~, = 1 eV is determined by the

absolute magnitude of the inelastic cross sections
0'x ~

By comparing a» [Eq. (4)) to a» —a» [Eq. (10)],
one can derive a simple criteron for the value of
E/N at which energy losses to inelastics become
important. The resulting requirement is

(2e»/Sm)(E/N)'(v/N) '
(4m/M )e, (22)

8 x 10
I I I I I & I I I I I I I

Inserting numerical values appropriate for Hg
at e»=1 eV yields (E/N)*=4x10-~ (Vcm*)' so
that inelastic collisions rapidly become important
as E/N increases beyond 2x10 "Vcm» as ob-
served in Fig. 5.

Continuing with the determination of o„, using
e, as another data set as described previously
allows one to give a reasonably accurate normal-
ization for the total 0, but individual inelastic-
scattering cross sections are not determined when
they overlap to the extent present in Hg. If the
individual o,'s were widely spaced in energy, then
they could be determined with much higher accu-
racy.

Throughout the range E/¹3 x10 "calculations
show v, to vary as v, -1/o so that the magnitude
of o at energies greater than -2eV is determined
by the behavior of v~.

The total scattering cross section and momen-
tum-transfer cross section at energies ~ &1 eV
obtained from the present calculation are com-
pared with the results of beam transmission ex-
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FIG. 5. Fractional partition of total discharge power
v~ (E/N) among elastic and inelastic losses as a function
of E/N (Vcm').

FIG. 6. Comparison of present cross sections with
results of low-energy electron-beam transmission ex-
periments.
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various fractional ionizations at E/N= 3x10 "
Vcm'. The normalization is ff(e)e"'de =1, and
on this plot a Maxwellian distribution would appear
as a straight line. Notice that as p is increased
the e-e collisions alter the low-energy portion
of the distribution first. This is to be expected
because of the e "' dependence of the e-e inter-
action. By a value of p =10 ~, which is typical
of the experimental conditions of Ref. 13, the
electron distribution has thermalized toward a
Maxwellian out to energies c =4.0 eV. However,
beyond 4.8 eV where inelastic losses are im-
portant, the distribution functions remain unal-
tered. These results are in keeping with simple
expectations of E|I. (23) and (24). The value of
e, from the curve p =3&&10 ' of Fig. 7 has de-
creased from its value obtained when the e-e
interactions were neglected. In fact, for a value
of p typical of Ref. 13, one obtains values of c,
vs E/N given by curve A of Fig. 2 which are in
good agreement with the experimental results.
The thermalization of the distribution due to e-e
interactions is sufficient to overcome the elastic
loss barrier, and in contrast to the solid curve
of Fig. 2, no plateau in c, is observed whenp
=3x10 ' (curve A). While the computed and ex-
perimental values of e~ compare favorably, the
values of v, (curve B, Fig. 2) do not. The com-
puted drift velocities at E/N= 2x 10 "and p = 3
&&10 4 lie above the experimental data of Ref. 13.
It has not been possible to obtain a set of cross
sections which yield v„and e, consistent with both
the experimental results of Ref. 8 (where e-e
interactions are unimportant) and Ref. 13 (where
e-e interactions must be included). The effect
of e-e interactions in low-pressure Hg discharges
has recently been examined by Atajew et al. 22 The
two calculations are not in good agreement at low
E/N. In particular, in Ref. 22, values of vd for
E/N& 10 "fall below the present values, shown in
Fig. 2, when e-e interactions are neglected. This
behavior is qualitatively inconsistent with the
occurence of the "jump" in o used in Ref. 22 at
a higher energy than shown in Fig. 1. Further
disagreement occurs when e-e interactions are
included, with Ref. 22 predicting a much greater
increase in the mobility at E/N=10 "with in-
creasing p than is found in the present results.
The source of these discrepancies is not known,
but could arise from zoning along the energy axis.
The present calculation has typically used a Ae
=0.01 eV and found the computed transport data
to be independent of Ee for Ae &0.02 eV with 10 "
&E/N&10-"

The final process to be considered is the effect
superelastic collisions have upon the computed
transport data. To perform this analysis in detail

would require the development of an accurate
kinetic model for Hg. This has not been the object
of this study, so, as an alternative, the excited-
state populations of Hg have been assumed to obey
a Maxwellian distribution with a temperature T .
Then for a given E/N, the behavior of U, and e, as
a function of T* has been investigated. The re-
sults for E/N=10 '8 Vcm' are displayed in Fig. 8.
Notice that v~ and e, are virtually independent of
T* until T* is within 60@ of the nominal value of
e~ from Fig. 2. At this point, e~ begins to rise,
owing to the cancellation of excitation losses by
superelastic collisions. At the same time, v~

decreases, reflecting a decrease in the mobility
as a consequence of the increased collision fre-
quency. It should be noted that c, and v~ reflect
the behavior of the bulk of the electron distribu-
tion and, while they are insensitive to T*, this is
not true of n, . The ionization rate depends criti-
cally upon the high-energy tail of the distribution
which, in turn, is quite sensitive to T . For
example, when T* =0.3 eV, n,. has already in-
creased by a factor of 10' over its value at T*
=0.1 eV and continues to rise rapidly thereafter,
as shown in Fig. 8. Ionization from excited states
has not been included in the calculation. However,
as mentioned in Ref. 19, this will produce an addi-
tional increase in n, for large values of T*. This
combined behavior could have a significant effect
upon the stability of a discharge operating near
the breakdown limit.

In summary, elastic and inelastic scattering
cross sections for low-energy electrons in Hg
have been obtained which are consistent with
available transport data. The numerical calcula-
tions have included electron-electron interactions
and superelastic collisions with the former proving
to significantly alter the bulk of the computed
distribution function at low E/N, while the latter
principally effects n, . From the method used
here, the elastic scattering cross section for
0&a &4 eV is detern oned to within the scatter
of experimental dat .. Likewise, the magnitude
of the total inelastic cross section is well deter-
mined near threshold; however, the partition
between various excitation processes is much
less certain. Inelastic cross sections above c
=25 eV are not determined by this method, for
discharges in the E/N range considered here con-
tain a negligible number of electrons beyond e.

=-25 eV.
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APPENDIX A

When the time-dependent Boltzmann equation
represented by Eq. (1}is projected onto a finite-

differenced energy axis containing K cells of width

Ac, there results a set of K coupled first-order
differential equations

~ ~~f'(k) ~i—(k)i ~~'( (k) —~ ( (k)~
nk +~N Rsgs+m +R,'&s „ns m N, /Ns+Rss+m ns+m

8) 8g 8f 8j 8$

~ a„+R,'„n„-(Rn +R,i, +R' (n, ) (Al)

with

+2Ne' E e, n, +, +n, n, +, -n,
3m N v,'/N 4e,'

(A2)

I

which can be evaluated using Eq. (4}, Eq. (A4},
and the assumed behavior of a (e,). The relative
values of n„may then be made absolute using

nk no

where

( ')
m 8 8

k =kgb,

J (k) = J'(k —1), m, q
=e,)/he.

J+,k, = p' "' ' -e' -kTe'

(As)

APPENDIX B

From the work of Rosenbluth et al. , one may
write, for the case of interactions between free
electrons with an isotropic velocity distribution, ~4an, i, , an, a3 3 3 n)=a 36 n +2f

Bt 96 86 8f 26

(an n)

where

Wc((ea t) =2 n dh —(I/e) xn dx
0 0

The first two terms on the right-hand side of
Eq. (Al) possess the desirable property of con-
serving the total number of electrons n, =Qsns
exactly even in finite-difference form if the physi-
cal boundary conditions J, = J» =0 are employed.
The entire equation is then required to conserve
particles exactly by setting to zero rates for which

k+m,
&

&K and k-m, &&1. Now substitute Eqs.
(A2) and (A3) into Eq. (Al) and perform the indi-
cated algebra, grouping coefficients of n, , n„,
to obtain Eq. (4}of the text.

In the region where only elastic collisions are
important, an approximate analytic solution for
n, has been obtained in the form of a Druyvesteyn
distribution. " It is interesting to note that in this
region, one ~ay obtain an analytic solution to the
difference equation [Eq. (4)] for n, = 0 independent
of the form of o . From Eq. (4) with the indicated
boundary condition b, =0, it is found that

f(e)=e ' 'n/no, ns= n( }dee
0

and substituting into Eq. (B1)yields

(S2)

Bt
=an', F(e, t),

where

~ B.f By B„f By
( (= R2 'aa', 3,~ '

a.—+ 3) ~ aa"'f
86 86 86 86

a = -', w e'(2/m)'" lnA,

(k T/4wn, e'P"
2e'/mvw

and other quantities are the same as defined pre-
viously. .Defining a new function

n, = (a, /b, )n, , (A4)

~a+ &k ~k-i
nk+I y

nk y
nk-1

k+1 k+1
(A5)

which is a function only of o(e2). Similarly, setting

n, =0, k W1 leads to the recursion relation
Q = g/ns.

Equation (Bl) is equivalent to the formulation of
electron-electron interactions presented by Drei-
cer as Eq. (42) of Ref. 25. It has been shown in
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Bn BJ,
Bt Be

(B4)

Ref. 26 that this formulation is equivalent to ex-
pressing the Coulomb collision integral as the
momentum-space divergence of a current density
as suggested by Landau. " In the present appli-
cation, where asymmetries in the velocity dis-
tribution have been assumed to be negligible,
this may be reduced to a divergence in energy
space where the appropriate current density is
readily obtained by formally writing Eq. (BS) in a
flux divergent form

an isolated system is retained. However the sta-
tionality of a Maxwellian distribution and conser-
vation of energy are not automatically preserved
to all orders by the finite-difference equations.
The remainder of this section will describe how

Eq. (B6) is modified to incorporate these proper-
ties.

Substitute the expressions for J,', and J,, into
Eq. (B6}and group terms to find coefficients of
n„, , n, and n. .. thus deriving the difference
equation

I Z I I I g. iW
k k-1 k 1 k+1 k+1 ~ k k& k

The energy Qux due to e-e interactions is J„
=-o.n, G(e, T) and

G(c, t) = F(h, t) dh.
0

where

ua = QAas ns, ba ——Q Ba, n,
1

(B7)

Performing the indicated integration of E(x, t)
by parts clearing Sf /ah terms, evaluating the
resulting partial derivatives of p, and converting
from f(e, t) back to n(e, t) using Eq. (B2), one
obtains the desired results:

(~ t) ee
et ' 8e

and

Aa&
——aorta+~ Hae~, +&a Ha, )(&, ua —0,75)

+ [(1 Ha i) e-a„+ (1 H, a, )-e ](ae, "'ua }],

Baet i =+(( a+~i~Ha+x. r+ a Ha i)( qua+0. 75)

+[(1 Hai}ea, i—+(1 —Ha, , ) q] (&, "'u, }j.

J, =Q p — -Q (B5} In the expressions for A.» and B~1

where

P(e, t) -=2e "* xn(x, t)dx
0

+2& x "'n(x, t)dx,

q(e, t) = S~-"' n(h, t) dh.
0

As before, Eq. (B5}is rendered discrete by pro-
jecting it onto a finite-differenced energy axis
resulting in

The matrix element A» may be interpreted as
the rate (cm'/sec) for excitation of electrons from
E'k to 6 k 1 while electrons at e, go to e f 1 Simi-
larly B» is the rate for deexcitation from ek to

1 by electro ns e, going to ~„,. The time r"&e

of change of electron energy density is
K

E=
k=1

which from Eq. (B7}is

Bnk J+ —J
Bt

(B6)
B =g ( A„- B„) ,nn( t~)'.

ki
(BS)

where

P +P, n„, nn, „,n„, —n,
)2 4&k„1]~ b,

Thus from Eq. (BS), E is identically zero in an
isolated system if

g(A„- B„)=0,
k7

Ok+1 + @k nk+1 +nk
2 2

J,,(k) = J,', (k —1).
When the finite-difference Eqs. (B6) are subjected
to the boundary condition J,, (1}= J,', (E}=0, the
desired property of conservation of particles in

Akr =Brk (BQ)

and from the physical interpretation of these ma-
trix elements one must also impose the boundary

which implies that (A» -B») is an antisymmetric
matrix. Therefore for energy conservation it is
sufficient to require that the dif'ferenced expres-
sions for A» and Bk) be altered so that
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condition

0 =A„=B,r=Ar~=B, ~ (j=1,k) (Bio)

Finally it remains to be assured that n, =0 when
n, is a Maxwellian distribution. From the reac-
tion-rate interpretation of Af, and B» one is led
by detail balance to assume at equilibrium

E &-I,

A~~, n~, n~= Q A~ ~n~n~;
f=2 f =1

Using Eq. (B10) and (B11)again, this gives
E E

A, , & n, , n& = g A& I, n&n~,

Af~Hf n~ = A~ ~ f+~ n~ ~ n~, ~

=&j+y,y-g +y-g +j+I. (B11)

and hence the first sum on the right-hand side of
Eq. (B12}vanishes identically. Similarly the
second sum is reduced

by Eq. (B9). Now substitute Eq. (B9) into Eq.
(B7) to obtain

E

n, = (A. ..n, , n, —A„n, n, )
j=1

X

+Q (A, ,„,n„,n, -A„n, n, )
f =j.

for 2&k&K-1. Consider the first sum in Eq.
(B12) using Eq. (Bll)

E IC.

A. ..n, , nq = Q Aq, ,n), n~,

which with Eq. (B10) equals

(B12)

K-1

Ag, p+g ny+g ny = g Aa, g+i
f=I f =1

E

=PA, , n,

E
n, n„, = PA, , n, n,

f C2

Ag y
——A» ~ ~+~(E~ ~/Ey} (Eg+~/E))

/2 (B12)

set by Eq. (Bll) when n, is a Maxwellian quaran-
tees that a Maxwellian distribution is a steady-
state solution of Eq. (B6}. This concludes the
formal development of e-e interactions into a
flux divergent difference equation.

so that n, =0 for 2 &k &K-1. In a like manner it
can be shown to be true for k = 1 and k =K, thus the
relationship
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