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A new variational derivation scheme for the Heisenberg exchange M~i&tonian is presented. A
many-body variational Ansatz for the multistate ket appearing in the derivation is described and is
applied to a simple model problem con&i»ng the qualitatively important different types of exchange
contributions. Advantages of the present derivation over others are briefly indicated.

I. INTRODUCTION

It is often convenient to replace the Schrodinger
Hamiltonian by an effective Hamiltonian which,
while different in form and frequently acting on a
different space, nevertheless reproduces to within
some degree of approximation the effect of the
Schrodinger Hamiltonian on a given space. The
usual Heisenberg spin Hamiltonian describing
the interaction between paramagnetic sites pro-
vides an example of just such an effective Hamil-
tonian. In the original Heisenberg spin-Hamil-
tonian derivations' ' the representations of the
Schrodinger Hamiltonian on a space generated
by permutations of the electron indices acting on
a single primitive ket, taken as the simple product
of site kets, is to be reproduced. However, as
pointed out by Herring, this restricted representa-
tion of the Schrodinger Hamiltonian does not yield
the correct exchange splittings, even for weakly
interacting sites. Evidently this simple product
Ans gIz for the primitive ket is primarily of use in
obtaining a suggestive pl ametric form for an
effective HamQtonian.

More realistic derivations' ' of the Heisenberg
spin Hamiltonian typically obtain it as a degener-
ate pertuxbation result, the space spanned by the
kets generated from the simple product primitive
ket being treated as a zero-order eigenspace.
These perturbative derivations yields not only
"direct" exchange contributions to the effective
Heisenberg exchange parameter but also so-called
"kinetic" exchange terms, which may be of com-
parable magnitude but opposite in sign. Indeed in
many cases the kinetic exchange term is estimated
to be more important, and hence a qualitative
correction in the form of the effective exchange
parameter is obtained.

Another method of obtaining a Heisenberg spin
Hamiltonian is to perform an ab initio calculation
and fit the resulting energy levels to a paramet-
rized Heisenberg spin Hamiltonian. Such compu-

tations' often yield results qualitatively different
from the simplest derivation. This Qb igigio meth-
od is apparently only readily applicable to systems
of only a few paramagnetic sites and the simple
form of the resulting approximate spin Hamil-
tonian is obscured, and not put to use, in the com-
putations.

Here we describe a variational method by which
a more accurate single primitive ket, called a
multistate ket, is derived. Using this single
multistate ket in place of the simple product ket
then leads, via the original derivations' ' to a
more accurate result which, in principle, can"
be exact. This variational alternative to the per-
turbative derivations takes into account the same
"direct" and "kinetic" exchange effects, although
with some additional corrections through higher
orders. Indeed, the variational approach is not
limited to small values of the perturbation param-
eter but rather by the particular variational form
chosen for the multistate ket.

In the multistate-ket variational scheme, de-
scribed in the preceding paper, ' the expectation
value of the Hamiltonian is minimized subject to
the constraints that the multistate ket contain
prescribed amounts of all the permutational sym-
metries arising from a given separated-atom
limit. For each of these symmetry constraints
one may introduce a corresponding Lagrange mul-
tiplier. One then minimizes the Hamiltonian minus
an element of the group algebra which is linear
in the Lagrange multipliers. When the Lagrange
multipliers are chosen to correspond to (stabi-
lized) matric basis elements of the group algebra,
they become' estimates of the projected single-
state energies. Here we interpret this Lagrange-
multiplier group-algebraic element as an effec-
tive Hamiltonian, and it is expressed in tex ms of
permutations interchanging electrons among sites
in different ways. This expression allows us to
identify some useful approximations applicable to
the multistate scheme, and also leads directly
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to a Heisenberg spin Hamiltonian.
The different patterns of interchanging electrons

among sites are in one-to-one correspondence
with double eosets of the symmetric group. Thus
this natural group-theoretic tool plays an impor-
tant part in the general development of Sec. II.
In Sec. III we develop a general cluster-expansion
Ansafz for the multistate ket; simplifying assump-
tions restrict our attention to one electron and
orbital per site, although the development applies
to infinite systems as well as finite. In Sec. IV
this development is applied to a simple model
examp1e embodying both "direct" and "kinetic"
exchange effects.

H. THE EFFECTIVE HAMII. TONIAN

Vfe follow the notation in preceding work. ' Then
S' is the group of permutations interchanging no
electrons among sites, and the multistate ket
iP& is to be of a given symmetry, say uoro, of
8'. Further, if& is to have components of all
symmetries n of the full symmetric group S„
which arise from aoro of So. To determine [P)
one minimizes

(2.1)

(2.3)

Here the elements eo, of the group algebra 8(s„}
of S~ form a matric basis

[eo„apo ranging}

for the subalgebra of 8(S„), which is of the zero-
order symmetry nor' on both the left and right.
If we consider the vector space of symmetry nor'
induced from a single pxoduct

(2.4)

)0&-=[a„r„&eever,&i a,r,&e. ~ ~ (2.5)

of strongly orthogonal site kets, then it is seen
that 3' leaves this space invariant. Indeed noting
that a basis for this space is

[eo,[0&; o.po ranging),

we see that

(2.6}

Xe",i0&=Q h„, e,",[0&. (2.V)

Transforming to the stabi1ized matric basis, o 3*

becomes

where 3C is a group-algebraic element

X= Z S„,.e"... (2.2)
DtP 0

with the Lagrange multipliers S~~, chosen to satis-
fy the symmetry constraints

and the h„p and e p pl0& are seen to be eigenvalues
and eigenkets to K Since these stabilized La-
grange multipliers 8„& correspond to the single-
state energies, X is seen to be an effective Hamil-
tonian.

Since 3C is an element of the group algebra 8(se),
it may be expressed as a linear combination of
permutations. To accomplish this expression of
X in the desired manner, we first consider the
double-coset (DC) decomposition of S„,

S„=g S'G, S', (2 9)

where the qth DC, SoG, So, is disjoint from every
other DC. The G, H S~ are termed DC generators.
The DC symbol of a permutation I'H S„ is defined
to be the array with (I, J')th element D~~ equal to
the number of electrons transferred from site 4
to site I. Two permutations are in the same DC
if and only if'o they have the same DC symbol.
Hence we see that the DC's are in unique cor-
respondence with the different patterns of trans-
ferxing electrons among sites. Further, we see
that matrix elements of permutations between
kets in which the electrons are localized, in ac-
cordance with the assignment of electrons to the
site groups of S', decrease in magnitude as the
number of electrons, and the distance, increases.
Indeed since differential overlap between elec-
trons on different centers decreases exponentially
with intersite separation, a similar exponential
decrease is expected in these matrix elements.
Hence so long as localized kets are employed. ,
some of the matrix elements over higher DC gen-
erators are very small, and might be neglected
with little compromise in a calculation.

The DC decomposition (2.9) implies"

&& Z [G& ]«&o&o&&oo&o& e~o~oG& e&o&o, (2.10)
gOgO

eO
where the e„o,o are matric-basis elements for the
group algebra of the subgroup 8' and f", go, f+,
d, , and [G, ']& „o,o&&o~,o& are group-theoretic
numbers identified elsewhere. '" Hence the set of
elements

nO
(eio~oG~e~o~o,' e gt rangingj (2.11)

spans the subalgebra of 8(s„) transforming as
moro on both the left and right. If this spanning
set (2.11) is used in place of the matric basis
(2.4), the multistate variational scheme may be
formulated as minimizing (2.1), where

(2.8) CfO aO~ 4 O io8„O8OG eiO, O

80aiO
(2.12)
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and the Lagrange multipliers $,0„0 are chosen to
satisfy the constraints

{&(&le„"o,oG, e&o,ol&(&) =a,o,&o. (2.13)

The summation over soqt' in (2.12) is, in general,
restricted, since the spanning set (2.11) may con-
tain linear dependencies. The effective Hamil-
tonian is the desired result and may be converted
to a Hamiltonian in spin space as described else-
whex e.'"

The relation between the constraints (2.13) and
(2.3) is given by

&&,o„o= ($(e„"o,o G, e,o„o l &(&)

= Z [G, 1'"„:.„.~...(pie;. li(&
apa

=5~0 F05 (2.15)

where q =0 denotes the identity DC. As pointed
out in the discussion on DC's, these constraints
(2.15) will be very nearly fulfilled for localized
kets, especially for the higher DC generators.
Thus we see that to a good approximation one may
neglect the higher DC constraints, so that even
for infinite systems we may obtain only a finite
number of different types of important DC's.

In analogy to the projected enex'gies in the pre-
ceding paper, ' we may define projected exchange
parameters for our present effective Hamiltonian.
These projected quantities may be computed via
a direct generalization'*" of the original' ' Heisen-
berg spin-Hamiltonian derivations. These pro-
jected quantities take the form

Jfoo&o
-=(&(&l e„gooGo 8&os H($) (2.16)

(2.14)
cp

a~ f}fo
where the expansion. of e„o,oQ, e,o„o in terms of
the ep, as used here is given in Ref. 11. In the
special ease that the a symmetry constraints
are chosen so that the weights of symmetry com-
ponents of the multistate ket are the same as those
in a simple product of strongly orthogonal site
kets [choice (i) of Ref. 9], we obtain

0

eso«&o ~( «o ~ [Ga] &i«& s xp &o&)f

FIG. 1. Diagrams repre-
senting the terms of Eq.
{3.17).

and ean provide an additional check for approxi-
mate solutlonsy since foi a good solution we ex-
pect 4,0„0 and g~o„o to compare closely.

m. MULTISTATE-KET CLUSTER EXPANSlow

3' -=Z S&'+ + 3&'g+" '

with 8,', 8,'&, etc. , being operators which create
one-particle, two-particle, etc. , excitations from
the states with p&{i), y&(i)Sy, (j), etc. , occupied
The exeitations for each particle involved are to
be orthogonal to the orbitals from which they
arose. Consequently, all the excitation operators
commute with one another:

[s' s ]=0.
o ~ ~ 4 y )J)2 ~ ~ 0) (3.2)

In this section we describe an Ansatz for a mul-
tistate ket in the special case of a lattice of sites
with only one orbital per site and for a separated-
atom limit with one electron per site. Additional
assumptions, such as a linear lattice, nearest-
neighbor pairing, etc. , will be introduced when
convenient, although computations ean be made
by these same methods for less restrictive as-
sumptions. The cluster-expansion form used here
for the multistate ket is similar to those already
described elsewhere" for antisymmetrized single-
state kets.

The (unnormalized) multistate ket is taken to
be of the form

I

i
I

I ak

QC4 l CIC)3 t 1 3 I

I I
I

I

I
l

Diagrams arising tn the computation of ths average energy (&(&(a( &t}/(y( g}.



VARIATIONAL MULTISTATE-KET DERIVATION OF THE. . . 2283

and also if a pair have any excitation sites in
common, their product is zero:

g+ g+ 0
~ 0 I 3 )g)2 ~ t o)g2

) 1 21 ' ' ' t tlll) 91 &~)&t ' ' ' t Jn)
(3.3}

Because of the eyelie symmetry in Ip& implied by
(3.1}and (3.4) we see that the constraints for the
nearest-neighbor transpositions (i i+1), i =1 to N,
are all satisfied if any one is satisfied. Hence all
their Lagrange multiyliers may be taken to be
equal. Considering only the constraints for these
nearest-neighbor transpositions, we are then to
IQiniIQize

For our example we consider only very simple
one- and two-particle excitations for a linear
chain lattice

&'-=&Niff -2 E (ii+ 1) [0&/&()[(t& (3.6}

st-=)((I y;+) (i)&&())((i)I+I y( )(i)&&y((i)l),

s;.;-=ye, .„,[q, (i) g&q, ( )&&q, ( )(& (s, (i)l, (3.4)

Si i i
=—0 Rg 3

where x and y are variational parameters.
In the present case each DC consists of a single

permutation of 3„, and the constraints of (2.13)
and (2.15) become

&()[~IV&= ((tie&5.,„~~3..

subject to the single constraint

&e[( ' 1)le&=0. (3.7)
Matrix elements over higher-order permutations
and transyositions between next-nearest neighbors
may be nonzero, although we expect their mag-
nitude to be aypropriately small.

The properties (3.2) and (3.3) are especially
useful in the factorization of matrix elements. To
see this factorization, and the resultant cancella-
tions, we first treat the overlay matrix element

&0[e'es [0&=&0[(1+S,+S,„,+S.. .)e'(() es('(&(1+S,'+S,'„,+S,', ,)[0)
= &0[{(1+S,) es(() es((&(1 +S,')+S, „,es(«+)) e («s+ )S&,'„,+S.. .es(«-&) es(( «-()St(, j[0&, (3.&)

where we have defined

s'i~ i ~ "i s i~i+ 1 Nl + 12
s((,*,...(.&

= s) + g spa.
g&a

Further, defining

A.„=—&0[e ( ... &e ( ... &[0),

~ =1+&0[s,s,'[0&,

g
-=&ols„s,'.Io&,

(3.9)

(3.10)

I

Solving this quadratic equation for f yields

f (5, &) = '5+ ((at')*-+6"', (3.15)

where the positive root of the quadratic solution
has been chosen because of its correct behavior
as 8,', 8,', -0. %e now have

+N &~ +2-g +N-9
&f 2~'

we see that (3.&) becomes

&O[e'e' [O& = &0[1+S,S,'[0&W„,

+ &o[s„,s,', , +s„„s,'. „,[0&w„,
= &&N-~+2&&~-a (3.11)

Similarly, we find that

&f +2&
'

To further aid in the evaluation of the pertinent
matrix elements we find a diagrammatic repre-
sentation convenient. Simple one- and two-arrow
diagrams of Fig. 1 are defined to represent the
operators

A~ = EA~, +/A~ 2, M ~N —1.

Thus

(3.12} [9)(())&)&&(()()n)l,

I q ((~) (& q, (&)&&((,()n) (&&(()((n)l

(3.11)

A„/A„, = )+&As,/A„, .

=& ~{& ~{~ ~{") ') '} '-(3-.»-).
This continued fraction becomes independent of
M for sufficiently large M, QQ (12)

l

l

FIG. 3. Diagrams arising in the computation of the
constraint matrix element (()I (12)I ))) /(()I ()).(3.14)

f(g, f)= lim "—=)+. . . M(N 1. -
N 1 ( t~ )
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FIG. 4. Additional dia-

grams arising in the com-
putation of the projected
"exchange" parameter
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TABLE I. Exchar~e parameters for J=0.

0
0.01
0.05

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0

0
-0.0002
-0.005
-0.02
-0.08
-0.18
-0.36
-0.5
-0.72

-0.98
-1.28
-1.62

-2.0
-4.50
-8.0

0
-0.000 199940
-0.004 962 905
-0.019425 74
-0.071914 6
-0.145933 2

-0.232 269 3
-0.325 589 2
-0.423 043 8

-0.523 083 6
-0.624 824 1
-0.727 734

-0.831478 4
-1.357 001 3
-1.887 683 2

0
-0.000 19986
-0.004 915
-0.018 75
-0.064 703
-0.123215

-0.187 044
-0.253 392
-0.321 107
-0.389 641
-0.458 708
-0.528 139
-0.597 832
-0.984 448
-1.300 729

-0.009 995 0
-0.049 388 7

-0.095407 0
-0.170176
-0.222 139
-0.257 715
-0.282 755
-0.301037

-0.314854
-0.325 612
-0.334 201

-0.341204
-0.362 847
-0.373979

-0.000 19991
-0.004 944 94
-0.019 170 6
-0.069 1412
-0.137 053

-0.214 366
-0.296 734
-0.382 006
-0.469 061
-0.557 277
-0.646 285

-0.735 855
-1.188 27
-1.644 12
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Horizontal positions label sites, while arrows
identify electrons with the initial and final states
indicated by the tails and heads of the arrows.
Products of operators are indicated by super-
positions of the corresponding arrow diagrams,
with the usual convention that arrows at higher
vertical positions correspond to operators at
positions further to the left in the product. For a
matrix element &/[8~ /&, with 8 a product of arrow
operators, to be nonzero, we see that the dia-
grams corresponding to e~8e~ must return every
electron to its original site in ~0&. Thus every
site must have arrows of type i coming in as many
times as they leave; in addition, those of type i
coming in and out of a given site must alternate,
and 8 (and 8'}can contribute only one arrow com-
ing into {and going out of) any site. Finally, if in
constructing a diagram a point is reached in which
the arrows of 8 have already been employed and
all the electrons transferred have returned to
their original sites, then the result of all the re-
maining arrows is merely the residual overlap
not involving any of those sites already included
in the diagram; these residual overlaps may then
be evaluated by the results of {3.17).

IV. MODEL HAMILTONIAN EXAMPLE

To illustrate the general theory of Sec. II we
consider the special case of a linear chain of
sites with only one orbital per site. Furthex, we
assume a simple model HamQtonian,

ff = TQ (lq. (~)&&q.. (~)l+ I9 .. (~)&&4.(~)l)

+~Ply. (I)q. ..( )&&q...(I)V. ( )I

0.0 0.6 I.2

-0.8

—2.4'

model. When 4=0, this model is the nearest-
neighbor linear Hubbard model.

If the simplest primitive ket ~0) is used in a
direct construction of an effective Hamiltonian,
one obtains' 3 the nearest-neighbor Heisenberg
exchange Hamiltonian

-J g (ii+1}, (4.2)

where (i i+I}is a nearest-neighbor transposition
in spin-free space. The more accurate second-
order perturbation result (with the T and 8 terms
of (4.1) of first and second orders) yields" a
nearest-neighbor Heisenberg exchange Hamil-

FIG. 6. Ground-state energies of the effective Heisen-
berg models as compared to the exact ground-state
energy of the Hubbard model (J =0).

+I+ jy„(I}y„(m))&y„(l) y„(m)~,
fmn

(4 1)

which is defined on the space of linear combina-
tions of products of the orthonormal q orbitals.
Here T, 4, and I may be interpreted as charge
transfer, exchange, and intrasite Coulomb repul-
sion integrals. Although this is a very simple
model Hamiltonian it is generally regarded' as
exhibiting both "direct" and "kinetic'* exchange
processes associated with 4 and T, respectively.
When T =0 and there is one electron per site, this
model is the nearest-neighbor linear Heisenberg

{eff. ex.}/&

~
6'

-0.2

i+1
F
I
l
I
I

FIG. 5. A useful abbreviation.

0.04 0.08

FIG. 7. Effective exchange constants for the effective
Heisenberg model. The upper curve is obtained using
the projected g+ the middle curve using the Lagrange
multiplier y, and the lower linear curve using the sec-
ond-order perturbation result J -2T2/I.
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tonian

3NT
(4

3T )g (. .
(4.3)

Evidently, for 2T'/I comparable to or larger than
J, the simple single primitive-ket result of (4.2}
is in serious error, so that these cases in which
2T'/I is important shall be of special interest for
our more accurate multistate-ket treatment.

We use a multistate ket of the form (3.1) with

one- and two-particle excitations as in (3.4}. The
diagrammatic method of evaluating matrix ele-
ments is employed. In Figs. 2, 3, and 4 we list
those diagrams encountered in evaluating the
matrix elements over H, (i i, +1), and (ii +1)H,
respectively. In these figures me have not labeled
the sites but have assumed they are sites 1, 2, . . .
in proceeding from left to right; further me have
suppressed the arrow labels when they are evident.
We have also used the abbreviation of Fig. 5. The
matrix elements for H, (ii+1), and (ii+1}Hare

(4(yy(4) N
4 (y, )1,3(„., .)y, ,y 3

*'~ 3*'~ 31' ~44'y)I

(P[(i i +1)~g) y+2x'
&f+k

(4((sa ~ S)14(4) 1
3 3xy+3y 4 1 3 3x ~ 13xy ~ 4y

)
+2 'I 1+ 4 '+2y

Minimization of E as in (3.6) gives, for the
7=0 case, the results of Table 1. For small T/I
the Lagrange multiplier 4, the projected g+, and
the second-order perturbation result for the ef-
fective Heisenberg exchange interaction are all
seen to be similar in value For .larger T/I the
two multistate-ket results are further away from
the perturbation result which is expected to be less
valid. We thus have three different nearest-neigh-
bor Heisenberg models. The exact ground-state
energies" for these three Heisenberg models are
compared in Fig. 6 with the exact ground-state
energy" for the Hubbard model. As expected,
both the multistate-ket variational results are
seen to provide better estimates than the second-
order perturbation result, particularly for larger
T I.

The variational multistate formulation has also
been applied to the model Hamiltonian in the case
where the "direct" exchange J is nonzero. Choos-
ing 4+2T'/I to be a constant value 30 I, we obtain
the results of Fig. 7. The multistate-ket procedure
again gives results similar to, and probably better
than, the second-order perturbation results.

V. DISCUSSION AND CONCLUSION

The general derivation of the Heisenberg spin
Hamiltonian appears to be the first of a varia-
tional nature. We have found several advantages
over the more common perturbative derivation.
The effective exchange parameters for the varia-
tional Ansatz of Secs. III and IV seemingly gave
better results, at least for the ground state, than
a second-order perturbation result. Indeed, this

cluster-expansion variational Ansatz does not
seem to be limited to particularly small values for
the inter site perturbation.

There still are some shortcomings in the present
variational treatment. Not all constraints beyond
those for nearest-neighbor transpositions were
explicitly treated. Expectation values of the ap-
proximate multistate ket over permutations, such
as (ii +2), (ii+1i +2), (II+2 t+3i +1), and
(H +2) (f +3 i 5+), may give nonzero results,
although of comparatively small order: 4th,
6th, and 8th in the four examples above. How-
ever, zero expectation values are obtained over
permutations which transfer an electron more
than two sites or which has a disjoint transposi-
tion between nearest neighbors. To take into
account higher permutations (or DC's) a more
complicated Ansatz for the multistate ket would
be required. In principle this could easily be
improved by including, for example, single and
pair excitations between next-nearest-neighbor
pairs; however, although some more constraints
could be handled exactly, not all of the very-high-
order ones could. In practice such more general
variational Ansdtze would lead to an even greater
number of diagrams. An approximate alternative
mould be to neglect all diagrams of sufficiently
high order; omission of those of 8th and higher
order, say, would eliminate even a number of
those already given in Fig. 3.

In the treatment of more general Hamiltonians
than those of Secs. III and IV similar Ansdtze still
apply. The discussion of Sec. II already describes
how the constraints may be treated.
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