
PHYSICAL REVIEW A VOLUME 8, NUMBER NOVEMBER 1973

Vacuum Polarization and Positronium-Ground-State Splitting

R. Barbieri and P. Christillin
Scuola Norrnale Superiore, Pisa, Istituto Nazionale Fisica Nucleare, Sezione di Pisa

E. Remiddi
Istituto di Fisica dell'Universita, Bologna, Istituto Nazionale Fisica Nucleare, Sezione di Bologna

(Received 1 March 1973)

The value of vacuum-polarization amplitude is investigated in the region of positronium bound-state poles,
where the naive Feynman-graph expansion fails. The corresponding contribution to positronium-ground-state
splitting is explicitly evaluated up to order a . The previously given result for the 0( inn term coming from
fourth-order vacuum-polarization corrections to the one-photon annihilation diagram is confirmed and put
on a sounder basis. The a' term is found to receive, besides the obvious contribution from a'
vacuum-polarization term, an additional a -contribution which can be considered as generated by an infinite
series of terms of higher nominal order in a.

I. INTRODUCTION

As it is well known, the one-photon annihilation
process leads to lowest order in o. , to the triplet-
singlet splitting of positronium ground state

=~ —
~

—+-, c( Ina +O(a ),
(o'-'t 8

(m) 9
(6)

SV =-,'ma4.

The contribution from vacuum-polarization (vac. -
pol. ) corrections to the above process, within a'
accuracy and without considering corrections to
the nonrelativistic positronium wave function, as
it can be shown in the perturbative treatment of
the Bethe-Salpeter equation, is given by

where the first and the second term on the right-
hand side come, respectively, from second- and
fourth-order vac. pol. II"'(t}and II("(t). The
first term had already been given by Karplus and
Klein' together with all other n' contributions to
the splitting resulting from interaction diagrams
with one and two photons, getting the result

av =-,'ma'[-', —(~v8+In2)(o. /v)].
6v=~ma (-[II(o., t) —II~), ]],—,

—= —,'mn'[-II(a, t,}].
Here

is the vac. -pol. tensor and

t, =(2m--,' n'm}'
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More recently, Fulton, Owen, and Repko' have
considered all the o.'inn ' recoil corrections to
the previously computed a' terms.

Summing up their results with the second term
of E(I. (6}, which was not taken into account in
Ref. 3, one obtains'

&v = —,'ma'[& -('-,'+In2)(a/v)+ —,
' a' Inn ']+O(n')

is approximately the squared invariant mass of
the positronium ground state. Note that, accord-
ing to the usual rules of perturbation theory, the
ground-state pole, which is present in the vac. -
pol. amplitude, is to be subtracted when consider-
ing the energy level shift of the same state.

In the usual perturbative expansion in powers
of the fine-structure constant one puts

(5)

Only the first two terms of the expansion, at pres-
ent, are known explicitly. In a previous paper'
we noted that such explicit knowledge enables one
to write

= 203.404 GHz +O(ae) .
It compares fairly well with the latest experi-
mental value4

(8)

6v,„~, =203.396+0.005 GHz (25 ppm).

Of course, since —,'mn'=0. 007 GHz, calculation
of the n' terms is now mandatory. '

The a' Ina ' term in E(I. (6), instead of a naive-
ly expected o.2 term, comes from a logarithmic
threshold behavior

——,
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t —4m'

~

/m'

of the fourth-order vac. -pol. amplitude. Such
singularity, as already noted in the original paper
by Kalldn and Sabry, ' is connected to the vanishing
of the photon mass; on the other hand, the vac.
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pol. in perturbation theory is evaluated treating
as free as the charged particles in the inter-
mediate states, i.e., neglecting the Coulomb dis-
tortion. The problem of the consistency of the
approach naturally arises. One has to prove, in
particular, that Coulomb distortion does not alter
the a and a' lna ' terms of Eq. (6), and to show
how to avoid the trap of a "false expansion" in e.
A "false expansion" would be an expansion in
powers of some quantity, such as, for instance,
ma/(t —4m')'i', of the same nominal order of
smallness as n, but which is converted into a
constant when evaluated, say at t =t, = 4m'-e'm'.
We recall that the occurrence of false expansions
is one of the main difficulties in bound state prob-
lems, as clearly shown, for instance, by Erickson
and Yennie' in the Lamb-shift calculation. Here
a series of terms of "nominal order" a(Za)",
n~ 4, is converted in the so-called "Bethe log"
of order a(Za)'

The program of this paper is to investigate the
effect of Coulomb distortions in vac. pol. , evalu-
ating explicitly II(a, t, ) up to the a' term. The
result is

ft (a, t, ) = (—
l
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confirming the previously given o,"lno. ' contri-
bution of Eq. (6) and putting it on a sounder basis.
Whereas the o.' inn ' and the first o.' term in
large parentheses in Eq. (9) correspond to II "'(t,),
the usual fourth-order vac. pol. evaluated at t =t„
the last term & o.' is the analog of the "Bethe log"
in the present case and can be considered as gen-
erated by a series of terms of higher nominal
order in n. Specifically, it receives the contri-
bution —,

' e' from, the continuum and —,
' o.' from the

discrete spectrum. Of course 4 v receives many
other a' contributions besides that coming from
the a' term of Eq. (9), and any speculation on its
actual coefficient is meaningless at this level.

To obtain Eq. (9) we have to compute II(a, t) in
the region of positronium bound states. They
manifest themselves as poles in t of the form
g„(a)/(t —4m + m2 a~/n ), which, in turn, can be
regarded as singularities in the coupling constant

II. CONTINUUM CONTRIBUTION

We take as our starting point the spectral repre-
sentation for the vac. -pol. amplitude

dt'
II(a, t) = —6' „, )

ImII(a, t')
t (t —t

where $' means "principal part of" and with one
subtraction accounting for renormalization and

(10)

Imll(a, t) = —g (0~J„(0)~n)(n)Z„(0))0)5(Wt-Z„),

(11)
where E„ is the energy of the intermediate state
~n) in the center-of-mass system.

As we have to compute II(a, t) at t = t, = 4m'
—m'a', it is crucial to have an accurate expres-
sion for ImII(a, t) near this point. In particular,
we are not allowed to neglect Coulomb interaction
between charged particles in the intermediate
states, as done in usual lowest-order perturba-
tive treatment, in which such particles are treated
as free. The intermediate states contributing to
Eq. (11)consist of electron-positron states; states
with an electron-positron pair and one photon;
states with more pairs and/or more photons, etc.

Let us start by discussing the continuum of e'
—e states, labeled by the asymptotic relative
momentum k and a spin index s. Their contri-
bution to ImII(a, t) is

a and make II(a, t) not expandible in a perturba-
tion-theory series for

~

t-4m'~ &a'm'.
Besides bound states, other singularities in o.

are due to the continuum of e e' scattering states
for am/(t —4m')"'&1.

In Secs. II and III we explicitly compute the con-
tributions to the part II,(a, t) of the vac. -pol. ampli-
tude, singular in o. , corresponding to continuum
and bound states, respectively. The result agrees
with the corresponding expression given by Braun'
in a remarkable paper on the same subject.

The connection of II,(a, t) and of the usual Feyn-
man-graph expansion with the vac. -pol. amplitude
II(a, t) is given in Sec. IV and the complete result,
Eq. (9), is therefore justified. Some final re-
marks are made in Sec. V, concerning the thresh-
old properties (t - 4m') of functions II ""'(t) appear-
ing in the perturbative expansion of the vac. -pol.
amplitude equation (5) and the related dispersive
representations.

1 d3k
rmtt", .„', (a, t)=kt I f 4 k, &O}o„(o)lit, s)&k, siss(o)}O)o(&t (4' ~4m')'")—
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(12)
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ImII',', (a, t) = ——
I g„(0)I', (13)

where

2%v
I (I v (0) I 1 -24(v

am
(t-4m*}'" '

E(luation (14) displays an essential singularity for
v-~ and shows that for IvI&1 anexpansion in
powers of a would fail. It is easily seen that

I $„(0)I' admits the representation

oo

(g„(0)I' = I +sv+2u' P
n=l

and for I
v I& 1 it can be expanded as

(15)

where p(s, h; 0) is the Bethe-Salpeter 4X4 matrix
wave function at zero relative coordinate. For t
approaching the threshold 4m', use of nonrelativ-
istic wave functions becomes correct giving

~v. .-(}} (n)
(i-4m'}'" (n}('ll'

(19)

}m}}' ' "(}}=w(—) O(}-4m'}. (20)

%'e note, in particular, that at threshold the terms
in E(I. (19) are correctly given by the correspond-
ing ones in the a expansion of E(I. (13}. From a
general point of view the above-given statement
could be proved by inspection of the discontinu-
ities of Feynman graphs at any order in pertur-
bation theory along the lines of Ref. 10.

This discussion makes, thexefore, clear the
role played by the e'e Coulomb interaction for
the threshold behaviox of the spectral function.

We define the part II, "(a, t) of II(a, t), contain-
ing the leading singularities in a coming from
the continuum intermediate states as

11""(a t)= -), (t'-4m')"'a " dt'
4@m ~ 2 t'-t

I(t}„(0)I' =1+sv+2 g (-1)' 'l'(2k)v" .
k=l

(16)
&&[I(tv (0)I'-I-»']. =~,(4,„ay~2

where t(ii) is the Riemann t' function of argument
e. By using E(I. (16), E(I. (13)becomes, for
Ima/(t -4m'}'" I&1,

al am
+—Q(-I)' '&(2&)

(I 4 2)us I

A=l

(21)

where the integration is performed by means of
E(I. (15). At variance with II(a, t) [E(I. (10)], the
above II+"(a, t} is not subtracted at t =0. Note
also that the term 1+vv' in the integrand has been
subtracted out. Such changes are however irrele-
vant for later use (see Sec. IV), since they only
modify II~"(a t) by terms regular in a."

At t=t„v=-i and, therefore,
Of course to lowest order in a, i.e., if

I Q, (0) I' is
replaced by 1 and therefore Coulomb interaction
is neglected, E(I. (17}reduces, as t-4m', to the
usual second-order vae. -pol. discontinuity

al " 1 1 a2
11""'(a t )=—

2 n 1+1 2n=l

HI. BOUND-STATE CONTRIBUTION

(22}

The right-hand side of E(I. (13) is obviously an

approximation of the whole spectral function for
vae. pol. , because it gives only the nonrelativistic
contribution of e' —e e,ontinuum intermediate
states and neglects anything else. It accounts,
however, for the exchange of infinite uncrossed
Coulomb photons, and we assert that its expan-
sion in a [E(I. (1V)] contains the leading singu-
larities for t- 4m' of the usual Feynman-gxaph
expansion.

This is easy to check in perturbation theory.
According to the known expression of the vae. -pol.
amplitude up to fourth order, as t- 4m', the e'e
and e'e y cuts give, . respectively, '"'

I iIm~~}( ta) = g I9}„(0)I'&(t -&'„)
n=l

wm'a' g 1 (,) (23}

where (I}„(0)is the nonrelativistic wave function
for the state of principal quantum number n and
of zero angular momentum at zero relative co-
ordinate, and E„= 2m- m' a4/nP. Corresponding-
ly, we define the part Ilgvvga, t) containing the
leading singularities in a coming from bound in-
termediate states as

In close analogy with the discussion of Sec. II,
we consider here the a singularities connected to
the existence of positronium bound states. Their
contribution to the speetx'al function is



VAC UUM POLARIZATION AND POSIT RONIUM-GROUND-STATE. . . 2269

1 dt'
11& ~~(a, t) =—,Imlib~~(a, t')

2 1 1
«+i« « —iv)'

(24)

This expression is obviously not expandable in
powers of a for

~
v ~& 1. Its value at t = t„after

subtraction of the ground-state pole, is —,
' a'.

IV. SINGULAR AND REGULAR PART

OF VAC.-POL. AMPLITUDE

We can now give the full singular part II,(a, t)
of the vac. -pol. amplitude:

II (a t) =11~"{(a t) I+lb'""~( at)

n ~ k

11(a, t)= g — 11"&(t)
k=y

N ].

+ II, at t —— gk iv ', 31
k = 4&',

which can be regarded as an improved approxi-
mation to II(a, t) up to order n.

If ~t-4m'~&a'm', II,(a, t) can be expanded in
series of o., so that the term in the large paren-
theses in Eq. (31) gives a negligible correction of
order a '""' to II(a, t), and Eq. (31) coincides up
to n" with the usual Feynman-graph expansion.
If, on the contrary ~t —4m'~-a'm', the term in
the large parentheses is only of nominal order
a'"'", whereas its actual value can be higher.

This discussion makes it therefore clear that,
for fi(a, t, ) as defined by Eq. (2), one can write,
up to ordex n',

(25}

Recalling the formula

1 1
&t)(z) =-C+ Q n+1 n+s

rI=Q

where C is the Bernouilli constant and

&(&(z) =-—lnI'(z},
48

we can rewrite II,(a, t) as

(a/»)II "'(t,) = (a/v) v +O(a'), (33)

— rr(4~ t, =-,'a'lna-'+

13 11 m2

+—+ ——ln2324 32 4

where, from the known analytic expressions, 9' '2

one has

II,(a, t)==,' [ag(1-i v)+Cj. (28) + (higher-order terms), (34)

11.(a, t)=ha' P &(~)(tv)' '.
k=2

(29)

For
~
v

~

& 1, Eq. (29) would actually be a "false
expansion. " For the very definition of II,(a, t),
II(a, t}—II,(a, t) is regular in a. From Eqs. (5)
and (29), up to order a", one has

Q
II(a, t}—II,(a, t) = Q — II N4'(t}

k=i

tt

I'(I&)(i v)

(the last term on the right-hand side is to be re-
placed by zero for s & 2). Whereas Eqs. (5}and
(29) are valid only for

~
t —4m'

)
& a'm', Eq. (30)

holds also for t —4m' =m*0(a').
Equation (30) can be rewritten'

This result agrees with the one quoted by Braun'
and obtained here in a different context.

If )v(&I, i.e., [t- 4m') &a' m', II,(a, t) can be
expanded as

and, from Eq. (25),

&4m'
i{,(a, i ) = (r{,{a, i) + = -' a'.

1 t-tg
(35)

From Eq. (31) it is seen that the next neglected
term, of nominal order a', would give to II(a, t,),
the contribution

0''t, ——$2

V. THRESHOLD BEHAVIOR OF VAC.-POL.
IN PERTURBATION THEORY

%e want to comment here a little more on the
threshold properties (t- 4m') of the functions
II s"'(t) occurring in the perturbative expansion
equation (5) of the vac. -pol. amplitude. This is

which goes to zero more x"apidly than a' since the
second term in large parentheses, coming from
the expansion of the nonrelativistic contribution
to II(a, t), subtracts out from II "'(t), its leading
threshold singularity.

The result of Eq. (8) is therefore proved.
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dg'
11 &2"&(t) =t —4, , imll s"&(I')

v I'(t' —t)
(38)

hold only for small m, since the right-hand side
diverges at threshold for n&4.

Along the lines of a previous work on the ver-
tex function, "an appropriate dispersive repre-
sentation could be written, for instance, for func-
tions such as

(I 4m ) &2g&( )t

which have the same asymptotic behavior as
IIs"&(t). The power k is to be chosen in such a
way as to make (t —4m')' ImII""'(t) integrable

mathematically a meaningful problem. The Feyn-
man graphs II N" &(t) are indeed defined for every
t, even if, as discussed in the preceding sections,
the sum of a finite number of them does not pro-
vide any adequate approximation to II(n, t) for
t- 4m2.

The threshold behavior is well described by the
nonrelativistic contribution of e e' intermediate
states, Eq. (13), or, in a Feynman-graph lan-
guage, by the sum of the one-loop graphs with
the exchange of any number of uncrossed Cou-
lomb photons. In particular, we note from Eq.
(17) that the imaginary parts of the terms of Eq.
(29}of nominal order k in a are as singular as
(t —4m')+ ""~for odd k, whereas, for even k,
with the exception of the a' term, the singularity
is weaker.

Therefore, while it remains true that at any
order in perturbation theory the discontinuities
ImII s"&(t) are given by the Cutkosky-Veltman
rule, "the corresponding dispersion relations

at i=4m~.
If A =1, for instance, one has

4m2t
11

(2II & (I} 11 (2n & (0)g-4m2 dg

P 1 dt'(I' —4m ) (,„&(,)I-4m' » I"(t'-t)
(37)

and the integral converges, for the above dis-
cussion, up to n=6. Note that, in this case, the
knowledge of the discontinuity is not sufficient
for the evaluation of the whole perturbative ampli-
tude by means of a Hilbert transform, but it is
necessary to supply, independently, the value of
its derivative at t =0.

As in the case cf the electron form factors, the
threshold singularities of II s"&(t} are a conse-
quence of the vanishing photon mass. If the photon
is given a "small" mass X, the corresponding
functions II""&(t,A) would display a smooth thresh-
old behavior, so that the relations

11&'"&(t, ~) =I -d', , rmll""&(t', ~) (38)
1 dg'

&& t'(t' —t)

remain valid for any n as far as A, is different than
zero. Exchange of the A.- 0 limit with the integra-
tion is, of course, not allowed.

Note, on the other hand, that no indication
emerges against the validity of the spectral rep-
resentation Eq. (10) for the whole amplitude II(a, t)
Indeed, at t= 4m' one has, from Eqs. (12) and (13),

imll(o. , I)= imll', .„', (a, t) = —,
' »n',

so that the integration over the continuum spec-
trum is convergent at threshold.
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