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The transport equation for electron scattering through plane parallel targets has been solved by expanding

the electron distribution function into spherical harmonics. The electron energy is assumed to be constant.

No simplifying assumptions have been made concerning the scattering cross sections. In fact, a simple

technique has been found for accurately determining the screening angle which plays an important role in

multiple scattering. For small angles ( & 10') and thin targets, the emerging electron distribution agrees

well with earlie~ theories. However, for larger angles the present theory predicts a greater probability of
scattering than earlier theories. For thin targets it is we'.1 known that the earlier theories merge with the

single-scattering distribution function at large angles. This differenc at large angles between the present

and earlier theories implies that the electron distribution predicted by the present calculations will not merge

with the single-scattering distribution. For thick targets, as one would expect, the earlier theories are poor
approximations of the emergent electron distribution function for all angles.

I. INTRODUCTION

Multiple electron scattering has been a topic of
interest for the last half-century. In the first
treatment of electron scattering through thin foils
the emerging distribution function of electrons
was broken into two regions: For small angles it
was assumed that the electron had suffered many

collisions, whereas for large angles the emerging
electron suffered only one collision. Hence
for small angles one could calculate the mean
square deflection per collision and then use a
statistical theory which gives a Gaussian distri-
bution. This Gaussian distribution was connected
to the single-scattering tail. ' Goudsmit and Saun-
derson' derived the angular distribution function
in terms of Legendre polynomials. They also ob-
tained a Gaussian at small angles that merged
into the single-scattering tail at large angles.
However, their theory has two major drawbacks:
(a) it was assumed that all electrons "saw" the
same target thickness, and (b) the boundary con-
ditions were not included. Goudsmit and Saun-
derson argue that the difference in the path lengths
can be accounted for by replacing the target thick-
ness by t/(cos8), „, where t is the thickness and 8
is the angular deflection. Moliere' subsequently
indicated the fallacy of such an argument and
pointed out that as a result of such an assumption
Goudsmit and Saunderson's and other earlier
theories were limited to small angles. Bethe
shows formally the connection between Moliere's
and Goudsmit and Saunderson's theories.

Wang and Guth' have studied the problem in con-
siderable detail. They have compared and dis-
cussed different approximate methods of obtaining
a solution. In fact, they derive the distribution
function of electrons after penetrating a foil of

given thickness. Their solution includes the ex-
act boundary conditions. However, they found
their result too complex for evaluation. Instead
they revert to a perturbation technique that uses
the Goudsmit-Saunderson result as the zeroth-or-
der distribution. It is questionable whether such
a scheme is valid, because at large angles the
correction to the Goudsmit-Saunderson result is
not small. For example, it is found that the ex-
act distribution is almost a factor of 2 larger than
Goudsmit and Saunderson's result.

Breitenberger' has also solved the problem of
electron transport through a slab without the sim-
plifying assumption that all electrons suffer the
same number of collisions. For angles of 10' and
less his complicated integral equation reduces to
Goudsmit and Saunderson's formula.

In this paper the transport equation for electron
scattering through a plane parallel target has been
solved by expanding the electron distribution func-
tion into spherical harmonics. The solution is ex-
act provided the electron energy is constant. The
spherica1 harmonic expansion method has been
applied to transport problems for over 30 years. '
In the early forties this method was refined for
problems of neutron transport. '' However, the
scattering cross section for neutrons is assumed
to be nearly isotropic, whereas the electron scat-
tering cross section is strongly anisotropic. The
exact boundary conditions will be included in a
manner similar to that of Bethe, Rose, and Smith. '
However, we will not limit ourselves to small
angles only.

Removal of the limitation of small angles is
possible largely because Spencer" has shown that
the Boltzmann collision integral may be computed
analytically for most cross sections of interest.
Even if this simplification were not known, a solu-
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tion to the problem is possible; however, the com-
putation would be cumbersome.

In See. II the transport equation is expanded in
spherical harmonics. Section III discusses the
scattering cross section; a simple curve-fitting
technique is used to accurately estimate the
screening angle q, which is of primary importance
in multiple scattering. In Sec. V the emergent
electron distribution function is evaluated for spe-
cial cases and a comparison is made with Goudsmit
and Saunderson's theory. It is found that for thin
targets and small angles the present distribution
function is in agreement with the earlier theories.
However, for angles larger than about 10 the
present theory predicts a larger probability of
scattering. In fact, at angles of 60' there is a
difference of a factor of 2 for the thinnest targets
considered. The earlier theories of multiple scat-
tering emerge with the single-scattering tail at
these large angles, for:the thin targets considered.
The above difference between the present and ear-
lier theories implies, contrary to what is generally
believed, that the emergent electron distribution
will not go into the single-scattering results, pro-
vided the transport equation applies. The Boltz-
mann equation is clearly not applicable for mono-
layer targets. For thin targets a more accurate
solution than the Goudsmit-Saunderson distribution
function is )ust the Goudsmit-Saunderson result
divided by cose. Physically this correction comes
about because the transport equation without ener-
gy loss conserves current. The approximate equa-
tion solved by Goudsmit and Saunderson violates
current conservation. For thick targets the ear-
lier theories differ from the present case for all
angles, and it is unlikely that there is a simple
eorreetion connecting earlier theories with the
present one.

These results are also compared with the experi-
ment of Hanson, Lanzl, Lyman, and Scott." A
similar comparison was made previously by Spen-
cer and Blanchard. " They used the Goudsmit and
Saunderson distribution function and found diserey-
ancies, too large to be explained by experimental
errors, for angles larger than 10'. Finally, in
Sec. VI the spatial variation of the electron number
density in the foil is evaluated and discussed.

H. TRANSPORT EQUATION

The basic equation for mu1tiple electron scat-
tering, neglecting energy loss, is given by

s.vf =NJ [y(f, it') y(r, a)]e(is- s'i)ds',

where f is the electron distribution function, u is
the unit vector in the direction of the electron's
motion, N is the number density of seatterers, and

~ is the scattering cross section yer unit solid
angle.

For a uniform beam of electrons in the x and y
directions, striking a plane parallel plate that has
a thickness t in the z direction, E{l.(1) simplifies
to

O
+ =N f (f(s, «')-){*,«))o(».) d»',

where p, is the cosine of the angle between the
electron trajectory and the z axis and p, is the
cosine of the angle between the incident and scat-
tered electron trajectories.

Expanding the distribution function and the scat-
tering cross section as a sum of Legendre polyno-
mials

f=+A,P,(p),

o=g o, P(p ).
Substituting expansions (3) and (4) into E(l. (2) and
making use of both the orthogonality relation and
addition theorem for Legendre polynomials, E(l.
(2) reduces to

(
E+& 8+,+,

2 I —g ez 21+3 ez
+1

+2mHZ, dp o' p, 1-& p, =0. 5

III. SCAi i+RING CROSS SECTION

The scattering cross section is the screened
Rutherford that is modified to include relativistic
effects and inelastic scattering by orbital electrons.
Spencer" has shown that for low-atomic-number
materials, i.e., Z& 2'7, the cross section may be
written

o(S)=,~ (()+2»-co»8) 'Z e4 2+ I

~—(( —coco) "' l(p'+sop){)-oooo) '),
(6)

where e is the electronic charge, & =&/13V,
v is the electron velocity, & is the velocity of light,
P=v/c, and P is the momentum of the electron.

)i accounts for the screening of the nucleus by
orbital electrons, while the factor (Z+ 1)/Z ac-
counts for inelastic deflections. 4 The last two
terms are the result of relativistic effects and
they are obtained from the MeKinley-Feshbach
expansion of the complete Mott formulas.

It turns out that the relativistic effects are im-
portant at large angles and that fox small angles,
the choice of the screening parameter is impor-
tant. Mo1ihre' derived the foQowing expression
for g using the Thomas-Fermi atomic model:
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2q=(1.13+3.76 & /P ))to,

where

yo = (I/p)Z'I'/0. 885ao

Now Go, as defined by Eq. (9), is always zero;
hence the equation for l =0 is

1 8A,1 0
9$

(12)

and ap is the Bohr radius.
Nigam, Sundaresan, and Ta-You Wu" have point-

ed out errors in Moliere's calculations; they use,
instead, the Dalitz screening angle given by

2g Xp 1 +4~p lnXp+ + 1 448P ~
8

1 - P2 ~ 0.231

where

X.
'

= (~/P)»"'/0 665a.

For the Thomas-Fermi atom, p, =1.12.
For small angles the Thomas-Fermi model is

not as accurate as the Hartree representation. '4

Center" has used a combination of the Hartree
representation for small angles and the Thomas-
Fermi representation for larger angles. Figure 1
shows various plots of a(8) vs 8. There is con-
siderable difference between Center's cross sec-
tion and Molibre's when g & 3 x10 ' rad. Using
the Dalitz screening parameter with p =1.12, the
Mo»»e cross section is essentially recovered.
However, if we use p. =0.72 for this special case,
good agreement with Center's cross section is ob-
tained for most of the range. The case shown is
for 100-keV electrons in nitrogen. A similar agree-
ment was obtained for 40-keV electrons in nitrogen.
Presumably such a curve-fitting technique could
be applied to other materials.

Spencer'0 has shown that if &(8}given by Eq. (6)
is incorporated into the collision term of Eq. (5),
the integral can be done analytically. For conve-

nience the following substitution is made:

8AO 2 BA
~'+ —

~
+2A, =0. (13)

Truncating the series at 1=2, the singular solu-
tion of Bethe et al.9 is recovered. However, the
above truncation makes use of only the first two
Legendre polynomials. The approximation is only
valid if the electron distribution function is almost
isotropic in p space.

For l& 2, the Fourier transform of the infinite
set of differential equations can be written in a
matrix form

S:A=O,

where A is the column vector

(A A, . . . A, . . .)
and S is an infinite tridiagonal matrix.

(14)

lo I I I I I I

-l6
IO

Equation (12) is simply the conservation of current.
For 1=1 we have

+I

G, = 2sNf, dp. o(p, )[] -P,(p}]

The transport mean free path & is defined by

X =2/G, ;

then Eq. (5}may be written

(10}

~(e)
cm

-l7
IO

sAr-i I+1 sAi+i 2GiA 0 (11)
eg

+ 2i+3 ~g 'G,
where g is the dimensionless variable z/X. In the
limit of small-angle (Fokker-Planck)' collisions
only,

2G, /G, —= I(I+1).

IV. SCATTERING THROUGH A PLANE

PARALLEL PLATE

Equation (11) forms an infinite set of coupled
differential equations with constant coefficients.

IO ~ IO

8 (RAD)
FIG. 1. Semilog plot of the elastic scattering cross

section vs e for various values of the parameter p.
Also shown are the elastic scattering cross sections
used by Moliere and Center.
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0 0 0 0 ~
no particles entering the target; hence f(W ~ 0,
$ = f/X) -=0. Hence the boundary conditions can be
written

38 2G, 48
5 6,'9'" f(~ -o &=o) =Z &I..iJ'I..i(»*

n=O {18)

8I 2G) 8(l+ 1)
2l - 1 G', 2l+3

where 8 is the Fourier-transform variable of the
dimensionless spatial coordinate $. Truncating at
some l = I, where I. is odd, the homogeneous solu-
tion to the coupled set of differential equations is
given by setting the determinant of S to zero. This
gives L —1 x'eal roots. Hence one can write

A~ = Q a~ „e($„$}
n=Q

r
A „=Qa „„e(8„&)-=0.

f(v - o, ( = ~/&) = g &I..i~..„(u)= o.
n=Q

In Eg. (18) use has been made of the fact that the
odd Legendre polynomials form a complete set in
the half-space. This choice is by no means unique;
one could, for example, have chosen the even
polynomials. However, as the cux rent is a more
readily measurable quantity than density, odd
polynomials are used. Thus there are an infinite
set of boundary conditions at each surface, but
because of the truncation there are only N+ I un-
knowns. Hence we specify —,'(N+1) conditions at
each boundary. Making use of orthogonality, one
has

1

f. dV &...,f(u, t =o) =&..„/(4n+3),
Now one can go back to Eq. (11), solve for A~ „

etc. in terms of A~, or more specifically one can
calculate the coefficients ar, , „, etc., in terms of
a~ „ from the recursion relation:

Q

f, duI'. „„f(u,t=~/~)=0,

where m=0 ...

(19)

l l+$ 26,
2I i ' -'" 2I,3'"".'."=0 ~ {"}
There are (L- 1) unknowns ar „and two un-

knowns, a, , and a „ from Eqs. (12) and (13),
giving us a total of (L+1) unknowns. For conve-
nience these unknown are represented as a column
vector a~. The column vector A then can be ex-
pressed as

A=8 'a {1V)

Z -2) a e"~ " A es~~02 Ql

0 0 II een~ h e '~

8= 0

0 ~ 0 0 0

0 0 as~( .. . gs g

h, „ is obtained from the recursion relation (16)
with a~ „=1(n~2). The column vector a~ is to be
evaluated from the boundary conditions at $ =0
and ) =t/A.

Consider an electron beam of an arbitrary but
known distribution function impinging on a target
of thickness t. Hence at )=0, f(p ~ 0, $ =0) is
known, and at the far boundary $ =E/X, there are

Equations (19) are known as Marshak's boundary
conditions and may be written in matrix formula-
tion as

C:A=B. (2o)

The first ~(L+ 1) rows of the C matrix are given by

c..„,.=f du&..„(~}p.(u),

m=0, 1, . . . , L, n=0, 1, . .. , ,'(L+1), (2—1)

and the last 4(L+1) rows are given by

4.. .=f, d &..„( )P.( ),

m =0, 1, ... , L, n =0, 1, . . . , 2(L + 1). (22)
The evaluation of the integrals in (21) and (22) are
given in the Appendix.

The coefficients of the column vector 8 are
given by the right-hand sides of Egs. (19}. For
the boundary conditions chosen the last 2(L+1)
coefficients will always be zero. Substituting Eq.
(1V} into (20), one gets

{C:H}:a,=i,
a ={C H}-'i. (23)

one can solve Eq. (23) and obtain numerical values
for the coefficients of the column vector a~. A
solution for A is obtained, and hence a solution
for the distribution function, by means of Eg. (1V).

Truncating the series at some l =L, where I- is
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even, and setting the determinant of 8 to zero
gives I -2 real roots. Thus there are only I- un-
knowns and (I +1) functions of A, . Hence an ad-
ditional postulate is required to determine the
solution completely. So it is seen that there is a
big difference as to whether one truncates at an
odd- or even-order polynomial. For neutron dif-
fusion it was shown that an even truncation re-
sulted in an inferior appx'oximation. ' Because of
the similax'ities between electron diffusion and
neutron diffusion, it is expected that the even
truncation is an inferior approximation.

V. ANGULAR DISTRIBUTION

The emerging electron angular distribution is
given by

E E
f (v ~ =E Z ~, e "+ (P)

l =0 tn=o
(24)

where a, are determined by means of the bound-
ary conditions (18) and the recursion relation (16).
Algebraically this involves solving an (K+1)
x(N+ 1) matrix equation for the components of the

column vector a, . These components are then sub-
stituted into the recursion relation (16) to solve for
the c,. This is a labox'ious and time-consuming
procedure for values of N~ 3. For very thin tar-
gets and highly peaked distribution functions, N is
a large number if the distribution function is to be
accurately represented by Eq. (24). It has been
found that for a distribution function having a half-
width of 4' we need 50 polynomials to describe
f(g, $). The solution is most conveniently obtained
by means of a computer.

Figure 2(a) shows a plot of the emerging dis-
tx'ibution function of electxons. It is assumed that
the electrons strike the foil normally and the dis-
tribution function is given by

(26)

The aluminum foil is assumed to be 2.5 ~10 ' cm
thick. The electx on energy is 919.8 keV. These
assumptions result in &/X =0.0114. For compari-
son the GS (Goudsmit-Saunderson) distribution is
plotted for the same conditions. The dashed curve
is the single-scattering distribution, which is

I02
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t = 2.5~ IO ~em ELECTRON ENERGY =9I9,8 keV
t/X = 0.0!158

MULTIPLE SCATTERING——~s.s. &SINGLE SCATTERING)
+ f G.S.tGO SM T SA NDERSON)
0 f G.S./p,
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FIG. 2. (a) Emergent distribution electron function derived by the present theory (soM curve). The crosses repre-
sent the GS distribution function for identical conditions. Also shown are the single-scattering distribution (dashed
curve) and the GS distribution divided by p. As one would expect, the GS distribution emerges with the single-scatter-
ing tail; however, the present results never do. It is interesting to note that the simple correction of dividing the GS
distribution by p, is in good agreement with the present theory for @~0.5. The 1/e width of the distribution function is
about 6'. (b) Same as (a), except that the effective target thickness t/A, is almost doubled. The 1/e width of the distri-
bution is about 14'.
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computed in the usual manner as a simple substitution

For small angles 0.98 ~ p. ~ i, the GS distribu-
tion and the present results agree closely; how-
ever, there is a considerable divergence at larger
angles. For the special case shown in Fig. 2(a)
the present theory predicts that the probability of
an electron scattering through an angle of 78' to be
about 3 times that predicted by the GS theory. As
expected, the GS distribution emerges into the
single-scattering tail for large angles. Another
difference between the GS distribution and the
present result is that the present solution has a
discontinuity at p, =0. The discontinuity is the re-
sult of the imposed boundary condition, i.e., it is
assumed that at the far boundary there are no
particles entering the slab. In Fig. 2(b) the chosen
conditions are such that the effective target thick-
ness, t/& is almost double the effective target
thickness for the case shown in Fig. 2(a).

It is interesting to note that for these thin tar-
gets, if one takes the GS distribution function and
divides by p, ,

"the agreement between the two
theories is much better, except in the vicinity of
p =0. These corrections are shown in Figs. 2(a)
and 2(b). [Figure 6(a) verifies that the above cor-
rection to the GS distribution decreases the dif-
ference between the two theories in the Fokker-
Planck approximation. ]

There are two possible reasons for the difference
at large angles between the present theory and that
of Goudsmit and Saunderson: (a) the assumption
that all the emerging electrons suffered the same
number of collisions and (b) the boundary con-
ditions were neglected. Let us first consider the
approximation that all the electrons "see" the
same target thickness. Mathematically, this is
achieved by setting p. = i on the left-hand side of
Eq. (2).

Returning to the original transport equation (2)
and making the Fokker -Planck expansion, '" one
can write

Eq. (26) becomes

or

I I I j I I I I I I I I
2

t/~ = O.OII4————MULTIPLE SCATTERING
fG.S.(GOUDS MIT-SAUNDKRSON)

+ fG.S. WITH CORRECT BOUNDARY CONDITIONS

IO'—

IO 2—

+++ 7++ ++ r j
+ +

+ +

+ ~~ + +

Neglecting the terms in the large parentheses on
the right-hand side of Eq. (28), the equation
solved by Goudsmit and Saunderson is recovered.
This approximate form of Eq. (28), however, con-
serves current, as does the basic transport equa-
tion. Hence on physical grounds we might expect
it to be a more accurate representation than the
approximate equation solved by Goudsmit and
Saunderson. Hence g is just fo8. For thin targets
one can write

Goudsmit and Saunderson, Moliere, and Bethe
solved Eq. (26) by setting p =l. It is worth noting
that Eq. (26) conserves current while the equation
resulting from letting p, = i conserves number
density. The term they omitted by this approxi-
mation is

~l I I I I I I I I

0 0.5 I.O

(2V)

where fos is the Goudsmit-Saunderson distribution.
The above equation is valid if (I —p)« i. Making

FIG. 3. Results of including the boundary conditions
into the Goudsmit-Saunderson theory. The inclusion of
the boundary conditions puts a bump in the GS distribu-
tion function near p, = Q. For comparison the distribu-
tion function predicted by the present theory is also
sh0%Q.
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Typically g, the effective target thickness, is 10 '.
Suppose we are interested in going out to p, -0.85~
Then, defining a small parameter ~ as

c=~(2&)=(1-p, ) =0.14,

it is easy to show that

2- p2 Gsp 2-P
1 ~2 Gg

2(1 —I ) ~fcs 2fos

Hence one can conclude that fos/p, is a more ac-
curate solution to the transport equation.

The Fokker-Planck limit is a poor approxima-
ti.on for thin targets, especially at large angles
[see Fig. 6(a)]. In the real case the emergent dis-
tribution function will decay more slowly than
that predicted by the Fokker-Planck approxima-
tion. Looking at Fig. 2(a} we see that near y, =0.5
the 68 distribution roughly has the same slope as
the single-scattering tail. Hence at these angles

f~s~ 1/(1- p)' and it is easy to show that f~s/p is
a fair approximation for angles as large as 60'.
Because the GS distribution connects with the
single-scattering tail for thin targets, the above
approximation will be valid for the thinnest tar-
gets, provided, of course, that multiple scatter-
ing is dominant for particles that emerge in the
direction of the initia, l beam. Wang and Guth' have
also shown that the region of validity of the GS

theory can be extended by dividing the GS distri-
bution by p, . They obtained this result by a per-
turbation expansion about the GS distribution.

The above correction does not include the fact
that the Goudsmit-Saunderson result neglects the
boundary condition. To determine the effect of the
boundary conditions, the transport equation (2}was
solved by letting p =1 (which makes the actual
path length traveled by the electron the indepen-
dent variable) and the results of the calculation are
shown in Fig. 3. Once again t/X was chosen to be
0.0114 and the initial electron energy to be 919.8
keV. The inclusion of the boundary condition has
a large effect between 0& p, &0.4. However, for
p. & 0.4, the difference between including the bound-

ary conditions and omitting them is negligible. So
it appears that the boundary conditions become
important near p. =0, whereas the difference be-
tween the present and earlier theories for p. & 0.5
is because of the assumption that all electrons
suffered the same number of collisions.

Spencer and Blanchard" have calculated the
emerging electron distribution function from a

gold foil for the experimental conditions of Hanson,
Lanzl, Lyman, and Scott." They have used the
relevant single-scattering cross section that in-
cluded both relativistic effects and deflections due
to inelastic scattering by orbital electrons. The
agreement between experiment and theory is good
for angles «20'. However, at larger angles there
is a discrepancy of 15%, which is greater than the
expected experimental error. The 1/e width of
the emergent electron distribution is about 2', and
even 50 polynomials inadequately represent the
distribution function. Instead, the results of Spen-
cer and Blanchard" (which is the Goudsmit-Saun-
derson distribution function} were divided by cos&.
Figure 4 shows the original Spencer-Blanchard
theory, the present correction, and the experi-
mental points of Hanson, Lanzl, Lyman, and Scott.
Although the corrected theory is not perfect, it is
clearly in better agreement with the experimental
results. Hence it is clear that the GS theory (and
Molihre's) is good only for small angles. At large
angles the usual assumption that the electron
distribution function is just the single-scattering
tail is incorrect.

For thicker targets, the G8 theory breaks down

completely as one would expect. Figure 5 shows

I I I I
)

I I I

8 EXPERIMENTAL POINTS
fg.s. (GOUOSMIT- SAUNOERSON j——fg. s. f cosg

O.I

oui l I I I I I I I I

I04 200 MP

FIG. 4. Comparison of the experimental data of Han-
son, Lanzl, Lyman, and Scott, the GS distribution as
derived by Spencer and Blanchard (solid curve) and the
corrected GS distribution function (dashed curve).
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a comparison of the present results with Goudsmit
and Saunderson's theory for &/& =0.262. When
f/X & 0.2, Bethe, Rose, alld Smith have polll'ted

out that the first two polynomials adequately rep-
resent the distribution function. Figure 5 also
showers the results of truncating the series at the
5th, 9th, and 1Vth polynomial. Except for the
region near p. =0, all three representations agree
very closely. The reason for the poor agreement
at p, =0 is that the boundary conditions impose a
discontinuity at p =0. We would require an infinite
number of polynomials to represent such a dis-
continuity.

Finally, in Figs. 6(a) and 6(b) a comparison is
made between the smaQ-angle approximation,
which a number of authors'~ ' have used with the
complete collision integral. When I /X =0.026 there
is a considerable discrepancy throughout the range.
In Fig. 6(b) t/X is increased by a factor of ID, and
Fokker-Planck approximation is in better agree-
ment with the distribution function evaluated for
the complete collision integral.

lo 2
I I I ) I I I I I I I I I

t= 2.54)t IO +cm ELECTRON ENERGY= I50keV
t/X = 0.0262

SMALL-ANGLE APPROXIMATION—-COMPLETE COL ISION INTF——fG.S. FOR SMAil-ANGLE A

0 f G.S./p.

I.O—

nomial.
Figure 7 showers the variation of A, across a slab

of aluminum. In this case t/X =0.262. The solid
line is the result of assuming a 6-function distribu-
tion for the electrons striking the target. The
crosses are for a distribution f(II, 0) =50e "e'.
This corresponds to a I/e width of 5 rad. In both
cases only 18 polynomials have been used.

In the case of the &-function input, there is a

VI. NUMBER DENSITY OF ELECTRONS
ACROSS SLAB

The electron number density is defined as

&=f, dI f(I, ~) (29)

or, for our special case,

(30)

the coefficient of the zeroth-order Legendre poly-

/

I
I

I

I
I

I
II
0

I I I I I I I I

I I I I I I I ( I I I I
I I I I I

t=2.54~IO 'cm ELECTRON ENERGY=I30keV
- t/ ~ = 0.262
- ———

P~~ APPROXIMATION MULTIPLE-
0 POAPPROXIMATION SCATTERING
+

2.0—

I I l I I I I ( I I I I [ I I I I

t&2,54x IO +em ELECTRON ENERGY= I50keV
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FIG. 5. Plots of the emergent electron distribution
function for a relatively thick target, as predicted by
the present theory (dashed curve) and Goudsmit and
Saunderson's theory. Also shown are predictions of
present theory using 10 polynomials (P9 approximation)
and 6 polynomials (P& approximation).

FIG. 6. (a} Effect of the Fokker-Planck approxima-
tion for thin targets and highly peaked distribution func-
tions. Once again the GS distribution decays more rapid-
ly than the distribution predicted by the present theory.
Also shown is the correction to the GS distribution.
(b) Same as (a), except that the effective target thick-
ness is increased by a factor of 10.
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separating thick and thin targets is the approxi-
mate point where backscatter begins to dominate.
Physically this says that a target is thin if back-
scatter is unimportant.

The electron transport equation has been solved
exactly for diffusion through a plane parallel plate.
The only assumption made is that the energy is
constant. Hence we expect the results to be good

for thin targets, i.e., targets much thinner than

the Bethe range' for energy loss. Contrary to
general belief and predictions of earlier theories' '
the emergent electron distribution function does
not coincide with the single-scattering one even

for the thinnest target considered (I/X =0.0114}.
For thick targets (I/X&0.2) earlier theories are
a poor approximation for aQ angles. The incorpo-
ration of energy loss because of inelastic excita-
tion and ionization can be included in a straight-
forward manner. The calculation will hopefully
be completed shortly.

FIG. 7. Plot of the number densitjj variation across
the slab for an effective target thickness of t/A, = 0.262.
The solid curve is for a 5 function impinging on the
aluminum foil; the crosses are for an incident distribu-
tion function mth a 10' spread.

narrow region near $ =0 where there axe convex'-

gence problems, i.e., 18 polynomials are insuf-
ficient to represent a 6 function. However, as the
electron beam traverses the target it spreads and

the 18 polynomials are better able to represent
the electron distribution function. For the case of
the initial distribution function having a width of
about 10', the 18 polynomials are an adequate
representation through the complete slab. Thus

it is seen that if one starts with a ~ function of
electrons, there will always be a region in space
where the finite number of polynomials cannot
represent the distribution function. This is a
limitation of the present computational method of
approach. However, for the case chosen it turns
out that the emergent electron-beam spread is so
much greater than 10' that the errox' introduced
by replacing a 5 function with a function of width

5 rad is less than 5% through the whole slab.
The reason the number density initially increases

is because the electxon beam is diffusing in ve-
locity space, and if current is to be conserved Ole

density has to increase. The decrease in the num-
ber density of z/)'&0. 6 is because at this point the
beam is so spread out that backscatter dominates
and hence the electron density decreases. It turns
out that the Bethe, Rose, and Smith criteria for

The author is greatly indebted to Dr. J. D.
Daugherty for his suggestion of using the spherical-
harmonic expansion. Enlightening discussions
with Dr. E. R. Pugh are also acknowledged. P. J.
Pfeiffer's help with the numerical computation is
greatly appreciated.

APPENDIX: ORTHOGONALITY RELATIONS

FOR HALF-SPACE

Consider the differential equation for Legendre
polynomials,

Multiplying (A1) by i'8(p) and integrating over the
half-space, one gets

dgP, (p) —(1-IP) +a(a+()P )=O.d, dP
dp, dp

Integrating the above equation by parts results in

=P 8(0) " . (A2}
P p=0

interchanging o and P in (A2) and subtracting (A2)
from the resulting equation gives
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[P(P+ 1)—n(o+1)]I, 8
tion

d
d P,„„= 2 [(2n+1)pP, „„-(2n+1)P,„],

where

=P~(0' 8 -Ps(0)—P~, (A3)
dP, po dP go

I„&-- f dp P ~P& .

Let a=2m and P =2n+1, where m and n are inte-
gers. The second term on the right-hand side of
(A3) is zero. Making use of the recurrence rela-

Eq. (A3) reduces to

[(2n+1)(2n+ 2) —2m(2m +1)]I~

= (2n+ l)P, (0)P,„(0) (A4)

( —1)"' (2n+1)[1 3 6 (2n-1)][1 3 5 (2m -1)]
[(2n+ 1)(2n+ 2) —2m(2m + 1)][2 '"(n!)(m!)] (AS)

When & =2m+1 and P=2n+1, it is clear that

I 1
2m+1, 2n+I m, n 4++ 3 (A6) hence

Ps~Pm„„d& =0;

Finally, it is known that f0
I'2 &.a+i d& =-12~,"+i. (Av)
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