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It is shown that, by applying an “accelerated” or “multi-step” ladder-operatorial procedure, one can
obtain, easily, a symmetric closed-form expression for the off-diagonal (n = n',1 = 1’) hydrogenic r*

matrix elements.

I. INTRODUCTION

Recently, we have shown that the Schrddinger-
Infeld-Hull factorization method!'? is able not only
to give recursion formulas for calculating tran-
sition-matrix elements®"* but also, when followed
by an “accelerated” operatorial formalism or an
equivalent matrix procedure, leads to explicit
formulas.?® Particularly, without the help of
group theory, we obtained® a formula in closed
form for the general off-diagonal (n#n’, I#1’)
hydrogenic {zl |#*|n’1’) matrix elements. This
explicit expression, which involves only factorials
and binomial coefficients, is directly reducible to
any particular case, i.e., to available explicit ex-
pressions given elsewhere®'®”® and moreover ex-
hibits the well-known selection rules such as the
Sternheimer-Pasternack selection rule.” Never-
theless, as it is not symmetric in (nl) and ('),
i.e., is valid when the condition ' -1'>n-1 is
fulfilled, to calculate any given {xnl|7*|n’l’) in-
tegral one must use either the formula itself or
its counterpart which is formally obtained by in-
terchanging #, I and »n’, I/, respectively. On the
other hand, owing to the connection between this
matter and finite-difference calculus, one can
question if some of the summations which appear
in our previous closed-form formula cannot be
contracted (not obviously). This possibility sug-
gested to us that there might exist, in the factor-
ization scheme, an alternative “accelerated”
operatorial (or equivalent “accelerated” matrix
procedure) which can lead to more compact closed-
form expressions. In the present paper, it is
shown that one can obtain an entirely symmetric
[in () and (2’1’)] explicit expression of the gen-
eral off-diagonal hydrogenic 7* radial integral.

II. CALCULATION

The radial Schrédinger equation for a Coulomb
field, after setting ,,(»)=r"'R, (r) is
( dz 2Z 1(1+1) z°

art Ty 7? n? )R"' (r)=0. (1)
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As has been shown in our previous paper® and
with use of the same notations, one can obtain the
radial wave functions as solutions of a factorizable
equation by defining 2Z7 =¢* and R (r) =&*/2U(x),
i.e., the U(x) functions are solutions of the follow-
ing pair of difference-differential equations:

H3US =[(S —m)(S +m)] /2US™ |
HiUS™=[(S -m)(S +m)]2US

(2)

where
S=n-%, m=1+%. (3)
The corresponding ladder operators are
1 d
£ _ = % _ —_—
Hs-zne S¥F dx (4)

The necessary condition for the existence of
quadratically integrable solutions is

S-m=v=integer=n-1-1. (5)

In fact, v is the usual radial quantum number
n,=n-1-1.

A. “Accelerated” Ladder Operator

Each eigenfunction of the whole discrete set of
the quadratically integrable functions US = U™
is completely characterized by the integer value
of v, which fixes its rank starting from the key
function Uy, (v =0), and for each value i of v, the
ladder operators in Eq. (2) may be considered as
“one-step” ladder operators which generate the
eigenfunctions, step by step, downward or upward.
Hence, one can define® the corresponding “acceler-
ated” or “v-step” operators 3C;, which directly gen-

erate any Up* function from/to the key function,
so that

KU R=RUL",
KU =RUn,

(6)

where
v
ses =[] Hins )
i=1
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:-ﬂ:ﬂex—(m"'l)*g;, (8)

IR o (7 va_ (VI@+2m)1\12
ER,,—Ii;Il[z(z+2m)] -( @1 > . (9)

Using Eq. (8) to express H* in terms of H™, one
obtaing, particularly, an alternative expression
of the “accelerated” operator

H::H(;ll-e’—Zm-H;,—i> (10)
i=1

and from Eq. (6), we get

1
Um+v e +U:n")
m =g

=% H(%e“—Zm—H,}—i)Uz. (11)
i=1

In order to introduce the action on U}, of the
ladder operator H,, one makes use of the follow-
ing relationship:

(- H;)[(_l/n)e‘]‘U(x) =[(1/n)e* ) (- H, +U(x) .

After rearranging the terms, one gets
i v=i

v
U$+”=§ll‘2<f>(%‘"> [I-2m-H,-i-wUr.
Y=o w=1
‘Since

HUR=0, (12)

one finally obtains the following expression of
any function UL*" in terms of the key function
Unm (v=0):

i
Y 1 &K 1 )\ @m+ov)!
vnt (")=(‘)"§lv— Z(l ><_56> @mi) Un) .
i=o (13)
B. Off-Diagonal (n #n')r* Integrals

The general matrix element to be calculated is
+ o0
(nl|r*|n'l") =f RX(r)7*R () dry
0

=(1/2ZY** 1 m% . (m, m’), (14)
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where?

smt,.,'(m,m')=f U (x)e ® % om0 () dix.
(15)

Hence, from the expression (13) of the UL"" func-
tion, we have

o= 2 (0

XMEE (m,m'). (16)

As formula (16), for v’ =0, also gives the expres-
sion for I , in terms of the key matrix elements
M; , and, consequently, its counterpart, i.e.,

MG ,» in terms of M} , one finally obtains

Sllﬁ,.,f(m,m')=(;z:)f:zw’, Z”: ( f> <—'l‘ >‘

v §=g

AN s

XMl (m,m). (1)

The key matrix elements 9 ;' , have already been
calculated in our previous paper.® The key func-
tions, which are solutions of Eq. (12) are

Un(x)=Cn~"[(2m = 1)!1]" 2 exp (mx - -2-1; e") s
(18)

where the constant C, when adjusted to match with
the usual R,; normalization condition® is

C=2Z"*n"32(21+1)7"/2 (19)
and one gets

’
2nn’ )rru-m +w+2

w Yy — ’
Mg o(m,m')=CC <n+n’

(m +m’ +w +1)!
n"n™[(2m - DI2m' =11 ]2 "

(20)

X

Then, keeping in mind that v=n-1-1 and m =1+%, one finally deduces from Eqs. (14), (17), (19), and (20)
the required expression of the general #* matrix element:

’

a8 (11) (1)

i=o0

where

i”(n'_l’—l) <__1_>’( 2nn’ )“’ (L+U +k+2+i+5)!
j n' n+n’ L+1+ QU +1 +5)

(1)

(_)n-Hn'-l’ 2nn’ >t+l '+R+3 1
A= 2(22)1: <n+n’ n g e (

(n+D)(n’ +1')! )”2
m=1-1Dln-1-1)
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Indeed, this result could be obtained by an equiv-
alent “accelerated” matrix method®; nevertheless,
owing to the evident parallelism of the two meth-
ods, we give, in the present paper, only the for-
mer one.

III. CONCLUSION

Finally, we have obtained another closed-form
expression for the general hydrogenic * integral
which is entirely symmetric in (z) and (»’l’) and
involves only two summations. As it can be shown
from the expression [Eq. (13)] of the functions in
terms of the key functions [Eq. (18)], the formula
obtained must very likely correspond to a crude
evaluation of the * integral when expressing hy-

loo

drogenic functions in terms of basic 7' ¢~¢"/™
functions. If the formula appears to be easy to
handle either by hand calculations or program-
ming, one must point out that it does not directly
exhibit, as did our former formula,® the existing
selection rules.’ Moreover, analytical reduction
of the formula [Eq. (21)] to special particular
cases such as »=n’, for instance, is not obvious
or easy. This last multistep ladder-operatorial
procedure seems appropriate to other cases of
factorizable equations, particularly, as we have
been able to obtain, in the same way, a compact
closed-form expression of the Morse-Pekeris
nuclear dipole matrix elements.'® Indeed, we
know that this last problem contains the hydro-
genic case.

IE. Schridinger, Proc. R. Irish Acad. A46, 9 (1940);
Proc. R. Irish Acad. A46, 183 (1940); Proc. R. Irish
Acad. A47, 53 (1941).

%L, Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

SM. Badawi, N. Bessis, G. Bessis, and G. Hadinger,
Phys. Rev. A 8, 727 (1973).

‘M. Badawi, N. Bessis, and G. Bessis, J. Phys. B 5,
1470 (1972).

M. Badawi, N. Bessis, and G. Bessis, Can. J. Phys.

(to be published).

L. D. Landau and E. M. Lifshitz, Relativistic Quantum
Theory (Pergamon, New York, 1971).

"E. Durand, Mecanique Quantique (Masson, Paris, 1970).

%A, Levy, C. R. Acad. Sci. (Paris) 269, 789 (1969).

%S. Pasternack and R. M. Sternheimer, J. Math. Phys. 3,
1280 (1962).

1M, Badawi, N. Bessis, G. Bessis, and G. Hadinger
Can. J. Phys. (to be published).



