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Static dipole polarizabilities, accurate to within 5% are presented for the ground states and some
valence excited states of the first-row atoms. The polarizabilities are obtained from multiconfigurational
self-consistent-field wave functions, which were computed with the perturbing electric field included
directly in the Hamiltonian. The use of the multiconfigurational framework allows any state of both
degenerate and nondegenerate atoms to be considered, and also allows for the explicit introduction of
electron-correlation effects. Detailed discussions of basis-set selection and the effects of electron
correlation are presented along with comparisons with experimental and other theoretical polarizability

results.

I. INTRODUCTION

In a previous paper' (hereafter referred to as
Paper I), the coupled multiconfigurational self-
consistent-field (CMCSCF) method for computing
static atomic dipole polarizabilities was presented
and applied to the 'S, !D, and 3P states of the
neutral carbon atom. The CMCSCF method was
shown to be a straightforward extension of the
coupled Hartree-Fock (CHF) method,?™ in that
both techniques involve the variational determina-
tion of a wave function for an atom in the presence
of a perturbing electric field. However, the
CMCSCF method possesses several powerful ad-
vantages by virtue of its multiconfigurational
formalism: (i) Degenerate atoms are as easily
treated as nondegenerate atoms: (ii) all states of
the atom, including excited states, may be con-
sidered; and (iii) electron-correlation effects may
be directly included if desired.

In the present work, the results of CMCSCF
static-polarizability calculations are reported for
the first-row atoms, lithium through neon. The
polarizabilities have been computed at both the
CHF level (i.e., only those configurations were
employed to give the correct HF state of the atom),
and at a level which includes the dominant atomic-
correlation configurations for the particular atom.

The effect of electron correlation on the dipole
polarizabilities of atoms may easily be studied
with the CMCSCF technique, since it is an easy
task to systematically add appropriate correlation
configurations into the MCSCF calculation and
note the degree of change in the resulting polar-
izability. In Paper I, the effect of correlation on
the polarizability of carbon was studied to a lim-
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ited degree utilizing additional configurations,
which accounted for electronic rearrangements
within the valence shell, To provide a more sys-
tematic prescription for treating the correlation
problem as it applies to the atoms examined in
this work, the carbon atom was further correlated
with a large variety of potentially important terms.
In Sec. II of this paper, the formalism and com-
putational details of the CMCSCF method are re-
viewed, with particular emphasis on the choice
of a flexible basis set to adequately handle the
polarization process. Section III is devoted to a
discussion of the electron-correlation problem.
Finally, the results of the CMCSCF polarizability
calculations for the elements lithium through neon
are reported in Sec. IV and compared to available
experimental and other theoretical values.

II. REVIEW OF THE CMCSCF METHOD

A. General Formalism

In Paper I the equations and computational de-
tails of computing static atomic polarizabilities
within the CMCSCF framework were treated in
detail and only a brief review will be presented
here. The basic approach to the calculation of
dipole polarizabilities involves the determination
of a wave function and an energy for an atom in
the presence of a static electric field applied
along the z axis of the atomic-centered coordinate
system.® As shown below, the polarizability o
of the atom can be determined either from the
induced dipole moment (obtained from the wave
function) or from the energy lowering relative to
the unperturbed atom.

An MCSCF analysis of the perturbed atom sys-
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tem will yield a wave function which may be con-
sidered to be of the following formsS:

Yone = Po + Fpy (1)

where F is the magnitude of the perturbing field,
, is the unperturbed MCSCF wave function for
an N-electron atom with Hamiltonian H, such that

(Hy = Eg)$,=0, (2)
and y, is the well-behaved solution of
(Hy = Eo)y, +hip=0, (3)
with
Y F.f
== =5
h==30 —%+. (4)

i=1

In this framework, the static polarizability a be-
comes a function of the second-order change in
the energy of the atom,®

a==2{ylhly,) . (5)

The electric field in the CMCSCF method is in-
duced by a charge of magnitude @’ placed at
varying distances along the 2 axis. This point-
charge perturbation may be expanded in a series
of inverse powers of R (charge-atom separation),
as shown in Paper I, and after certain manipula-
tions of Egs. (1)-(5), a working expression is
obtained for the polarizability:

a(R)=(R?/Q")(¥eyc | 2| ¥ euc )+ O(1/RP)+ -+ - . |
(6

The desired static polarizability then becomes the
limiting value of a(R) as the field strength ap-
proaches zero (i.e., as R approaches infinity):
a= lim a(R) . (M
R —> o

The quantity (Wcye | 2| ¥cyc ) is readily calculated
from the final MCSCF wave function, and corre-
sponds to the induced dipole moment of the atom
due to the field.

In addition to this induced dipole moment, the
MCSCF analysis also yields a total energy Eqyc
which is defined by

Ecyc(R) =<‘I’CMCIH0+Fh(R)!‘I’CMC> ’ (8)

from which one may obtain the energy of interac-
tion, AE, between the atom and the field, i.e.,

AE=Eqyc - E, , (9)

where E, has been defined by Eq. (2). It was
shown in Paper I that the polarizability could also
be expressed as a function of AE [see Eq. (17),
Paper I], but that obtaining o from the induced
dipole moment is numerically a more satisfactory
procedure, which is in agreement with a similar

conclusion reached by Cohen and Roothaan® in
their discussion of the CHF method.

B. Computational Methods

The calculations reported in this work were
performed with the BISON” Slater-type orbital
(STO) integral and HF-SCF program and the
BISON-MC® MCSCF system developed by Wahl and
Das. The BISON-MC program variationally deter-
mines a wave function which is expressed as a
linear combination of Slater determinants in terms
of molecular-spin orbitals (MSO’s). The MSO’s
are ultimately expressed as a linear combination
of atomic-centered STO’s. The choice of this
STO basis set will be discussed in Sec. IIC.

In actual practice, the BISON-MC program is
used to generate a wave function for the atom in
the presence of a perturbing field. The polar-
izability is then given as a function of the induced
dipole moment, as shown in Eq. (6). To obtain
the limiting value of a(R) as the field strength
approaches zero, the charged particle is systema-
tically removed from the atom until the results
at two successive points agree to within a given
tolerance. Generally speaking, for the majority
of the first-row atoms treated in this work, the
magnitude of the charge was taken to be unity
(i.e., a proton) and the calculated polarizability
normally reached a limiting value around R =
18 a.u. However, for those atoms, such as lithium,
that possess large polarizabilities, the conver-
gence was considerably slower as a function of R.

The electronic configurations employed in the
MCSCF wave function include the base configura-
tions, which are those required to give the correct
asymptotic HF state of the particular atom, plus
additional correlation terms. The various types
of correlation configurations and their effect on
the dipole polarizabilities will be discussed in
Sec. IIL

It should be pointed out that all calculations were
performed in C,, symmetry. The asymptotic
behavior of C.,, wave functions approaching the
corresponding state of the spherical atom, and
the resulting manifestations observed in properties
such as the total energy and dipole polarizability,
were examined in detail in Paper I. The subject
will not be discussed further in the present work
except as it relates to the correlation problem,
which is covered in Sec. III.

C. Choice of Basis Functions

As pointed out in Sec. II B, the solution of
MCSCF equations in the OVC program entails the
variational determination of a set of optimized
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MO’s, which are given as a linear combination of
STO’s. In computing polarizabilities via such

an expansion method, the normal procedure®’*
involves use of an accurate HF atomic basis set,
augmented by an appropriate set of polarization
functions. The choice of the polarization functions
is particularly critical, since the resulting polar-
izability is directly dependent on the flexibility
allowed in the wave function to properly describe
the distortion of the atom in the presence of the
perturbing electric field.

Sitter and Hurst* have reported rules for spec-
ifying the principal quantum number and spherical
harmonic portions of the polarization functions,
which leaves only the exponents of the radial
terms to be determined. In Paper I a simple pro-
cedure was described which is based on the mini-
mization of a one-electron perturbation function cou-
pling the polarization function and the unperturbed
atomic function. It was also shown that this tech-
nique yields radial exponents that are within 5%
of exponents obtained from more costly brute-
force optimization techniques. Any residual error
due to the approximate nature of the exponents
should be minimized by the fact that several po-
larization functions of each type are added to the
atomic basis sets.

Thus for the calculations reported in this work,
the basis sets consist of an accurate HF set,
augmented with several additional functions re-
quired to properly account for electron-correla-
tion effects, and finally a set of polarization func-
tions chosen in accord with Sitter and Hurst’s
rules, and with radial exponents determined by
application of Eq. (18) in Paper I.

A question now arises concerning the flexibility
of these basis sets in producing reliable polar-
izabilities. In Paper I it was shown that the po-
larization functions for helium and beryllium
agreed well with those obtained by Cohen via an
arduous exponent-optimization procedure. In
addition, our final calculated polarizability for
neon agrees perfectly with the polarizability ob-
tained by Kaneko and Arai,® using a numerical

TABLE I, Effect of electron correlation on carbon P
polarizability.

Configurations in MCSCF @ Calculated a (A3

1s?2s?2p? (base configuration) 1.49
Base +1s22p¢ (valence-shell doubles) 1.42
Base +1s%2p ¢ +1s2252p23d (semi-internal) 1.41

Base +1s22p 4 +1s%2s2p%3d +

1s2s22p3 +1s%2522p3d (odd parity) 1.45

2Configurations listed above were included in MCSCF
calculation in all possible symmetry-allowed coupling
schemes.
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CHF technique. Finally, for beryllium, the po-
larization basis was further augmented with three
more 3d functions, two more 3s functions, and
two additional 2p functions. The resulting po-
larizability from the large basis was 5.43 A3, as
compared to 5.41 A% with the smaller set. A
similar study was performed on the carbon atom
and was described in Paper I. Hence, it is not
unreasonable to assume that our basis sets con-
tribute no more than 2 or 3% error to the calcu-
lated polarizabilities.

III. ELECTRON-CORRELATION EFFECTS
A. General

For the first-row atoms, it is well established
that a significant portion of the electron-correla-
tion effects may be handled by considering the
correlation from excitations within the valence
shell and the most important portions of the
“semi-internal” correlations,'~'? which corre-
spond to single excitations with a spin flip to or-
bitals outside the valence shell. In Paper I the
effect of the valence-shell correlation on the di-
pole polarizability of the carbon atom was re-
ported, indicating that such terms lowered the
calculated polarizability by between 5 and 10%
relative to the base-configuration results. In
order to provide a sounder basis for including
correlation in the other first-row atoms reported
in this work, a more detailed study of correlation
terms seemed appropriate.

Before the results of this study are presented,
it is instructive to consider qualitatively the pos-
sible refinements to dipole polarizabilities com-
puted at the CHF level by the addition of the cor-
relation terms. From consideration of Brillouin’s
theorem!® and the work of Moller and Plesset,**
it is obvious that when the SCF equations for the
atom are solved using the full Hamiltonian for
the sytem (i.e., in the present case, when the
external field is included in the Hamiltonian), any
corrections to one-electron properties due to cor-
relation, such as the dipole polarizability, will
appear as higher-order terms, if such were con-
sidered in a perturbative formalism. Thus, it is
not surprising that atomic polarizabilities cal-
culated in the CHF formalism have normally
agreed well with available experimental data.
This situation is to be contrasted to schemes
where both the correlation and the external field
are treated as perturbations on a zeroth-order
atomic wave function. All calculations of that
type require corrections to the wave function in
first order. Hence, it is anticipated that the ef-
fect of electron correlation on polarizabilities
computed in the CMCSCF formalism would be
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small relative to the base-configuration results,
mainly owing to the inclusion of the external field
in the Hamiltonian.

Another point that deserves mention concerns
the treatment of the charge-atom system in C.,,
symmetry. When the spherical atomic symmetry
is relaxed to C.,, even-parity (with respect to the
original atomic symmetry) basis functions are
allowed to mix with the spherical atomic SCF so-
lutions. In a restricted sense, this corresponds
to the inclusion of other configurations in the cal-
culation, many of which correspond to important
correlation terms. Thus, the CMCSCF base-
configuration results do, in certain cases, have
some “correlation” effects included simply owing
to the symmetry relaxation. This situation was
examined in detail in Paper I.

B. Effect of Correlation on Carbon

To provide the basis for including correlation
in the CMCSCF calculations on the first-row
atoms, the polarizability of carbon was studied
as a function of the various types of possible cor-
relation contributions. Basically, with the help
of accurate atomic CI wave-functions,''!! the
choice of important configurations in carbon was
narrowed down to three types: (i) valence-shell
double-excitation terms, e.g., 1s?2s%2p*-1s22p*;
(ii) semi-internal terms, e.g., 15%2s22p%-152252p%3d;
and (iii) various energetically favorable odd-parity
terms rendered symmetry allowed by the presence
of the charge, e.g., 1s22s22p?-15%2s2p°. To ascer-
tain the effect of these terms on the polarizability,
the various types of configurations mentioned
above, in all possible coupling schemes, were
systematically added to the 3P(M, =0) base con-
figuration of carbon. The results of this study are
presented in Table I. It is immediately obvious
that conclusions reached in Sec. IITA are borne
out by the results in this table. The correlation
terms affect the polarizability computed at the
base-configuration level by only about 5-10%. It
is also apparent that the valence-shell double con-
figurations have the greatest effect and lower the
polarizability by about 10%. The semi-internal
contribution is small, as is the contribution from
the odd-parity terms. Based on this analysis, it
was decided that the addition of valence-double
and semi-internal configurations would be suffi-
cient to obtain a reasonably accurate description
of the correlation effects for the other first-row
atoms. However, in cases of near degeneracies
in the valence shell, such as in beryllium, the
odd-parity configurations were again added to en-
sure completeness.

The configurations and final perturbed-atom
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TABLE II, Perturbed-atom CMCSCF configurations
and mixing coefficients. 2

Open-shell Mixing

Atom (state) Configurations couplings® coefficients
Lithium (Z*) 1s%2s > 1.000 00
Beryllium (!z*) 1s%2s? 0.950 36
1s%2p? -0.180 69

1s%2p? R -0.253 31

1s%2s2p z13 ~0.000 01

Boron (*z*) 1s%2s%2p (3> 0.963 96
1s%2p ,2p% iz 23 -0.226 34

1s%2s2p ,3d,, TS 0.07549

1s%2s2p ,3d,, ly -3z 23 —-0.047 01

1s%2s2p ,3d,, Oy S -0.082 88

1s%2s2p ,3d x—ir—?y 0.069 09

Boron (27) 1s%2s%2p °r 0.968 11
ls:2p§,2p" Zw -0.166 42

1s%2p% ™ 0.158 09

1s%2s3d ,2p (RS ERS 0.057 92

1s%2s2p ,3d,, izlply ~0.061 90

1s%2s2p ,3d,, z3plg 0.053 78

Nitrogen (‘Z7)  1s®2s%2p 2p% [ 0.992 76
1s%252p ,3d,2p%  (Z—~!Z—=2Z—4T  -0.03540

1s%2s2p ;3d 2p%  *z—3Z—!Z—'>  0,05832

1s%2s2p ;3d 2p% *Z—3Z—2Z—4z  0,01431

1s%2s2p33d, (O S ) 0.069 39

1s%2s2p%2p ,3d, (Z—Sr—i3 0.068 89

Oxygen (°Z7) 1s%2s?2p%2p? 22 0.995 73
1s22s2p§,3d02pz, z—1z33 0.014 62

1s’2s2p%3d 2p%  r—3z—3Z ~0.060 39

1s%2s2p 2p33d, (r—lz—2r-3% 0.055 56

1s%2s2p ,2p33d, r—3Z—‘r1—3Z  -0,03715

1s%2s2p ;3p3d, (Z—?r—2r—3%  —0.01402

Oxygen (°m) 1s%25%2p j2p%, 2y —3g 0.996 34
1s%2s2p ;3d,2p%  *r—l1:z—2z—37  -0,04303

1s%2s2p ,3d,2p3  (Z—3Z—‘Z—31  0,02345

1s%2s2p ,3d ,2p3 3z —2Z—31  0,02924

1s%2s2p%2p%3d, (r—2Z—3r ~0.028 32

1s%2s2p22p%3d, (Z—iz—’r -0.02527

1s’2s2p%2p%3d, (r—?Z—ir 0.02919

1s?2s2p43d, 2z -3 -0.04187

Fluorine ¢2*)  1s®2s%2p 2p% ) 0.995 26
1522s2p03d02pj,, :z—~;z-;z 0.01439

1s%2s2p ,3d,2p%  2Z—~3z—l3 -0.07781

1s?2s2p%2p33d, ‘T—lr—?z 0.047 79

1s%2s2p?2p33d, 31—z -0.03034

Fluorine (m) 1s%2s?2p%2p3 i 0.999 48
1s%252p%33d2p3  *z—'Z—?r -0.00176

1s%2s2p%3d 2p3 22321 0.03211

Neon (1z*) 1s%2s22p%2p4, 1.000 00

2 Slater orbital expansions for the orbitals determined
in the CMCSCF calculations reported here have been
deposited with the National Auxiliary Publications Service
(NAPS). For a copy of these tabulations order NAPS
document No. 02201 for 16 pages of supplementary ma-
terial. Order from ASIS/NAPS c¢/o Microfiche Publica-
tions, 305 E. 46th St., New York, N.Y. 10017. Remit
in advance for each NAPS accession number $1.50 for
microfiche or $5.00 for photocopies up to 30 pages,
15¢ for each addiiional page. Make checks payable to
Microfiche Publications.

bThese symbols represent the left-to-right vector
sums of the spins and orbital angular momenta of the
open shells in the configuration (i.e., the coupling of
each open shell with the total spin and angular momentum

of the open shells preceding it).
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configuration mixing coefficients for all of the
first-row atoms in this study are given in Table
II.

IV. CMCSCF POLARIZABILITY RESULTS
A. S-State Atoms: Li, Be, and Ne

Lithium and neon are the simplest first-row
atoms to treat with the CMCSCF method. Both
atoms possess ground S-states, and hence only
one cylindrical state need be considered in the
calculation of the polarizability. In addition, the
important valence-double excitation is not pos-
sible for either atom, so correlation effects are
expected to be unimportant. Thus, our calcula-
tions were performed at the CHF level with only
single-configuration wave functions. There have
been many other theoretical calculations on Li
and Ne, and our results are compared to these
and the most reliable experimental values in
Table ITII. The excellent agreement is not sur-
prising, in light of the above considerations.

In the case of neon, it is particularly important
to note that the CMCSCF calculation agrees per-
fectly with the numerical CHF treatment of Kaneko
and Arai,® and also the CHF calculation of Sitter
and Hurst,* which used a much larger polariza-
tion basis than the one employed here. As men-
tioned previously, this result certainly supports
the reliability of the polarization-function-ex-
ponent-determination method that was described
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in Paper I. Although our value for a(Ne) in
Table III is in excellent agreement with other
theoretical values, it is somewhat below the ex-
perimental number obtained by Dalgarno'® from
index-of-refraction data. We are in good agree-
ment, however, with the value of 0.342 +0.011 A®
deduced by Hackam'® from ion-mobility measure-
ments.

Matsubara e? al.!” have used MBPT to compute
a value for the polarizability of neon which is in
excellent agreement with the result deduced from
index-of-refraction data (see Table III). Their
calculation, however, was only done to first order,
and did not include the higher-order diagrams
necessary to describe the full interaction of the
atom with the perturbing field or the two-electron-
correlation effects. If we restrict the CMCSCF
method to include only single excitations from
the frozen Hartree-Fock configuration (as op-
posed to the fully coupled calculations we have
reported in Table III), the computed polarizability
is 0.381 A3, which is considerably larger than the
fully coupled value of 0.351 A%, Although this is
not an exact simulation of the first-order MBPT
calculation, it is a good indication that the re-
striction to single excitations can lead to a poor
approximation to the fully coupled result.

In a further attempt to resolve the discrepancy
between our single-configuration results and the
experimental value for neon, we added some
correlating configurations to the neon wave func-

TABLE II. CMCSCF polarizability results for Li, Be, and Ne.

CMCSCEF results

Other values 2

Atom State Base Correlated a (A3 Method Ref.
Li s 25.37 25.37b 25,23 Variation perturbation 20
24,96 Double perturbation 21
24,84 MBPT 22
22+2 Atomic-beam deflection 23
Be ig 6.75 5.41¢ 6,24 PUCHF 24
6.76 CHF 3
6.93 MBPT 18
5.42 Hylleras variation perturb. 19
5.54 PUCHF 25
5.49 Perturb, var. with CI 26
Ne is 0.351 0.351P 0.352 CHF 4
0.349 PUCHF 27
0.349 Numerical CHF 9
0.395 MBPT 17
0.395 Index of refraction 15
0.342 Ion mobilities 16

a Other values not listed in table may be found in review by Teachout and Pack, Ref. 28.
b Results at the CHF level; i.e., single-configuration wave function only.
€ Calculated with base configuration plus valence-shell doubles and odd-parity terms as

listed in text.
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tion. First, the neon basis was augmented with
STO’s appropriate for correlation. Configurations
consisting of double excitations from the p or-
bitals were then added to the single-configuration
wave function. Weiss'® has shown that double
excitations of this type account for a large por-
tion of the valence-correlation energy in neon.
The CMCSCF polarizability obtained from the
correlated wave function (0.354 A3) differed neg-
ligibly from the single-configuration result re-
ported in Table III. A more detailed investigation
of the effect of electron correlation on the polar-
izability of neon, which is beyond the scope of
the present work, is needed to verify the accuracy
of our computed value in this case.

Beryllium is one of the more unusual atoms in
the first row, owing to the near degeneracy of
its ground state (1s%2s?, 'S) with three other sin-
glets: (1s22p?, 1S), (1s%2p?, ' D), and (1s%2s2p, 'P).
It is therefore important that all of these terms
be included in the wave function in order to obtain
a reliable description of the charge distribution,
and ultimately, the dipole polarizability. The
1S ground state projects into only one cylindrical
state (12;*). Hence, to form the MCSCF wave

2241

function, the !}}* projections of the four states
listed above were employed. The results of the
CMCSCF calculations are presented in Table III.
The single-determinant base-configuration result
of 6.75 A3 agrees well, as it should, with Cohen’s
CHF results.® The correlated value of 5.41 A®
exhibits a marked lowering relative to the base-
configuration value, and is due almost entirely

to the large mixing of the (1s%2p?, 1S) and (1s22p?,
D) configurations. The (1s22s2p, 'P) configuration
was also present in this calculation, but the
mixing was small compared to the valence-double
terms.

The correlated beryllium polarizability exhibited
the largest lowering of any of the first-row-atom
polarizabilities as a result of inclusion of the
valence-double terms. At first, the result was
somewhat bothersome, particularly in light of
Kelly’s MBPT'® value of 6.93 A%, which also ac-
counts for correlation. Hence, as a check, the
calculation was repeated with a largely expanded
polarization basis, but this resulted in a neg-
ligible change in the polarizability (5.43 A®). Re-
cently, Sims and Rumble'® have calculated the
dipole polarizability of beryllium, using the

TABLE IV, CMCSCF polarizability results for B, C, N, O, F.

a(CMCSCF)(A3) Other values 2
Atom State a(base) oa(corr.)P a(avg.) © a(Aa) Method Ref.
B plzt) 4,03 3.44 2.93 Coupled variation 20
2.85 perturbation
p (2m) 2.89 2.56 4,18 Sternheimer perturbation 30
C 1g(lzt) 1.82 1.77 1.77
Ipizt) 1.98 1.93
Iptm) 1.79 1.76 1.69
Ip(la) 1.57 1.51
Spiz) 1.49 1.42} 1.66 1.54 (*P) MBPT 31
pém 1.88 1.78 : 1.75 (3P) Approximate UCHF 32
N S(4z) 1.02 1.02 1.01 1.04 (4S) Approximate UCHF 32
pEz-) 1,08 1,08 1.13 (4S) Optical interferometry 33
D (7 1.06 1.05 1.07 1.30 (4S) Antisymmetrized Hartree 6
D (2A) 1.07 1,07
p Rzt 1.11 1.07
2p (7) 1.12 1.04} 1.05
o igdzt) 0.75 0.71 0.71 0.83 (!s) MBPT to 2nd order 34
ipizt) 0.67 0.66
1p (ir) 0.68 0.68 0.70 0.79 (!D) MBPT to 2nd order 34
ipa) 0.75 0.75
pizT) 0.75 0.74} 0.69 0.78 (3P) MBPT to 2nd order 34
p e 0.67 0.66 : 0.77+0.06 Optical interferometry 33
F p izt 0.46 0.44} 0.47 0.53 Approximate UCHF 32
p (*m) 0.50 0.48 : 0.60 Antisymmetrized Hartree 6

2 Other values not listed in table may be found in review by Teachout and Pack, Ref. 28.
b Calculated with base configuration plus valence-shell doubles and semi-internals where possible.
¢ Value for atomic state computed as a spherical average over the various cylindrical M; projections.
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Hylleras variation-perturbation scheme?® on a
highly accurate Hylleras-type beryllium wave
function. They compute a polarizability of 5.42
+0.05 A®, with a rigorous lower bound of 5.30 A3,
which is in excellent agreement with the CMCSCF
result. Since the Sims and Rumble calculation

is probably the most accurate treatment of beryl-
lium to date, the CMCSCF beryllium polarizability
appears to be reliable. There are no experimental
values available for comparison.

B. Results for Open-Shell Atoms: B,C,N, O, F.

For the open-shell atoms of the first row in
other than S states, the full diagonal polarizability
tensor for the particular state must be computed.
That is, the dipole polarizabilities must be com-
puted for each of the M ; projections arising from
a given state, which may then be spherically
averaged to yield the average static polarizability
a@. This requirement is easily handled in the
CMCSCF formalism, since the M, substates arise
naturally from use of the C,, coordinate system.

To account for electron correlation, all possible
valence-double and semi-internal-type configura-
tions were considered in the CMCSCF determina-
tion of the wave functions. In addition to the
ground states of the atoms, any excited states
arising from the ground electron configuration
have also been treated. The CMCSCF results for
the open-shell atoms are displayed in Table IV
and compared to other theoretical values and
available experimental data.

Of the results presented in Table IV, those for
the 2P ground state of boron exhibit the largest
anisotropic effect. The base-configuration re-
sults are 4.03 A® for the M =0 state and 2.89 A®
for the M ;= =1 state, which yield an @ (base)
of 3.27 A3, which is in fair agreement with the
result of Mukherjee ef al.?° via a HF-level coupled
variation-perturbation treatment. The only other
boron polarizability available for comparison at
the base-configuration level is that of Tiwari
et al.,*® which is probably too large (4.18 A%),
possibly owing to an insufficiently accurate zeroth-
order function in their Sternheimer perturbation®®
analysis. When valence-double (1s%2p®) and semi-
internal (1s%2s2p3d) correlation contributions are
included in the analysis, the resulting polarizabili-
ties are 3.44 A® and 2.56 A® for the M, =0 and M,
=+1 components, respectively, which yield an ‘@ of
2.85 AS, This represents a decrease of approxi-
mately 14% relative to the base-configuration
value, and is consistent with the effect of the
valence-double term on the dipole polarizabilities
of other first-row atoms. Unfortunately, neither
theoretical values at the correlated level nor

experimental figures are available with which to
compare the CMCSCF correlated polarizability
for boron.

As pointed out above, the anisotropy in the cal-
culated polarizability-tensor components of boron
is the largest observed in the first-row atoms.

It is interesting to note that the polarizability
anisotropy of the (6s6p®P,) state of metastable
mercury has been determined experimentally
using the atomic beam E-H gradient-balance
method,®® which indicates that the anisotropic
effects exhibited in the CMCSCF calculations
would possibly be experimentally confirmed at
some future date.

The CMCSCF results for the 'S, !D, and P
states of carbon were discussed in detail in Paper
I, and are included in Table IV of this work for
completeness only. As pointed out in Paper I,
the CMCSCF correlated @ and its tensor com-
ponents for the 3P state of carbon are in excellent
agreement with Miller and Kelly’s figures®! ob-
tained from a MBPT analysis carried through
fourth order. No experimental values are avail-
able for comparison.

The ground-state configuration of nitrogen
(1s22s22p®) yields three possible states, the %S
ground state and the 2P and 2D excited states.

The correlated @ for the %S state is 1.01 A3,
which is in excellent agreement with value ob-
tained by Thorallsson ef al.3? of 1.04 A? via an
approximate UCHF treatment. The only other
theoretical value available is 1.3 A3 obtained by
Dalgarno® from an antisymmetrized Hartree ap-
proximation. Both the CMCSCF and approximate
UCHF results are in very good agreement with
the experimental result for the *S state of 1.13
+0.06 A3, determined by optical interferometry.3
It should be noted that there is no possible va-
lence-double configuration with the correct sym-
metry to mix with the %S ground state of nitrogen.
This is probably the main reason why the other
theoretical results, which do not contain any cor-
relation effects, are in such close agreement
with the CMCSCF figure and the experimental
number for this state. The only substates of ni-
trogen where the valence-double term is symmetry
allowed occur in the D and 2P excited states. No
experimental determinations have been made on
these states for comparison.

For oxygen, Kelly** has reported MBPT results
for the 1S, !D, and 3P states. His values are com-
pared to the CMCSCF results and to the experi-
mental value of 0.77+0.06 A3, from optical-inter-
ferometry measurements, in Table IV. The
CMCSCF polarizabilities are approximately 10%
lower than those obtained from MBPT, but it
should be noted that the reported MBPT numbers
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were only calculated to second order. Acutally,
Kelly carried the analysis to third order, but
then reasoned that the fourth-order terms would
approximately cancel the third-order lowering
and hence the second-order figures were taken
as final. Miller and Kelly’s recent and more
accurate analysis on carbon® appears to con-
tradict such reasoning, in that their calculated
fourth-order contribution to @ is only about 25%
of the third-order term. If the calculated third-
order contribution to @ for the 3P state of oxygen
is subtracted from the second-order value, the
result is 0.64 A3, The projected raising of this
number due to fourth-order diagrams based on
analogy with the carbon treatment would bring
Kelly’s @ for 3P oxygen into excellent agreement
with the CMSCF value of 0.69 A3. Both the MBPT
and CMCSCF polarizabilities for the 3P state of
oxygen are in excellent accord with the experi-
ment.

The ground state of fluorine (1s22s%2p°2P) pos-
sesses no possiblity for the normally important
valence-double term, and hence only the semi-
internal correlation configurations (1s?2s2p°3d)
were employed in the MCSCF analysis. The
CMCSCF calculated @ is 0.47 A%, which agrees
well with the value of 0.53 A® from an approximate
UCHF treatment.? Unfortunately, no experi-
mental information is available for comparison.

V. CONCLUSIONS

The results presented in Sec. IV indicate that
the CMCSCF method is a powerful and promising
tool in the determination of reliable atomic-dipole
polarizabilities. The agreement with experiment
and other accurate theoretical treatments which
account for correlation is quite good. At this
point it is appropriate to make estimates of pos-
sible errors in the CMCSCF results. To begin
with, there is, of course, the question of com-
pleteness of the basis set, particularly with re-
gard to the polarization functions. The agreement
of the CMCSCF and numerical CHF results for
neon, and the basis-set-convergence studies on
beryllium and carbon, appear to indicate that
errors in the final polarizabilities due to the basis
set should be no larger than 2 or 3% in the most
severe cases. This possible error is always in
the direction such that any improvement in the
basis set would tend to increase the calculated
polarizability.

The other source of error is due to any signifi-
cant components of electron correlation that have
been neglected in the determination of the wave
function. The correlation contributions included
in the results reported in this work were chosen

by an analysis of large CI atomic wave func-
tions!®'!! and the study of the effect of correlation
on the carbon polarizability discussed in Sec. III B.
Considering the analysis presented in Sec. IIIA
and the fact that the most important correlation
contributions have been included in the wave func-
tions, it is not unreasonable to postulate a maxi-
mum error of 3-5% from neglect of higher-order
correlation terms. It is somewhat difficult to
ascertain the direction this error might take, but
limited experience thus far indicates that further
correlation usually lowers the calculated polar-
izabilities, which would tend to cancel some of
the errors due to the basis sets. Thus the
CMCSCF results reported in this work are as-
cribed uncertainties on the order of +5%.

Finally, a few comments are appropriate con-
cerning the flexibility and general applicability
of the CMCSCF method for determining atomic
polarizabilities, particularly as compared to other
techniques currently being used for this purpose.
In general terms, the most popular techniques for
determining dipole polarizabilities include the
CHF method,2™ the uncoupled Hartree-Fock
(UCHF) method,®"~*° various perturbative UCHF
schemes?*'25:4 (PUCHF), and many-body per-
turbation theory (MBPT).!8+22:31,34

The CHF method has produced reasonably ac-
curate results, which is not surprising in light
of Brillouin’s theorem™ '™ and the fact that the
wave function is obtained self-consistently with
a Hamiltonian that includes the external field.
However, CHF methods generally have not been
applied to open-shell atoms possessing more than
one cylindrical angular momentum state. Also,
by definition, the CHF methods do not provide
for the inclusion of electron-correlation effects.
The CMCSCF method has overcome both of these
problems within the framework of existing di-
atomic MSCSF technology.

To avoid the supposed computational effort and
limitations of the CHF scheme, various UCHF
and PUCHF methods were developed which ba-
sically start with atomic HF wave functions and
add the corrections perturbatively. Even though
such techniques require less labor than CHF
treatments and have produced good results for
selected systems, they must still be considered
as approximations to the CHF technique. In addi-
tion, proper treatment of open-shell atoms and
electron correlation has turned out to be nearly
as difficult in the UCHF formalism as in the CHF
method.

Many-body perturbation theory and perturbation
theory using correlated zeroth-order wave func-
tions compare most favorably with the CMCSCF
method in terms of ultimate accuracy. These
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techniques, however, appear to be more complex
and more prone to difficulties in pathological sys-
tems such as beryllium.

In addition to being very flexible, the CMCSCF
method is rather inexpensive, once the MCSCF
technology is provided. Since the only basis func-
tions are centered on the atom, the two-electron
integrals required for the calculations are all of
the one-center variety and may be computed once
and then reused for other charge-atom distances.
The only integrals that need to be recomputed as
a function of R are the nuclear-attraction terms,
which involve basis functions on the atom and
the external charge. Also, since there are no
drastic charge rearrangements in the atom under
the influence of the perturbing field, the MCSCF
analysis converges rapidly, even in cases where
a large number of correlation configurations are
included in the wave function.

The CMCSCF method is applicable to molecules
as well as atoms. Work is currently underway to

determine the longitudinal and transverse polar-
izabilities of first-row diatomics. Also, since
large basis sets of Slater-type orbitals can be-
come prohibitively expensive, and investigation

of the use of Gaussian orbitals in the determination
of molecular polarizabilities is being undertaken.
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