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Vive functions, which include interelectron coordinates r,
&

explicitly, are employed for the 1s'2s' 'S
and 1s 2s 2p 'P

&
states of Be t, C as, and Ov in obtaining lower bounds and Hylleraas

variation-perturbation estimates of dipole polarizabilities for the lowest S states of Hei, C rn, and Ov.
Interpolation techniques are used to make a graphical study of the polarixability behavior along the
entire isoelectronic sequence. The results of this study are polarizabilities for the lowest 'S state of Bet
with probable accuracy & 2%, and the rest of the isoelectronic sequence wi, th probable accuracy of
(2-5)%.

I. INTRODUCTION II. THEORY

The ultimate goal of any quantum-chemical cal-
culation must be the accurate prediction of an
experimentally measurable property. The static
dipole polarizability, which describes the re-
distribution of the electronic charge cloud in the
presence of an electric field, is one of the most
interesting and useful properties of an atom (or
atomic ion}. To date, reliable values of the polar-
izabilities of most atoms are not yet available. On
the experimental side, experimental values are
often clouded by defects in the theories by which
the experimental data are interpreted, as well as
by various uncertain environmental effects. For
Be, no experimental value exists. On the theoret-
ical side, the electronic distortion involves virtual
transitions to an infinite manifold of states, and
thus cannot be described in terms of a single un-
perturbed eigenfunction. Thus existing quantum-
mechanical procedures' yield dis parate results,
sometimes even with two varieties of a single
method. ' Thus there is a need for calculated po-
larizabilities of convincing reliability. An inter-
esting new procedure has recently been described
by Weinhold' (and applied to two-electron atoms}'
which gives a rigorous uppe~ bound to the second-
order energy (and thus, a lou er bound to the elec-
tric polarizability) within a variational formulation
in which one may systematically improve the
rigorous bounds to any desired extent. %e report
herein application of this method to the ground
states of Be I, C III, and 0 V and extend these re-
sults to higher members of the Be isoelectronic
sequence. The wave functions employed in this
work represent the best variational wave functions
available (on an energy criterion) for the lowest
states of 'Sand 'P symmetry for BeI, C &&1, and
OV.

When an unperturbed atom, described by

g y(0) g(0) y(0)

is placed in a static electric field (associated with
the perturbation operator V), the resulting
Schrodinger equation

is usually solved by developing the eigenfunction
and eigenvalue in a perturbation series,

—,I, (0)+ y', f, lX)+ ~2,f, (2)+ ~ ~, ~

—E(o)+ y@(D+y 2@(2)+ ~, ~,

according to the powers of the field strength F.'
Here, in the dipole approximation, the perturba-
tive interaction V is

where z, is the component of the radial coordinate
r, in the field direction, the unperturbed operator
Xo is, in the nonrelativistic approximation, '

and E,"' and P,'" are the energy eigenvalue and
corresponding wave function for the 0th unper-
turbed electronic state. From the equations that
the perturbative corrections rp,

'"' to the wave func-
tion are found to satisfy, when the perturbed eigen-
function 4~ and eigenvalue z~ are expanded as a
power series in E, we obtain

E(o (y(0)
~
y

~

y(0))
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TABLE I. Computed values for Be I, C I, Ov

Configs.
's e(x10 ) S „

89x 53

105x 53

2.2317

1.6470

C u

Ber

46 x 18 14.266 -14.661 55

-14.666 485

-14.666 546

-14.443 17

-14.472 46

-14.472 46

0.989 77

0.999 75

0.999 86

11.48
(1.702)
35.4135
(5.247)
35.75
(5.297)

33.51
(4.966)
36.58
(5.421)
36.56
(5.418)

89x 53

Qv

89x 53

2.2158

3.0726

-36.533 37

-68.409 57

-36.062 83

-67.684 33

0.999 75

0.999 53

3.4885
(0.5175)

0.9833
(0.1462)

3.6405
(0.5401)

1.026
(0.1526)

Wave functions and definitions of quantities are given in palp l (ref. 6). Values are in
atomic units except for values in parentheses, which are in units of g3.

E"& = Q)
")

( P —E"&
)
y(") (6)

The static (dipole) polarizability n» of state k is
defined formally as

and can be connected with the second-order per-
turbation energy E~ by the relation

ng, = -2E~ (8)

However, Eq. (6) is of little practical value in ob-
taining E~", and consequently a~, since neither
the unperturbed eigenfunction p~" nor the first-
order correction g~" is generally available.

Weinhold' has recently described an alternative

theoretical procedure which gives a rigorous upper
bound to the second-order energy (and thus a lower
bound to the electric polarizability) even when both
g»(») and p»" are unknown. One may introduce
variational approximations to both g»(») and I(&»(&) and
thereby systematically improve the rigorous bound
to any desired extent. To obtain his result, Wein-
hold obtains an upper bound to the second-order
perturbation when the exact but unknown eigen-
functions $»(0) and g»(" are replaced by their vari-
ational approximations y,"' and cp,'". For the cases
we are considering, namely, 'S states of the beryl-
lium isoelectronic sequence, the atomic inversion
symmetry ensures that g»(») and g»(" are of opposite
parity, so that the first-order energy correction
E,'" [Eq. (5)] vanishes identically, and Weinhold's
formula becomes~

[ S(~ &0)~ y(~ o&) e(((p ( )(y ) ~ ( )) (~ (0)) y)~ ()&)»))l»]2

( &))(~ E(o)
]

&))) (9)

where we have suppressed the subscript k, which
labels a particular electronic state.

In Eq. (9), S= (rp»(o) ( g»(0)) is the overlap of the
approximate and true unperturbed eigenfunctions,
both g»(») and ())»(0) are assumed to be normalized,
and

~= (1 S»))1» (10)

The approximations y'" were taken to be the 'S
wave functions described in Paper I' of this series,
i.e., rp(o) = &(&„('S). The approximations &)&&(" were
taken to be linear trial functions of the same form
as the 'P wave functions of Paper I, viz. , y'"

=P» C»("4»(", where the 4, are the 'P configura-
tions of Paper I. Because of the close connection
between Eq. (9) and the Hylleraas variation-per-
turbation method, ' the trial y'" was taken to be
just the function obtained in the Hylleraas pro-
cedure. This corresponds specifically to the
choice'

g(1) Q Il (4(1&(y] ~(0))

where 0 = (0» f is the inverse of the matrix with
elements (4»"

~
8 "'-K, (4z("). In the Hylleraas

procedure the calculated E~(" is known to be ex-
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tremely sensitive to the choice of field-free wave
function y~ ', but relatively insensitive to the
corrections q~".'

Equation (9) becomes, in the notation of Paper 1,

and W' = (-,'w)X,'. All numerical values needed for
the evaluation of o. can thus be obtained from the
results of Paper I; they are collected in Table I,
along with the lower bound to a(n-) computed in
this work. From Eqs. (8) and (12) we obtain in the
limit 8- I the familiar Hylleraas variation-per-
turbation (VP) result7 '

E(a) (~V'I vlVV'&'
(~( )IEw 20 I@( )&

(14)

Equation (14) is employed to obtain the conven-
tional variation-perturbation result (listed as a„p
in Table 1.). This value is no longer a rigorous
bound, +' but the agreement between the values ob-
tained by this result and the rigorous result may be
taken as a rough measure of convergence in the
calculations.

m. RESULTS

Lower bounds to polarizabilities were calculated
for the lowest '8 state of Be I, C III and OV. The
results of our calculations are tabulated in Table I
and compared with previous calculations in Table
II. In Table I we include the conventional varia-
tion-perturbation (VP) result obtained from the
final 105-term (or 89-term) y"' and 58-term y'".
This value is no longer a rigorous bound, but
since the result is the most extensive available
and supercedes previous similar estimates, we

give it in Table II as our recommended value and
take the agreement between this value and the
computed rigorous lower bound as a measure of
the convergence in the calculations.

It appears from Table I that the bounds have con-
verged quite well (-2% except for OV). However,
inspection of the various Be I calculations indicate
that the VP result is probably of high accuracy
(&2'). This conclusion is supported by observa-
tion that in going from the 89-term to the 105-term
'8 wave function, n» changes only in the fourth
decimal place, while ~ changes considerally. Thus
further improvement in the already highly accurate
'8 wave function (containing -99.9% of the correla-
tion energy) would make o.- approach o.~ but
would not significantly change the value of o.~.
There is, of course, the possibility that a more
accurate 'P wave function could change a- and

TABLE II. Comparison of our polarizability results for four-electron atoms and ions with
other calculations. Values reported are in cubic angstroms (A3). Our results in e03vrere
converted to A3 by use of lao =0.529167 A,

Ref. Be1 Cm

Uncoupled Hartree-Fock (UCHF)
Approximate UCHF (AUCHF)
Distinguishable-electron method
Coupled Hartree-Fock (CHF)
Brueckner —Goldstone perturbation
CHF
Coupled perturbed Hartree-Fock (CPHF)
Perturbed uncoupled HF (PUCHF)

and geometric extension (GPUHF)
Unrestricted HF
CPHF (estimate)
GPUHF
PUCHF
Perturbation-variation
Multiconfiguration SCF
Present results
Rigorous lower bounds (present calculation)
Oscillator strength sums
AUCHF
AUCHF
CHF
UCHF

10
11
12
13

14, 15
16, 17

18
19

9.54
7.77
7.55
6.99
6.93
6.76
6.733
6.672

6,24
6.15
6.07
5.54

5.49~ 0.5
5.41+0.25
5.42 + 0.12

5.297
5.36&a &6.62

4.54
4.53
4.5
4.28

0.653

0.565
0.802

0.497

0.5401 0.1526
0.5175 0.1462

0.398
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FIG. 1. Polarisabilities (in At) for the Be isoelectronic sequence (tS ground states).

0.~, but the 'I' mave function is already of con-
siderable accuracy (E=-14.4V246 a.u. versus an
estimated exact nonrelativistic energy of
—I4.4V2 6V a.u. '}, and E'" and thus a are known to
be relatively insensitive to the correction q'".'

In Table II me present a comprehensive compari-
son of the present results mith various previous
theoretical values. The values which are under-
lined are ruled out by our rigorous bounds. The
rest of the values fall above our rigorous bounds
and cannot be ruled out. However, the rate of
convex gence of our calculations tends to support
the perturbation-variation results of Kolker and
Michelsm' and the multiconfiguration self-consis-
tent field (MCSCF} results of Stevens and Billings-
ley." By far the most extensive calculation to
date of the polarizabQity of Be I is the calculation
of Stevens and Billingsley. Our results are con-
sistent with theirs. In view of the fact that our
wave functions treat eox relation more extensively
than theirs, and are the most extensive variation-
perturbation results to date, we recommend the
value of 5.42 A' for the po1arizability, with an
estimated accuracy of ~2%. For Clif and Ov, the
energies of q'0' and 4I(I'" mere not as exhaustively
minimized, so that an accuracy of ~5% should
probably be assigned to these values.

resort to a general expression of 0. as a function
of nuclear charge Z which arises in the Z ' pertux'-
bation theory, and suggests that Z ' is the natural
parameter against mhieh to plot a values in a
graphical display to the isoelectronic sequence.
The curve fitting our data and the knowledge that
~-0 as Z '-0 [a(1'S) can be expressed as func-
tion of Z as

n(i' s) =c /z'+c /z'+ "]
is presented as Fig. 1, fromwhich values of n (in A')
can be estimated for other Z values.

IV. CONCLUSIONS

On the basis of the results presented here, it
seems reasonable to conclude that the introduction
of r, &

coordinates for an atomic wave function mith
N&3 can lead to reliable polarizability values
(-2/g accuracy). It also appears that to obtain re-
liable lower bounds to polarizabilities, wave func-
tions of considerable aeeuracy must be employed.
Recommended values for the polarizabilities of
the '8 gx ound state have been presented for the
entire Be isoelectronie sequence.
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