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%ave functions, which include interelectron coordinates r,.
&

explicitly, are calculated for the 1s'2s 'S
and 1s 2s 2p 'I' states of Be l, C m, and 0 v. These wave functions are used to calculate oscillator
strengths, including upper and lower bounds, for the lowest S- I' transition. Interpolat1on techniques
are used to make a graphical study of the oscillator-strength behavior along the isoelectronic sequence.
Comparisons are made with previous experimenta1 and theoretical results. The results of this study are
oscillator strengths for the 1s 2s 'S ~ ls 2s2p 'I' Be isoelectronic sequence with rigorous upper and
lower bounds of (7-10)% and probable accuracy ( 2%.

I. INTRODUCTION

Spectroscopic data for atoms and ions fall into
a category of fundamental scientific material for
which justification of measurement or calcula-
tion is scarcely necessary. The measurement of
the wavelengths of spectral lines and the subse-
quent deduction of energy levels is usually not too
difficult. "The study of the strengths (intensities)
of spectral lines is, however, a much more for-
midable problem. ' On the experimental side, ab-
solute oscillator strengths, or f values, are typ-
ically determined with uncertainties of 10-20%
or more. ' On the theoretical side, Pekeris and
co-workers appear to have established some heli-
um f values to 1% or better, ' and other transi-
tions in the two-electron isoelectronic sequence
have been determined to perhaps 5%.' ' But re-
sults reliable to better than 10-20% have not been
generally accessible in larger systems. ' ' In
addition, the question of the reliability of theo-
retical predictions has become increasingly
acute, "and there is a need for procedures which
lead to upper and lower bounds for the proper-:ies
of interest, so that rigorous error limits are
attached to the error estimates. In view of the
above, we have calculated f values for the 'S-'P
transition (by the dipole-length formulation) for
some members of the beryllium isoelectronic
sequence, and used the interpolation techniques
(based on Rayleigh-Schrodinger perturbation
theory) of Wiese and Weiss" to make a graphical
study of the f-value behavior along the isoelec-
tronic sequence. The calculations utilize the best
wave functions (on any energy criterion) current-
ly available. "'" In addition, the procedure of
reinhold"' "hasbeen used to calculate upper and
lower bounds to the computed f values. The re-
sults of this study are oscillator strengths for the
1s'2s' '8-1s'2s2p 'P Be isoelectronic sequence

with rigorous upper and lower bounds of 'i 10%-
and probable accuracy ~2%.

II. THEORY

A. Nave Functions

La Paglia and Sxnanouglu" have shown that for
the resonance transition of the beryllium iso-
electronic sequence (Is'2s' '8-Is'2s2P 'P), Hartree-
Fock wave functions are unreliable and wave func-
tions, including correlation effects, of consider-
able accuracy must be employed, not only for the
ground state, but also for excited states. The
procedure adapted here for incorporating corre-
lations into the wave function is the method of
Sims and Hagstrom, " in which a variational trial
function is written as a linear combination of
known many-electron functions,

and the configurations 4„are themselves anti-
symmetrized, projected products of orbitals and
interelectronic coordinates. By minimizing the
energy with respect to the coefficients C, , one is
led to the usual matrix eigenvalue equation for the
energy and the coefficients C~. The -eigenvalues
are always upper bounds to the energy of the cor-
responding excited (or ground) state. " The eigen-
value equation is solved by Jacobi's method' after
the overlap matrix has been triangulated and the
Hamiltonian matrix transformed by the method of
Michels, Van Dine, and Elliott. '9

In Eq. (1), the C„are

(2)

where O(1.') is an idempotent orbital-angular-
momentum projection operator" and 0„ is the
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projection operator that guarantees the antisym-
metry of the wave function

electric-dipole-moment operator

O„=(4!) 'Q (-1)",
P

(3)
b '

B. Oscillator Strengths

The basic theory of electric dipole radiation in
atomic systems is given by Condon and Shortley, "
and we follow their terminology closely. Assuming
Russell-Saunders (LS) coupling and the nonrelativ-
istic many-electron Hamiltonian (Hartree atomic
units)"

H=Y(—,6,. ——)+Q— (5)

the energy states of an atom are characterized by
the set of quantum members yLSMI, M~. Here y
denotes the electronic configuration, L the total
angular momentum, S the total spin, and M~ and

M~ are the projections of L and S, respectively,
on the axis of quantization. '4 For an electric di-
pole transition connecting the terms (multiplets)
yLS and y'L'S', Condon and Shortley introduced
the quantity S(yLS; y'L'S'), called the absolute
multiplet strength. It is defined in terms of the

where the summation runs over all the 4! permu-
tations P, with P being the parity of the corre-
sponding permutation P. For this work, the spin
function was taken as X„=X=-,'(nA —p,a,) x(o,,p,
—P,n, }, which has S =S,=0. In Eq. (2), P„(r,)
refers to the sth basis orbital in the kth con-
figuration. The orbital basis consists of Slater-
type orbitals (STO's) of the general form

(2C)"'"'
y(r) =[( ),)„, r e Y, „,

where the set(Y, j consists of normalized spheri-
cal harmonics in the Dirac phase convention. "
In Eq. (2), the restriction of only one r, &

coordi-
nate per term, first proposed by James and Cool-
idge, "has been retained. The basis set consists
of s and P Slater-type orbitals (STO's) and powers
of interelectronic coordinates: x";~(v =0, 1, 2). Pre-
vious calculations" have shown that this is an ex-
cellent basis set for beryllium.

6(yLS:r'I, 'S') = g P I(rLSMvMs I PI
ur, es &I.'.&S'

xy'L'S'M~ Ms ) ~

(6)
The f value or multiplet oscillator strength is
related to 8 by

2S 'L'S'~ Z LSIS- y'I 'S'}= — ' 6(yLS; y'I. 'S') .
3 (2L+ 1)(2S+1)

The familiar electric dipole selection rules,
~S=O, bM~ =0, ~L=O, +1, and ~ML, =0, ~1,
hold for the Hamiltonian we use. Moreover, given
yLS and y', L'(=L —1, I, L+1) S'(=S), as a con-
sequence of the Wigner-Eckart theorem, "every
nonvanishing matrix element of the operator P
can be expressed in terms of a single parameter
P(yLS; y'L'S') multiplied by expressions involving
only L, M~, and ML, . The parameter is indepen-
dent of the quantum numbers MI. , M~, M~, and

Ms, the summation indices occurring in Eq. (6).
Consequently, the expressions for the multiplet
oscillator strength may be written as products of
the parameter P(yLS; y'L'S'} and a single algebraic
function of L and S resulting from the summation.
Finally, notice that only one nonvanishing matrix
element need be evaluated to determine
P(yLS; y'L'S'), so that instead of computing all
the matrix elements occurring in the summations
occurring in Eq. (6), a single matrix element
suffices to find the multiplet oscillator strength
for given yLS, y'L'S'.

For the 1s 2s' 'S-1s22s2P 'P transition, the 'S
term consists of one state with S =M~= L =Ml, =0.
The 'P term consists of three states correspond-
ing to S=M8 =0, L'=1, andMI. =-1,0, 1. We
choose to express (yLS- y'I 'S') in terms of the
matrix element corresponding to the 'P state with
S=Ms=O, L'=1, andM~. =O. Then Eq. (6) be-
comes (unnormalized wave functions), from Gold-
berg, '

fdic,

dx„y,*('S)Py, ('P, M~, =0) 2

'S}~~„('S})(~„(~P,M =0}~~„(~P,M =0 (8)

and we need only construct g~('S) and g„('P,M~,
=0) and evaluate Eq. (8) to compute S.

It is generally known" that with $&LSMIMs as
exact eigenfunctions of H I Eq. (5)j, the commuta-

tion relations of H with P (dipole-length operator)
lead to two additional relations for S(yLS; y'L' S'),8

which arise from the use of the dipole-velocity and
dipole-acceleration operators given by
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V= VC (9)

(10)

Since x, (i) =+a[2, 1,j],' in terms of unnormalized
STO's defined by

[I, i, m],' =r"; 'e '"& y; (i),
we obtain, for 8,

respectively. These three formulas are equivalent
when one uses exact eigenfunctions of ff [Eq. (5)]
or of an independent-electron central-field-model
Hamiltonian. However, they disagree whenever
the eigenfunctions of a central-field model are
improved by including some correlation, even by
only the Hartree-Fock (HF) procedure. " Starace"
has shown that the length formula is the physically
correct one for all methods, such as Hartree-Pock,
which involve the diagonalization of an approxi-
mate, but nonlocal, Hamiltonian. For the pro-
cedure we are using, which involves the use of a
local potential, the use of the three different opera-
tors will give different results. It has been gen-
erally argued' that, since the acceleration opera-
tor contains terms behaving as I/r', the dipole-
acceleration form is most sensitive to the accu-
racy of the wave function in the immediate neigh-
borhood of the nucleus, so that oscillator strengths
computed with variationally stable approximate
wave functions (emphasizing more distant regions)
are not reliably given in terms of this operator.
Since the dipole-length and dipole-velocity forms
should agree as the wave function approaches the
exact eigenfunction, some authors have taken the
closeness of agreement of 8 computed with dipole-
length and dipole-velocity operators as a measure
of the accuracy of their computation of 8, but there
is now abundant evidence that this procedure is
not very reliable. " In the px'esent woxk, we com-
pute upper and lower bounds to the operator and
use these theoretical bounds as a measure of the
accuracy of the f value; we compute f values in
terms of the dipole-length operator as given by
Eq. (8)."

To evaluate Eq. (8}we define

x,(i) =z; =r; cosa, =ar; Y, ,(i),
x„(i)= -2 '~'(x; +i y g) = ar, Y, ,(i),

x,(i) =2 '"(x, —iy, ) =ax;Y, ,(i),
where a=(-,' 4m)'" and the I; are the same as in
Eq. '(4). Let

X= x i, X = x i, X= x g

(12)

xP [2, 1,j]t q„,('P, PI~, =O)

To evaluate Eq. (16), we use the fact that the
wave functions employed to evaluate Eq. (16) are
given by Eq. (1) and are linear combinations of
antisymmetrized, projected products of orbitals
and lntex'electx'onlc cool'dlnates. Thus

lw, l =g c,c, lw, l„, (18)

I w; I.,=(c.i+[2, I,A.' lc.&. (19)

In Eq. (19), CI, is a linear combination of orbitals
and interelectronic coordinates, so that Eq. (19)
can be evaluated by expanding the product of
[2, 1,j], and the appropriate STO of CL in terms
of STO's by the formulas given in a previous pa-
per." Then the integrals required tc evaluate
Eq. (16) are similar in type to those required to
calculate overlap matrix elements using these
wave functions and can be evaluated as described
later.

C. Upper and Looter Bounds to OsciHator

Strengths

Weinhold'4 has described a procedure for cal-
culating rigorous upper and lower bounds to di-
pole strengths. If the exact transition moment is

w., =(c, lw, lc,),

=4m(lw, l'+ lw, l'+ lw„l')
=4sl w, l'

owing to symmetry. (j must equal 0 or the inte-
gral vanishes. } In writing Eq. (15), we have as-
sumed that gz and gz are normalized ((pz I gz} = 1),
and )W, I

is defined by

Then"

(Is}
where 4', and 4& are the exact wave functions for
states a and b, respectively, and 8', is some par-
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ticular Cartesian component of the vector opera-
tor P, then Weinhold's formula in terms of the
estimate

e.g. ,
S'. =(E*. —&4. Iffl 4.&)(E.*-E.), (24)

(21)

where (I), and P, are the approximate wave func-
tions for states a and 5, respectively, is

+ag ) Saa Sy~ Wag + ~a+Sfkkag k Eg~

where E, and E,* are the ground- and excited-
state energy (with the same symmetry as the
ground state) of the system with HamiltonianH.
The remaining unknown of relation (22} is the
upper bound &4, I

W',
I
4', ),. Weinhold presents

several formulas for its treatment; we take
x[&e, lw', Ic,&, -(s, w„-~„~„)']"2.

(22)
&4. I wl I e.&

= &y. I wl I @&, (25)

Here S, -=&&, l4, &, s, -=&&, l4', &, i.e. , the (positive)
overlap integrals of the approximate wave func-
tions (I)„g, with the true wave functions 4(„q„
and e, „&,, are simply

e, , =-(1-S' )"' e —= (1 —S' )'"

s(y's; Y'P) =4wlw, l'=3w'„, (26)

so that

where g is our highly accurate "S"wave function.
With IW, I's definedby Eq. (17), we have that

and 4„ is defined by
Iw, l=(3/4s)'" w., (27)

n do
=

(&Pb-I w( I (I)a &
—wd()'" ~ (23)

In Weinhold's scheme, W„and &$, IW',
I g, & are

computed directly. Without loss of rigor, S„,S„
may be taken to be 1, and for 4„4'&, the lowest
states of their respective symmetries, we can
use the "Eckart criterion" to determine S, , S, ;

Relation (22) holds for IW, I in place of W„ if we
compute &4, IW', l4, & by relation (25) and multiply
by 3/4v to account for the difference between IW, I

and W„given by Eq. (27). Also, the only remain-
ing unknown in the calculation of upper and lower
bounds to Iwcl is Q(, IW2 ly()&

With the aid of'

1

[2, 1,jl,' [2, 1,j], = g r', [(2l, +I)/4s]'"C'2(1, j; 1,j)Y, , (I, =2 —2P, )
Pa =p

[(2l, + I)/4w]' C'2(1, j; 1,j)[3, I» 0]c,
P =p

(28)

we obtain
4

&$2, I (3/4v)X+c I g(, &
= Q Q [(2l, + I)/4v]'~ C'2(1, 0; 1, 0)&g~ I [3, l„o]'

I )l)~ )
P =pa

+ P &q, l[2, 1, 0],'*[2, 1, 0]; Iq, &. (29)

Here C~(l', m', l, m} is the Condon-Shortley coefficient" defined by

C (l '; ( m)=[4', /(24 ~ ()]'~' JY (4, 4)Y, (4, 4)(, (2, 4)s(ngdgdd.

The matrix elements in Eq. (29) are handled similarly to the way I W, I was treated earlier.

D. Trends of Oscillator Strengths Along the Be
Isoelectronic Sequence

nuclear charge Z and then apply conventional per-
turbation theory, treating the interelectronic re-
pulsion as the perturbation:

The use of interpolation techniques based on
Rayleigh-Schrodinger perturbation theory to study
systematic trends of f values along an isoelectron-
ic sequence is due to Wiese and Weiss. " The
fundamental idea is to scale all distances by the

1
=H + —PZ (3o)
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where p=Zr.
Perturbation theory then gives for the wave func-

tion and energy,

@=0, +(I/Z)e, +,
E =EOZ +E,Z+E2+ ~ ~ ~ .

(31)

(32}

Here 4, is just a configuration of hydrogenic or-
bitals, E, is the sum over all electrons of hydro-
genic energies, and the first-order energy is
given by

E, =(4, ( V(4', } . (33)

6 =s,/z'+s, /z'+, (34)

where S, is the multiplet strength obtained from
hydrogenic functions and may well involve the
first-order mixing. For the oscillator strength
we are interested in, there is no change in princi-
pal quantum number so that the zeroth-order en-
ergy difference vanishes and the Z dependence of
the f value is

If there is a degeneracy in zeroth order (as in
the transition we are studying) then the first-
order energy is found by diagonalizing the first-
order energy matrix which removes the degener-
acy and redefines the zeroth-order wave function
as a linear combination of the degenerate hydro-
genic configurations. This charge-expansion ap-
proach of Wiese and gneiss has also been used to
calculate f values. " Dalgarno and co-workers, ""
working within this framework, have derived for-
mulas for the multiplet strength as a function of
Z by solving for the orbitals through first order
and including the zeroth-order configuration mix-
ing. The results of this method should be accurate
for sufficiently large Z, and are presented in Fig.
1 (Z-expansion results) in extending the curves
to Z '=0. The multiplet strength, from Egs. (6}
and (31), has the Z dependence

III. METHOD OF CALCULATION

A. Outline

The procedure we follow for calculating f values
is to first compute 'S and 'I' wave functions varia-
tionally, and then use these wave functions to
compute oscillator strengths as described earlier.
The method of calculation of 'S wave functions for
the Be isoelectronic sequence has been given
previously, "and for the Be 'S ground state we use
in this work the first 105 terms of the 107-term
wave function reported in that work. The 'S wave
functions for CHI and OV, the other two mem-
bers of the Be isoelectronic sequence computed
in this work, are 89-configuration truncations of
the 107-term wave function with different orbital
exponents; these wi11 be presented later in this
paper.

The 'I' wave functions used in this work differ
from the 'S wave functions in that they are derived
from configurations containing three S-type STO's
and one P-type STO in order to obtain an over-all
I' symmetry. The O„projection treatment of
spin, final Hamiltonian, and overlap matrix ele-
ments is similar to the treatment in Ref. 13, but
the 0(L') projection is different.

B. O(L ) Projection

For the O(L') projection we use the formula of
Lowdin4':

(I, +M~)!
g = (2L+ 1)

LL -Af&+ uLI -N + u

x v!(2L+ v+ I)!
v=0

(36)

where L, and L are the (step-up and step-down)
operators L, = L, +iL„L = L, —iL„. For L =M~
=0, Eil. (36) reduces to

Lmax-L L v+1 L, v+1,

Oi o 3 P ( 1) t( 3}['

f=f,/Z+f, /Z'+ ~ ~ ~, (36)
V=O

so that the oscillator strength tends to zero for
large Z."

These considerations have several consequences.
In the first place, notice that Z ' is the natural
parameter against which to plot f values in a
graphical display of the isoelectronic sequence.
The entire sequence is then compressed in the
xegion between Z ' = 0 and the value of the neutral
atom. Second, one can calculate relatively easily
the way in which these curves start at the zero
end, in this case, from the slope of the curve at
the origin. " These considerations are implicit
in the curve presented as Fig. 1.

State
Be I

's P
0 Y

1P

ns'
ns
np
np"

3.6847"
0.9562 b

6 2c
1 c

3.6903
1.0851

~ ~ ~

0.4897 (2p )
0.5600 (3ps)

5.6575 5.6734
1.8316 1.7685
97 ~ ~ ~

2.5 1.946

7.6295
2.6903

13 2c
3.9'

7.6564
2.6152

2.998

Unless otherwise noted, values are taken from Ref.
44.

Reference 43.
Reference 41.

TABLE I. Orbital exponents chosen for the wave func-
tions of this work.
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TABLE II. 53-configuration wave function for the ~P states of Be i, C tt&, and 0 v.

Config.
No. n Configuration

Coefficient of 53-term wave function
Be I C iu Ov

1
2
3

5
6
'7

8
9

10

ls22s» 2p»
ls~2s» 2p»r

&&

ls22s» 2p»r2
ls2s 2s» 2p"
ls3s2s»2p"
2s~2s» 2p»
ls~Ss» Sp"
ls~Ss» 2p"
ls 2s»2p "r
ls Ss"2p»r~&4

4.764 777
9.858159x 10 ~

1.301 724 x 1P
7.136297x 10 i

4.777 081x 10
-3.610930x 10 ~

—2.236 168
-1.547 299x 10

1.338 971
-1.340 863x 10

4.456
7.125
9.009
2.062

-1.096
-7.524
-1.254
-7.897

4.474
-3.445

084
036x 10 ~

462x 10 ~

765x 10 i

418x 10 i

009x 10 ~

405xlp i

644
569x 10 i

850

4.030 196
6.164211m 10 ~

6.036 654 x 10 ~

1.520908x 10 i

-5.247 793x 10 ~

-6.204963x 10 ~

-6.857 813x 10 ~

-5.826 508
3.809192x 10 i

-2.645 772

11
12
13
14
15
16
17
J.5
19
20

21
22
23
24
25
26
27
28
29
30

ls 3s»2p»r 12

ls 3s»2p»r
ls 2s2s» 3p"
2s~2s 3p"
ls 2sSs» Pp"

ls 2s 2p r34
ls~Ss»2p "r3&
ls4s2s" 2p
ls~ls" 2p"
ls~ 4s» 2p"

1s~Ss 3p»r
ls2s 3s» 3p"
ls3s3s Sp"
ls Ss 3s» 2p"
2s Ss»3p
2s~Ss» 2p»
ls~4s» 2p»r
].s~ 4s» 2p»r~
ls 2s 2s» 2p»r

~&

ls2s2s" 2p»r fp

1.356403x 10 i

-1.698 274 x 10
-7.270 678 x 10

3.076 321x 10
—1.254 746
—3.009 266

2.606 178x 10
2.734655x 10 '

-6.549 024 x 10
2.725 431x 10

-1.400 753x 10 '
5.625 126x 10
2.336654x 10 i

-2.688191x10 i

-2.609 941x 10 ~

2 40I 137x 10-1
-4.511435x 10

2.469396x 10
5.713 677 x 10

-3.613879x 10 ~

-2.627 807 x 10 ~

-9.194345x 10 ~

-1.001716x10 i

2.335 176x 10 ~

-4.610 471x 10 i

-7.613410x10 i

7.453 266
2,896 810x 10

-9.442578x 10 ~

9.304 938

9.903329x 10 ~

1.336 102x 10
—3.549 046x 10 '

8.032144x10 ~

-2.122 250 x 10
2.114013x 10"~

-1.467 124 x 10
7.941 418
5.249 247 x 10

-6.697 089 x 10

-2.208 844 x 10 ~

-6.797 355 x 10-2
-9.503281x 10 ~

2.420 712x 10 ~

-3.643 951x 10-1
-5.540680x 10 i

5.174 738
2.242 952x 10 i

-9.468604x 10 i

6.063 070

6.318000xlp 3

1.178 410x 10
-2.944 542 x 10

4.233 014x 10
-2.245426x 10 ~

2.389 507 x 10 ~

-9.644 455
5.594 460
3.994 919x 10
7.209 994 x 10 3

31
32
33
34
35
36
37
38
39
40

ls 3s 2s» 2p»r
&&

ls3s2s»2p r&&
2s~2s' 2p'r~&&

1s4s2s" 2p»r fp

1s 5s"2p»
1s Gs 2p r34
1s~5s» 2p»r
s 6s ~p»

1s 6s 2p»r34
ls~6s» 2p»r~

-8.156346x 10 '
4.765640x 10 i

-2.554983x 10 '
-1.588 584x 10 ~

-2.103 935x 10
3.626 329» 10

-1.994 613x 10
7.150 092

-1.268 021 x 10
6.969 993

-8.029208x 10 '
4.269118x10 i

-2.725 063 x 10-'
-1.378 832 x 10 ~

—5.652 667
l.196395x 10

-7.432 937
1.454 424

-3.235 979
2.588 735

-6.131649x10 i

3.125 237 x 10
-2.186 619x 10 ~

-1,003 420 x 10 ~

-3.353 813
7.502 105

-4.957 139
7.532 903x 10 i

-2.194 769
1.640 764

41
42
43
44
45
46
47
48
49
50

51
52
53

ls2s2s" 2p r34
ls2s 2s"2p»r34
ls Ss2s"2p»r34
ls3s2s ~2p r~34

ls~4s»2p r
1s~4s» 2p»r~
1s 3s Sp
ls 2s 3s"2p»r~
ls 2s 3s"2p "r&&

1sSs 3s"2p "r~

ls 2s 4s"2p"
lsSs 4s» 2p"
2s~4s»2p»

-8.271 090x 10 ~

7.409538x 10 i
—8.067233x 10 i

1,981 111x10
]..044517x lp ~

-1.382374x 10 '
3.872 2p9x lp-'
1.699 981

-1.194 784
1.871062x 10 '

-2.428 041x 10
1.017389x 10

-1.686 599x 10 ~

-2.441 955 x 10
5.009 553 x 10

-1.628 441 x 10 ~

1.100 518x 10 ~

-1,572072x 10 ~

-1.031250 x 10
-2.453 043x lp 3

5.061419xlp i

-2.307 126x 10
1.606 919x 10 ~

-7.975 607 x 10 ~

9.991232x 10 ~

-1.303 484x 10 ~

-1.862 829x 10 i

4.410 859x 10
-1.016370 x 10 ~

-9.469 788x 10 4

-5.212 241 x 10 3

-7.445 267 x 10-2
-1.296422x lp 3

3.692 899x 10
-1.842 234 x 10-1

1.873209xlp ~

-5.431176x10 ~

6.226619x 10 ~

-1.057 253 x 10
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For the configurations we use (three S-type STO's
and one P-type STO), L =I and E|I. (3V) becomes
simply

O~ o
= (3/3 I)L L„; CV; o Y,o = o&2 Y,o. (38)

C. Integral Treatment

To complete the evaluation of all matrix ele-
ments needed for this work, a scheme is needed
to handle the two-, three-, and four-electron in-
tegrals of the form

ry 2 r2 3 rg 4 r4

IV. CHOICE OF PARAMETERS AND

CONFIGURATIONS

The wave functions employed here for the 'S and
'P states of BeI, CGI, and Ov are of the form
(Ea (I)f

g= Q Co@o,
k

(40)

where 4 k is a properly antisymmetrized and pro-
)ected product of y, STO's defined by Eq. (2), and
an r",) factor The S. TO basis is, in the Weisso'

gl(re)go(roo) " So(roo) d~ (»)
The treatment of these integrals has been describ-
ed in detail in a previous publication. ~

notation, the basis set 1s, 2s, . .., ns, 2p, ..., +
for the inner shell; 1s", 2s", .. ., ns", 2P", ~ ~ .,
nP" for the outer shell. The STO orbital expo-
nents [f in Eq. (4)] used in this work are given in
Table I with references to the works from which
they were taken. No attempt was made to opti-
mize the exponents, since it was felt that costly
insignificant improvements would have been made
to the energies obtained. " However, Weinhold's
scheme for computing upper and lower bounds
does have the feature that the orbital exponents can
be varied directly with respect to S and its bounds,
so that experimentation with shorter-length wave
functions may be justified. "

The 105-configuration and 89-configuration 'S
wave functions used in this work were truncations
of the 107-term wave function reported in Ref. 34,
with exponents as listed in Table I.'"""The 53-
configuration 'P wave functions used in this work
are given in Table II, where under configuration
is listed only the unique

r",) II c,(r, )

part of 4, as defined by Eq. (2).

V. RESULTS

The results of the calculations we have done are
presented in Table III, where we tabulate IWoI,

TABLE III. Computed values for Be &, C i[i, and 0 v(in amu).

Configs.
i$ ip

Be i

I &o I

'S P transition
f E( $) E(P) &E~c 1$

E nonre)
ip

C m

46 x 18 0.930 01 10.869 1.405 87 -14.661 55 -14.443 17 0.21838 -14.6662
89x 53 0.909 73 10.400 1.3447 -14.666 485 -14.472 457 0.19403

105x 53 0.909 34 10.391 1.3436 -14.666 546 -14.472 457 0.19409

-14.472 67

Ov

89x 53 0.442 61 2.1494 0.765 37 -36.533 37

89x 53 0.291 37 1.0668 0.514 62 -68,409 57

-36.062 83

-67.684 33

0.470 54 -36.534 03 -36.067 67

0.725 24 -68.412 11 -67.688 66

Configs.
's 'p

&rpo I (3/4v)xo~ol go& s,
Be i

Sa- W&

C m

46x 18
89x 53

105x 53

6.126 76
4.51769
4.617 69

0.989 77
0 99975
0.99986~

0.795 42
0.998 62
0.998 62

2.064 42 0.497 94
1.920 95 0.865 49
1,921 14 0.876 36

1.224 52 0.4028
0.952 61 1.2171
0.940 98 1.2479

2.4313
1.477 58
1.438 69

Ov

89x 53

89x 53

0.71764

0.298 96

0.999 75 0.996 65 0.722 31 0.425 07

0.999 53 0.999 01 0.462 67 0.276 75

0.458 61 0.705 91

0.305 59 0.464 25

0.821 73

0.556 06

~ These values were computed using Weinberger's formula, Ref. 45.
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(41)

where Eo, E„...,E„„arethe m+2 lowest eigen-
values of H and the J, are the corresponding Ray-
leigh-Ritz estimates (Q, ~H~Q, ). Here the Q, are
approximations to the exact eigenfunctions and it
is assummed that

g KJ &g &J & ~ ~ ~ cg &J0 0 1 1 n n 8+1' (4&)

To use either Eq. (34) or (41), one must know
either the nonrelativistic energies E„or their low-
er bounds. For Be, the 107-term energy of Ref.
13 was obtained after examining 145 terms; the
maximum energy contribution of the 38 terms
which were dropped at various stages of the cal-
culation was 0.000072 amu. This gives us an
"exact" nonrelativistic energy estimate of
-14.666 62 amu for the Be ground state. To obtain
the nonrelativistic energy estimate for the other
states, we add the experimentally determined
relative term energies to the ground-state esti-
mate. The nonrelativistic energy estimates for
CIII and OV states were obtained in the same
manner, with the 'S ground™state nonrelativistic
energy estimates being taken from %cise.41

For BeI, calculations were done on (i) the 46-
term 'S wave function obtained by dropping all
terms from the 105-term 'S wave function with
E„-E,&0.001 amu and the 18-term 'I' wave
function obtained from the first 18 terms of the
53-term 'P wave function; (ii) the 89-term 'S
wave function obtained by dropping all terms from
the 105-term 'S wave function with E E 1~ 0 00 01
amu and the 53-term 'P wave function; and (iii)
the 105-term 'S wave function and the 53-term 'P
wave function. For calculations (i) and (ii), the
term in brackets in Eq. (23) is small, 48 so that,
approximately,

(43)

Since in going from the 89-configuration 'S wave
function to the 105-configuration 'S wave function,
IW, ),f, and n„change by &Q,Sjp, it would appear
that going to even more accurate 'S wave functions
would merely tighten the theoretical upper and
lower bounds, without changing the f value (to
«2%). Therefore, we feel that the computed f
values are probably within I of the true values.
Arguments may be advanced in support of this

the absolute multiplet strength 3, the f values,
term energies, the relative term energy nE =E('P)

E-('S), and various quantities related to the cal-
culation of upper and lower bounds to f I.n evalu-
ating S, and S, , either Eq. (24) was used or
%einberger's formula"

TABLE IV. 6E = E{~P)-E{~S)for Be i, C u&, and
0 v {in amu).

Be I

C I
Ov

Calc,

0.19409
0.470 54
0.72524

Obs.

0.19395
0.466 36
0.723 55

IS2 282 IS IS2 2S 2P IP

I.O

LUE

ND

0.05 O. IO O. I5 0.20 0.25

FIG. l. E value as a function of 1/Z for various ele-
ments.

conclusion.
(a) Extremely good wave functions on sn energy

criterion were employed for both the 'S and 'P
states. The 53-term 'I' wave function gave an
energy of -14.472 57 amu, as compared with our
exact nonrelativistic energy estimate of -14.472 67
amu. This estimate involves an assumption that
relativistic effects are the same for '8 and 'I'
states. Tatewaki et al."argue that the relativistic
correction for a 2P electron in the L shell rather
than a 2s electron is &0.0001 amu for Be. How-
ever, Verhaegen and Noser ' place the relativistic
correction at &0.001 amu, so that the 'I' wave func-
tion may not be as accurate as claimed. In any
event, for calculations (ii) and (iii) the accuracy
of the 'I' wave function is not critical, since in
Eq. (43) it is only e„and not e„which is critical
for accurate bounds.

(b) We obtain extremely good values for the dif-
ference in term energies bS=E('P) E('S). T-his

could be fortuitous, i.e., the energy difference is
more accurate than either E('S) or E('P). The
calculated and experimental energy differences
are tabulated in Table IV for BeI, CIII, and OV.

Taking 3% accuracy as s, guide, we notice that
at every step of the calculation the bounds do not
reflect the true accuracy of the calculation. The
bounds calculations are particularly bad in the
46x18 case, which leads to the conjecture that the
bounds formulas require trial wave functions
which closely approximate the exact wave function
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TABLE V. Recent theoretical calculations of oscillator strengths.

Bet
HF CI HF

Cm
CI HF CI

Burke et al.

Weiss b

This work

Nussbaumer c

length l
velocity u

l
V

l

1.774 1.4237
1.0132 1.3862
1.813 1,410
0.951 1.455

1.3436
NIV

0.64

1.0746
0.5627
1.112
0.537

0.7930
0.8047
0.770
0.843
0.765 37

0.7055
0.3039
0.741
0.353

0.5250
0.4922
0.517
0.570
0.514 62

~ Reference 53.
"A. W. Weiss (private communication).

' Reference 33.

or else the bounds may be substantially different
from the exact result and thus not very useful. "
However, it should be pointed out that no attempt
has been made to optimize the basis orbital ex-
ponents with respect to S and its bounds.

For CIII and OV we have employed 89-config-
uration wave functions, since the BeI calculation
showed that the f value doesn't change much in
going to a 105-term expansion. The rigorous
bounds obtained are on the same level of accuracy
as the BeI case, in which (i) there are more inter-
leaving J's [Eq. (42)] to employ in the Weinberger
estimates [Eq. (41)] and (ii) n.„is much smaller

In Fig. I'~" we graph our results as discussed
earlier. The results for BeI, CIIT, and OV are
extrapolated to Z ' =0 using the Z-expansion re-
sults of Weiss as a guide. " A few experimental
results are included for comparison. The experi-
mental results are uniformly too low and in most
cases the error estimates appear unrealistic.
Wiese" has conjectured that the experimental
failure is due to cascading effects in the beam-foil
experiments.

A few recent theoretical calculations, which in-
clude configuration interaction (CI), have been
done. The f values of these calculations are shown
in Table V along with our best values. These
previous calculations treat the Is' core as being
fixed, and yield results which appear to be too
high. In addition, the agreement of length and
velocity is seen not to be an accurate measure of
the error in the calculations. (Burke et al." re-
port a calculation for BeI in which length and vel-
ocity results give 1.3863 and 1.3860, respectively,
although they recommend the values in Table V. )
Thus, neglect of core (and intershell) correlation
in this case (lowest 'S-'P transition for the Be

isoelectronic sequence) appears to give results
in error by approximately 5-10%, at least for BeI.

VI. CONCLUSIONS

On the basis of the results presented here, ~ it
seems reasonable to conclude that the introduction
of r, ~ coordinates for an atomic wave function with
N& 2 can lead to reliable f values (-2% accuracy).
It also appears that to obtain reliable upper and
lower bounds to oscillator strengths, wave func-
tions of considerable accuracy must be employed.
A level of accuracy for less-exact calculations
which neglect core correlations has been estab-
lished for the Be isoelectronic sequence. In ad-
dition, recommended values for the entire Be-iso-
electronic-sequence Is 2s 'S-1s 2s2P'P transi-
tion have been presented (Fig. 1).
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