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A new method is described to obtain a sequence of wave functions and energy eigenvalues which

converge rapidly to the exact bound state of the Schrodinger equation for the exponentially screened

Coulomb potential.

u(x) =fe ~+he", (2)

where f and h are constants. We are interested
in the particular solutions which vanish at the
origin and have the property that h =0; these are
the bound states, and the corresponding discrete
values of 0 give the energy eigenvalues.

The first step in our method of solution is to
transform the differential Sehx 5dinger equation
into two coupled integral equations which incor-
porate these boundary conditions. If we let f and

h become functions of x as well as of k and g in
order that Eq. (2) be valid for all values of x, we
find that f and h satisfy the coupled linear integral

The importance of screened Coulomb potentials
in solid-state and in plasma physics has been
recognized for a long time. ' The purpose of this
paper is to discuss a new method to obtain the
bound-state wave functions and energy eigenvalues
of the radial Schr5dinger equation for potentials
whose screening factor falls off exponentially. A
sequence of wave functions and energy eigenvalues
are derived which converge rapidly to the exact
bound-state solution. It mill be shown that for weak

screening, i.e., when the characteristic screening
length is large compared to the Bohr radius, the
sequence approaches the Coulomb wave functions.
For simplicity, we restrict our main discussion
to zero angular momentum states, but the exten-
sion of our method to finite angular momentum
is straightforward.

The radial Schx 5dinger equation for the s-wave
bound states u(x) of the screened Coulomb poten-
tial takes the form

(
d2 ~ X

, +g -k' u(x) =0,
dx x

where the radial distance x ls given ln units of a
screening radius A.. The coupling constant g=2ZA,
/a„where Z is the Coulomb charge and a, =if'
/me' is the Bohr radius, and the binding energy
E = (Z'e ~m/21')(2k/g)'. Asymptotically the solu-
tions of Eq. (I) have the form

equations

In Eqs. (3) and (4), the wave function u [Eq. (2)j has
been normalized by the condition that for small

The second step is to introduce a sequence of
wave functions u(")(x) of the form

u(" (x) = y(" (x)e (5)

where Q ")(x) is an expansion in powers of e * up
to order n; i.e.,

~(n)(x) g a (n)e rx- (6)
t'= 0

The usefulness of the expansion, Eqs. (5) and (5),
is threefold: (i) For small values of x, it cor-
responds to a power-series expansion of x up to
x" and therefore can be used to solve the Schr5-
dinger equation for analytic potentials by standard
techniques. (ii) For large values of x, P("' ap-
proaches a constant value a0 " corresponding to
the correct asymptotic behavior of the exact solu-
tion. (iii) For large x, the integrals appearing in

Eqs. (3) and (4) can be carried out analytically.
This will be important when we impose the condi-
tion that solutions of Eqs. (4) and (5) correspond
to bound states. This expansion has also been
used in variational solutions by Hulthdn and Lau-
rikainen, ' and it leads to a Taylor-series expan-
sion of the wave function in the variable y = e "-1.

Let c, be the coefficients of the Taylor-series
expansion of u(x)e'*/x in x, which satisfy the recur
renee relation

9=x

(7)
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(n) ( ) ~ (n)s
i ( }i ~ s i b, , c

&=1

The matrix element bi",i in Eq. (9) is given by the
sum of all possible products of n- s distinct inte-
gers between 0 and n excluding the integer r,
while b„"„=1.A convenient procedure to evaluate
b„", when e is a large integer is given by the re-
currence relations

(9)

5( ) (n &}5(n-a)+ & ( )

~ (n) (n 1)~ (tl 1) + ~(ll 1)

for r =0 to n and s = 1 to n —1, while

b~" ~ = ~ ~"~ = 1 and a ~"~ = 0 .r, n Q

(10)

(11)

(12}

The final step in our procedure is to substitute
the expansion for u [Eqs. (5) and (6}]in Eq. (4) and
to impose the asymptotic condition for bound
states that h(~) = 0. We then obtain the eigenvalue
equation

Then the requirement that for small x Eqs. (5) and

(6) correspond to this expansion to order x" im-
plies that for s=1, 2, . . . ,n,

r =n

(8}
F =Q

while for s =0 this sum vanishes.
Solving Eq. (8) for a„i"~, we obtain

have evaluated these roots for several values of k
between 0 and 10 and for n = 2, 3, ... , 20 and found
that g converges rapidly towards the solution. As
an example, we give in Table I the values of g
for n=2-5 for the ground-state energies E given
by Rogers, Graboske, and Harwood' from numer-
ical integrations of Eq. (1). Comparison with their
results show complete agreement except for the
two smallest values of E, where convergence to
the fourth decimal place has not been reached at
n = 5. For E = 0 we find that g has increased mono-
tonically to g=1.67974 at n=20.

Applying the recurrence relations, Eqs. (10)-(12),
to Pi" (x) we find that

~(n)(&) ~(n -1)(&) (&-x 1)n s (n) (14)

where a„" is the last coefficient' of the expansion

p„, [Eq. (6)]. We have calculated a„i"~from Eq. (9)
for all integers n from 2 to 20 at the roots of
Eq. (14) and found that a„"~ decreases monotoni-
cally in magnitude and alternates in sign between
consecutive values of n, except at the smaller
values of n. As an illustration, we show in Fig. 1
the function P

" (x) for the third excited state with
energy E = 0. Substituting Eq. (5} in Eq. (3}, we
have also verified that a,i"' approaches fi "i(~).

It is straightforward to show that in the weak-
screening limit the wave function given by Eqs. (5)

(13)

(-)""f (k) =( —) g ~

ln(2k+r+1) .
r=Q

It can be readily verified that the left-hand side
of Eq. (13) is a polynomial in g of order n. The
roots of this polynomial are functions of k; the
smallest root corresponds to the ground state,
the next root to the first excited level, etc. We

TABLE I. Values of the coupling constant g for select-
ed values of E and n for the ground state.

-O.IO--

E(Ry~ n =2 n=3 n=4
Rogers

n=5 et al a

0
0.020 57
0.1351
0.2962
0.4737
0.5818
0.6536
0.7424
0.8141

1.6795
2.0048
2.8138
4.0193
6.0214
8.0201
10.019
14.015
20.012

Reference 1.

1.6724
1.9935
2.7954
3.9966
5.9981
7.9983
9.9999
13.999
19.999

1.6762
1.9971
2.7984
3.9990
5.9998
7.9996
9.9998
14.000
20.000

1.6777
1.9983
2.7993
3.9994
6.0000
7.9997
9.9999
14.000
20.000

1.6798
2.0
2.8
4.0
6.0
8.0

10.0
14.0
20.0

-0.20--

FIG. 1. The wave function for the third excited level
of the screened exponential Coulomb potential with the
critical coupling constant g = 25.33 and E = k = 0, for
n =8-12.
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and (6) approaches the exact s-wave Coulomb
bound states. For large values of k the important
contribution of P~"~(x) is in the range 0&@61/k,
and this becomes the domain where the power-
series expansion in x is valid. If we set g=2kn
in the recurrence relation for c, [Eq. (6)] and
keep only the dominant contributions for large k
and s = 1, 2, ..., n - i, we obtain

( —)'(2k)' (s —1)I

sl(s+1)! (n-s —1)(
' (15)

These are essentially the coefficients of the asso-
ciated Laguerre polynomials L'„which determine
the s-wave Coulomb bound states. Furthermore,
we verify that our ansatz for g approaches the
solution of the eigenvalue problem for large k.
In this limit we find that Eq. (12) takes the form

stc, 1
(2k)' " g

(16)
8=0

and substituting Eq. (15}for c, in Eq. (16), we
obtain again g = 2k'.

For the case of finite angular momentum L, we
replace the exponential functions e'~' in Eqs. (2}-
(6) by the Hankel functions of order l, and proceed
in the same manner as in the L=0 case. The de-
tails will be discussed in a subsequent publication.

We have applied this method successfully also
to other short-range potentials. In particular,
for the exponential potential we find that for 0 +

k ~4 and n = 8 the eigenvalues g have converged
to the first zero of the Bessel function &»(x) at
x=2Wg to four decimal places.
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3For fixed values of k and g, the coefficients acorre-
spond to the Taylor series expansion coefficients of
u(2(;)e~ in powers of (e '-1), and satisfy the condition

&(-) a~~~'=a/+. The convergence of at" for large n
is obtained if, and only if, k and g satisfy the eigen-
value condition (Eq. (13)]. While for l=0, the coeffi-
cients a+ could also be obtained directly from a recur-
rence relation derived from the SchrMinger equation
in the variable (e '-1), this relation cannot be extend-
ed to the case l ~0.


