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The only relatively long-lived fundamental particle which may, possess an electric quadrupole moment is

the 0 hyperon, since it has spin 3/2. We consider the possibility that A hyperons may be captured into

atomic orbits at some future date. If this possibility should be realized (in spite of great technical

diAiculties), then it may be possible to determine simultaneously the electric quadrupole moment g„and
the magnetic dipole moment p,„ofthe 0 hyperon. In the present paper, we have calculated the fine

structure of the 0 -Pb atom for reasonable values of gf, and ILLfl. The n = 11, I = 10-+ n = 10, I = 9
transition has been considered, since there is some indication from an experiment on antiprotonic atoms that

the capture of the 0 by the nucleus will take place from a hydrogenic state with n of the order of 10 for
lead, and I ~ n —1. It is shown that for g„= 2 X 10 ' cm, the quadrupole splittings should be
resolvable experimentally. The magnetic dipole splittings have also been calculated.

I. INTRODUCTION

Although at present only about 30 0 particles'
have been observed, ' we wish to envisage the pos-
sibility that at some future time 0 beams of at
least moderate intensities may become available.
If one considers that only about 15 years have
elapsed between the observation of the first 50
antiprotons' and the detection of antiprotonic atoms
by Bamberger et al. ,

' one may hope that in the not
too distant future, the observation of 0 -hyper-
onic atoms may actually be realized.

If such g -hyperonic atoms should be observed,
a very interesting and important possibility will
occur, namely, the observation of a possible elec-
tric quadrupole moment Q„of the Q hyperon. Of
course, a nonvanishing Q„ is possible because of
the spin —,

' of the 0 particle, which is the only
weakly decaying member of the SU(3) decuplet.

In a recent paper, Fox et a/. ' have reported the
magnetic moment of the antiproton from an obser-
vation of a structure (splitting) in a transition in
both lead and uranium antiprotonic atoms. The
structure occurs inthe n= 11,l =10 to n=10, l =9
transition of these atoms. It turns out that the p is
capturedby the nucleus from the n = 91evel, but the
highest-energy transition. n = 10-n = 9 is obscured
by the 13-11transition which is close in energy;
therefore, the n = 11-n = 10 transition was used to
detect the fine-structure splitting due to the mag-
netic moment of the p.

In the absence of accurate information about the
interaction of 0 with a nucleus, and for definite-
ness, me shall assume that the observed transi-
tion for the 0 -hyperonic lead atom is also n =11,
l = 10-n = 10, l = 9. The results would not be very
different if a neighboring transition mere consid-
ered, and they are also expected to be similar for
Q -lead and 0 -uranium. It should be noted that

according to the analysis of Martine on K mesic
atoms, one expects that on slowing down, the Q
mill be captured into an orbit with principal quan-
tumnumber n-(m„ /m, )'+=57, for which the ra-
dius of the 0 -Pb atom is of the order of the K
shell radius of the ordinary (electronic) Pb atom.
From the capturing level n-57, the 0 cascades
down into states with successively decreasing n

values, and with I values close to n (classically
circular orbits). Thus, it is not unreasonable
that when nuclear capture does occur, it is from
a state with the maximum value of /, i.e., l =n -1,
as has been observed by Fox eS a/. ' for antipro-
tonic atoms of lead and uranium.

Two effects contribute to the fine structure of
the levels in 0 -Pb atoms, namely the magnetic
moment p„of the 0 and its electric quadrupole
moment Q„. There is little theoretical informa-
tion on either of these quantities, and therefore
we will make some reasonable assumptions, in
order to obtain at least the order of magnitude
of the effects (splittings) involved. It turns out,
as will be shown below, that the more important
effect is that of Q„, provided that its value is not
unreasonably small. As a crude assumption, we
may take Q„ to be of the order of [m„/m(Li')]'~3
= 0.40 times the quadrupole moment of the I.i'
nucleus (because of the approximate proportion-
ality of (r') and A' ~'). Since Q(Li') = -0.044 b, ' we
will use in our calculation an estimate Q„=0.02 b
=2x10 "cm'. The actual fine structure due to
Q„ is proportional to Q„. As concerns the mag-
netic moment p„, we shall assume, for definite-
ness for the anomalous part of the magnetic mo-
ment g, =+1. The splitting is proportional to g, +2g„
with go=+1. Thus, even if g, were larger, say g,
=+2, the effect would be increased by only a factor
of —,', and it would still be relatively small com-
pared to the effect due to Q„ for Q& =2x10 26 cm~.
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II. EVALUATION OF QUADRUPOLE
FINK STRUCTURE

The 0 hyperonic atom is an interesting system,
because the Q particle has spin S=-,'. Thus,
the fine structure is essentially different from
that of ordinary electronic atoms with S= &.
Obviously, each level n, l is split into a quartet
of levels with j=l+ —,', j=l+ —,', j=l ——,', and j=l ——,'.

The quadrupole interaction is due to the effect
of the field gradient due to the nucleus V„on the
quadrupole moment Q„. (For simplicity, we as-
sume that the nucleus has no magnetic or quadru-
pole moment, so that the nuclear-hyperfine struc-
ture is absent. This situation is, of course, real-
ized for the spin-0 nucleus Pb20'. )

The field gradient V„due to the nucleus is ob-
tained by differentiating the field Ze/ra, or rather
the field along the z direction, namely, E, = Zez/r'.
We thus obtain

m, /m, = 165'l.9/0. 5110=3244.4

and the appropriate Bohr radius az is given by

(2)

e„=(5.292x10 9)/3244. 4=1.631x10 "cm. (3}

For hydrogenic wave functions, the average
value (r ') is given by'

(r ') =[ 'Z/'nl (1+-,')(l+1}]a„'. (4)

The equivalent of the Rydberg unit is given by

din ——13.605 x (m~/m~) = 44.14 keV. (5)

We first consider the lower states, having n= 10,
l =9. We find

«3 823
( ) 10'(9)(9.5)(10)

It was pointed out by Blumeo that the equation
for the interaction energy contains besides 2Ze2
x (r ') Q„[as obtained from Eq. (1}],an additional
factor' l/(2l + 3), so that the energy Eqi &(n, l) is
given by

(6)

Eqt ~(n = 10, l = 9) = 2Ze2 (r ) Qql/(2l+ 3)

=4.822xl0 8 erg=30. 10 keV, (7)

V„=(2Ze/r~) P~(cos 8),

where 8 is the angle between the radius vector r
and the z axis, and P, is the Legendre polynomial.

It should be noted that, in analogy to the situa-
tion for X -mesic atoms and antipratonic atoms,
the orbit at nuclear capture is so far inside the
K shell of the atom, that the wave function of the
0 is hydrogenic to a very high accuracy. How-
ever, we must use the appropriate reduced mass
m~d, which for m„=1672.5 MeV and a Pb' nu-
cleus becomes m~=1657.9 MeV. Thus, we find

= 2968-2453 = 515 kev. (8)

The n = 10, l =9 level splits into four levels with
J=~2, ~2, ~2, and ~2, respectively.

By analogy with the theory of nuclear quadrupole
hyperfine structure, we find that the J-dependent
factor which multiplies Ez is given by"

3C(C+ 1}—4L(L+ 1}S(S+1)
8S(2S —1)L(2L —1)

(9)

where, of course, L=9, S= —,', and the J-dependent
quantity C is given by

C =J(J + 1) —L (L + 1) —S (S + 1). (10)

We thus obtain for C(J); C(~2) =27, C(~2) =6,
C(~) = —13, and C(~~) = —30. The resulting values
of D(J) are as follows: D(un )—-+ —„D(~2)= —~, D(~2)
= —g = —0.2402, and D(~2) =+ ~~ =+0.3431.

Similarly, the upper level, with n=11, L=10,
splits into four levels having J=~, ~2, ~2, and
~2, respectively. We note that for the upper level,
Ego~ is smaller than the value given by Eq. (7), on
account of the larger values of n and L in the de-
nominator for (r ') [Eq. (6)]. We thus obtain

E&'i (n = 11,L =10)=30.10x0.5643 =16.99 keV.

The actual energy levels (referred to the zero-
order value) are given by Eqioi (n, L)D(J) in each
case.

We thus obtain, for the upper levels,

and

Eq(~2) =4.25 keV,

Eq(~~} = —5.52 keV)

Eq(~2) = —4.11 keV,

Eq (~~) = 5.66 keV .

(12}

For the lower levels we obtain, by means of
Eq. (7},

Eq(~}= 7.53 kev,

Eq(~~) = —10.03 keV,

Eq(~2) = —7.23 keV, (13)

where we have used Eq. (6) and Q„=2x10 '8 cm'.
This quantity E~z must still be multiplied by ap-
propriate J-dependent factors to obtain the actual
energy shifts due to Q„ for the lower (n= 10, l =9)
state.

Before proceeding to this calculation, we note
that the zero-order energy of the transition n =11

n= 10 is given by

Egg Ego 44 14 keV (82) (+goo +i2g )
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and

Eo(ta) = 10.33 keV.

(12}and (13}, from which we obtain

nE (a) =&E(~s-~2) =4.25 —7.53= —3.28 keV,

6
4
2

E&„O
(keV)-2

-4
-6
-8

17/2
23/2

Ep(n= I I) T
I

l9/2
2I/2 I

These levels are shown schematically in Fig. 1,
in which the most prominent transitions are also
indicated (a, 5, c, and d). The energy differ-
ence between the centroids of the upper and lower
levels is 515 keV, as obtained from Eq. (8).

In order to obtain the relative intensities of the
various transitions, we have used the expressions
given in the book of Kuhn, ' which were originally
derived by Dirac." We note that all transitions
with ~=+1 and 0 are allowed. However, it
turns out that for the five transitions with M
ab.L(= —1), the intensities are always less than

2' of that of the most prominent transition, name-
ly, J =~2 -~2, which has been labeled as transition
a. The four strong transitions are those for which
4J = EL = —1, namely, ~~-a2t (transition a) (inten-
sity taken as 1 arbitrarily), ast- ta (transition 5;
relative intensity =0.904), ~s- ~s (transition c;
relative intensity =0.816), and ~s-~s (transition
d; rela. tive intensity =0.737).

In order to calculate the energies of the transi-
tions a, 5, c, and d, or rather the energy devia-
tions AE+ from the central value GEO=515 keV
[see Eq. (8)], we use the results given in Eqs.

and similarly

n Eo(b) =+ 4.51 keV,

n.Eo(c) =+ 3.12 keV,

b,Eo(d) = —4.67 keV.

(14)

(15)

I I I I I I I I I I I I

These are the transition energy shifts in the
absence of magnetic dipole fine structure (see
Sec. IH), and they are shown as the full lines in
Fig. 2. The height of each line is proportional to
the intensity of the transition, as calculated
above. The complete pattern extends over an
energy interval of 4.67+4.51=9.18 keV, and
thus the existence of the pattern, and probably
the individual details, i.e., the existence of
four separate lines, should be readily observable.

Of course, it should be noted that the very ex-
istence of four lines would demonstrate at once
that the spin of the 0 is S =~2, as is expected
from the SU(3) theory. (For the antiproton with
spin, , two lines are observed in the experiment
of Fox et al. ') Incider. tally, the smallest energy
splittings, namely, those between transitions (tt)
and (d) and between (b) and (c) are both 1.39 keV.
If these transitions are resolvable, then all four
lines could be detected separately.

The preceding values for d Eo(o.)(u = a, 5, c, d)
are, of course, modified to some extent by the
presence of the fine structure due to the magnet-

'
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FIG. 1. Energy levels of the states J= ~2, 2, —,and
2

for s =11, 1 =10, and the levels of the states J= 75, g,
~&9, and ~ for n =10, E =9 for a Q -Pb atom assuming only
an electric quadrupole moment of the 0, Q& =2 &&10

cm2 (i.e., assuming p& =0). The zero-order energy dif-
ference between the n =11 and n =10 levels, AEp =515
keV, is indicated by the dashed vertical line [see Eq. (8)].
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FIG. 2. Energy difference &E (with respect to lt Ep
=515 keV) for the four transitions marked a, b, c, and d
-in Fig. 1 for Q &=+2x 10 8 cm . The heights of the lines
correspond to the intensities of the transitions relative
to that of transition a, i.e., the values of I/I, . The full
lines marked (a, 5, c, d) correspond to the values of &ATE

of Fig. 1, without magnetic interaction [Eqs. (14)and{15)].
The broken lines (marked a, g, g, d) correspond to the
values of ~to~ including the interaction due to a mag-
netic moment [Eqs. (30)-(33)].
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ic moment g„of the 0 particle, which will be
estimated in Sec. III.

Z4 (iI/m, c)*
2 nmL(L + +2}(L+ 1} a~c

(21)

III. ESTIMATE OF MAGNETIC DIPOLE

FINE STRUCTURE

A discussion of the fine structure due to the
spin-orbit coupling is given, for example, in
Kuhn's book. '~ Thus for a particle of spin 5,
the energy associated with the spin-orbit cou-
pling, after applying the relativistic Thomas
factor of ~2, is given by

E'=(~(r)) I. 5, (16)

Now (5/mac)/a„= u, the fine-structure constant,
and e'/2a„=61„=44.14 keV, so that

Z Q.

"n L(L++)(L+ 1)
' (22)

(incidentally, we note that l and L have been used
interchangeably for the orbital angular momentum
quantum number. )

It is convenient to define the quantity C (the
quantum-mechanical equivalent of the cosine of
the angle between L and 5) as follows:

where $(r} is given by

(17)

L 5, C CC=— (23)

where V is the central potential (=Ze/r in the
present case) and m, is the rest mass of the
particle. Equation (17) actually differs by a
factor g' from Eq. (III.53) of Kuhn, because we
define L and S as the quantum numbers associated
with the orbital and spin angular momentum, re-
spectively, i.e., I/}I times the quantities L and S
considered by Kuhn.

Upon using V(r) =Ze/r, Eq. (17) becomes

(18)

E =($(r)) L 5(g +2g, ), (19)

with ($(r)) given by Eq. (18). In Eq. (19), the ap-
propriate value of L ~ 5 is obtained as usual from
the relation

I. 5=& P'-i*-5')
=+~[J(J+1) —L(L+ 1) —S(S+ I)]=+~C, (20)

with C as defined in Eq. (10).
With Eq. (4) for (r '), we obtain

where the average value of r ' is to be taken for
the appropriate hydrogenic wave function. For
mo, we use the reduced mass m,~=1657.9 MeV
appropriate for the Q -Pb atom.

As was pointed out in Ref. 5, if the particle con-
sidered has an anomalous magnetic moment 3g,p„,
where p„ is a nuclear magneton (appropriate to
the mass m, =m,~), then E' is multiplied by a
factor (g, +2g, }, where g, =+1. We note, of
course, that with m,~=1657.9 MeV=1.767m~ (m~
is the mass of proton), the "nuclear magneton"
eff/2m~c is appreciably smaller (by a factor
1.767) than the proton magneton which is et/2m~c.

Thus we shall use for the energy E ~ due to the
magnetic dipole moment, the expression

(25)

The values of V(J), as derived from the values
of C(J), are as follows:
(i) For the lower levels, with C=~»C, we find

C(~2) =+ 1, V(~2) =+~9 =+0.222,

V(P) = —P, = —0.481,

and

C(p) = —~9 = —1.111.

(ii) For the upper levels, with C =~~~ C, we find

C(~2}=+ 1, V(~2) = ~~o =+0.233,

C(~2) = —~5 = —0.467,

and

P(~}=-~= —1.10.

For the case of Pb, the factor B in the large
parentheses of Eq. (25) has the following values:
(i) for the lower levels, with n=10, L =9: E=5.04
keV; (ii) for the upper levels, with n = 11, L = 10:
B=3.11 keV.

We thus obtain, for E „(J),
(i) for the lower levels,

E (~~) =+5.04 keV, E . (~2)=+1.12 keV,

E „(P)=—2.43 keV, E „(~}=—5.60keV,

(ii) for the upper levels,

E n(P) =+3.11 keV,

E n(~2)= —1.45 keV,

E (~2) =+0.73 keV,

E,(P) =-3.43 keV.

in view of 8= 2. Then the magnetic energy be-
comes

E.„(J) =($(r)) C —.'L(g. + 2g, ) . (24)

With the estimate g, + 2g, =+3 (as discussed in
Sec. I), and upon inserting Eq. (22), we obtain
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The change in energy of the transitions (a), (b),
(c), and (d) is thus given by

b.E „(a)=+3.11-5.04= —1.93 keV,

and similarly,

aE, (b) = —0.39 keV,

aE (c)=+0.98 keV,

nE (d) =+2.17 keV.

(28)

(29)

These values may be compared with those of
EEo(a) in Eqs. (14) and (15), which were obtained
by neglecting the magnetic interaction. The values
of b,E (a) are rather small compared to those of
n, Ez(a), in particular for transitions (b) and (c).

py adding the two results [Eqs. (14) and (15) and
Eqs. (28} and (29)], we obtain the total n.E, denoted
by LE„~, on the assumption of Q„=2x10 "cm'
and g, =+1:

~E„«(a)= —3.28 —1.93 = —5.21 keV,

&E„«(b)=+4.51 —0.39 = + 4.12 keV,

(30)

(31)
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FIG. 3. Same plot as in Fig. 2, but with Q & negative,
i.e., Q& =-2x10 6 cm [see Eqs. (34) and (35)].

r E„, (c)=+3.12+0.98=+4.10 keV, (32)

~E„«(d)= —4.67+2.17=-2 50 ke.V. (33)

Thus, the pattern extends over a region of 5.21
+4.12 = 9.33 keV. In this case, the transitions (b)
and (c) have essentially the same energy (= + 4.10
keV), but they are clearly separated from AE„«
(a} and bE„«(d), which are also adequately sep-
arated from each other. Thus we would have two
energy intervals, from which the values of Q„and
pp + 2+y can be determined.

In Fig. 2, we have shown the four transition en-
ergies given by Eqs. (30)-(33) (dashed lines),
together with the transition energies in the absence
of magnetic effects (full lines). The heights of the
lines are proportional to the relative intensities
of the transitions.

We note that the values of ~AE„(n) ( depend
only on the relative sign of Q„and (go, g, ) [for the
given absolute values of Q„and (g„g,)]. Thus, if
the sign of Q„should be reversed (i.e., negative),
i.e., Q„=—2x10 "cm', we would obtain for the
value of AE„«(a):

EE„«(a)=+ 3.28 —1.93 =+ 1.35 keV,

and similarly [in view of Eqs. (31)-(33)],

(34)

IV. SUMMARY AND DISCUSSION

We have calculated the fine structure of the Q-
Pb atom, expected for representative values of
the electric quadrupole moment Q„and the mag-
netic dipole moment p, „of the 0 hyperon. The
n=11, i=10-n=10, l=9 transition has been con-
sidered, since an experiment on antiprotonic
atoms of lead' has made it likely that the capture
of the 0 by the nucleus will take place from a
hydrogenic state with n of the order of 10 for the
case of lead, and with l close to or equal to its
maximum value" n —1. It has been shown that
for a value of Q„=2x10 "cm', the quadrupole
splittings are large enough so that it should be
possible to detect them experimentally. The ex-
pected spin S= —,

' of the 0 particle gives rise to
four strong lines, and the very existence of four
lines (or possibly three observable maxima, with
two lines being unresolved) would demonstrate at
once that the spin 8„is indeed —,', as expected
from SU(3}. It should also be pointed out that a
measurement of the intrinsic moments Q„and
ILL. „would be of great interest for models of the
SU(3) decuplet containing the Q (e.g. , quark
models; compound models' in which 0 is re-
garded as a bound system consisting of either
='+K or = +Ro).

We may remark that the experiment to produce
0 -hyperonic atoms will, of course, be technical-
ly very complicated, because of the difficulties of
stopping the 0 particles, on account of their

b,E„«(b)= —4.90 keV, nE„,„(c)= —2.14 keV,

(35)

aE„«(d) =+6.84 keV.

In this case, the pattern extends ovei a region
of 6.84+4.90=11.74 keV, and it consists of four
well-separated lines. Thus there are three mea-
surable energy intervals, and the system of lin-
ear equations for the two constants Q„and g, will
be overdetermined, leading to an additional check
on the calculated values of Q„and g, . Figure 3
shows the pattern of the lines for Q„&0, demon-
strating the clear separation of the four transi-
tions a, b, c, and d.
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strong interactions. Nevertheless, with the ex-
pected operation of:- beams, it may be possible
to attempt the experiment.

In any case, quite aside from the fea, sibility (or
infeasibility) of the experiment, it is obvious that
the 0 -hyperonic atom is an interesting possible
object of theoretical investigation. The main
reason is, of course, the spin S= —,

' of the 0 hy-
peron. Thus s states will be s,~„while P states
will be p, ~„p,~„and p, ~„etc. For the 0 -pro-
tonic atom (0 -p), there is the added interesting
feature that the masses of the two constituent
particles are comparable, so that the reduced
mass m„,=0.601 GeV is appreciably less than
either m~ or m„. Similar results are obtained
for the 0 -d and 0 -n atoms, for which the re-
duced-mass values are m,~= 0.884 and 1.154 GeV,
respectively.

From Eqs. (6) and (7), it is seen that Ecol, and
hence Eo is proportional to a„', i.e. , to (m,~/m„)'.
Thus, the quadrupole fine structure goes as
(m,~/m„)', while the zero-order energy of the
transition, being proportional to S„, is propor-
tional to m„d/m „. On the other hand, for the
magnetic dipole fine structure, upon referring to
the derivation of the spin-orbit coupling, '4 one
finds that the factor (h/m, c)' in Eq. (17) for ((r)
should be replaced by (I'/m„dm „c'), so that
E „is proportional to (m„d/m„)'. Thus for a
given transition n-n —1, the magnetic fine struc-
ture and especially the quadrupole fine structure
become relatively less important compared to the
transition energy, for those cases in which

m„d/m„ is appreciably less than one.
In connection with Eq. (17), which is equivalent

to Eq. (111.53) of Kuhn, "we have made the implicit
assumption that the Thomas relativistic preces-
sion factor is —,', the same as for a particle of
spin S= —,'. The fact that the Thomas factor repre-
sents essentially a classical effect, and is inde-
pendent of spin, is evident from the derivation
given by Furry. "

There are, of course, other theoretical problems
connected with the spin S=-,' of the orbiting parti-

cle, in particular the treatment of relativistic
velocities, since the S= —,

' 0 hyperon obviously
does not obey the Dirac equation. A wave equa-
tion for particles of spin —,

' was first proposed by
Rarita and Schwinger. " It would be of interest to
determine the intrinsic quadrupole moment and
the intrinsic magnetic moment of a spin- —,

' parti-
cle from such wave equations, analogously to the
magnetic moment eh/2mc derived from the Dirac
equation. However, because of the strong inter-
actions of the 0 particle, there is expected to be
a large "anomalous" contribution to both the quad-
rupole moment and the magnetic moment, which
could not be predicted from the wave equation for
a free spin- —,

' particle. '
For our present estimates of 4E~ and 4,E „,

and in particular in connection with the determin-
ation of (r ') [Eq. (4)], we do not have a relativ-
istic situation, so that complications due to the
generalization of the Dirac equation do not occur.
Thus the velocity in a n=10 orbit for 0 -Pb is of
the order of uc(Z/n) = 6.2ac =0.06c, which is
small compared to c.

It should be pointed out that the present calcula-
tions may be of interest if a heavy lepton with
spin —,

' (or higher) should be discovered. Although
present theories do not seem to envisage this pos-
sibility, one may note that for the hadronic parti-
cles, an increase in mass is usually accompanied
by an increase of spin of the particle. If the
heavy lepton should have a sufficiently long life-
time, e.g. , T&10 ' sec, then it would have an ad-
vantage over the 0, in that it does not interact
strongly, and therefore could be readily stopped
in an absorber. This would make it relatively
easy to capture the heavy lepton in an atomic
orbit, and thus observe its magnetic and quadru-
pole moments.
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