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Frank Elastic Constants of the Hard-Rod Liquid Crystal
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The elastic constants of a hard-rod liquid crystal are calculated using the Onsager theory, with results
sinai&ar to those given by Priest.

A suspension of long hard rods will form a
liquid crystal at sufficiently high concentrations.
A theory of this phase transition based on the
Mayer cluster expansion has been given by On-
sager. ' In its simplest form, the theory is a
version of molecular-field theory, which can be
shown' to be quantitatively accurate for extremely
long rods (L/D & 100) and qualitatively accurate
for L/D F10. Even though the more commonly
studied liquid crystals do not meet these pre-
requisites, it is still an important program to
calculate as many of the physical properties of
the long-rod liquid crystal as possible.

Priest' has recently calculated the curvature
elastic constants for such a system. In this pa-
per, that result will be derived in a different way
which avoids spherical-harmonic expansions.
The starting point are the assertions (i) that the
response of the li quid crystal to a weak-ordering
field which varies slowly in space is just that the
preferred orientation aligns everywhere along that
field; (ii) that the relative probability of a mole-
cule at r having orientation m is f(m n(r)), where

n(r) is the local preferred orientation and f is the
same distribution function which Onsager finds
for the case that n is independent of position; and
(iii) the extra free energy due this variation of
n(r) can be calculated as

LE=-,'kTp' L n r 6 r, l; s, m

x [f(m ~ n(s))- f(m ~ n(r))]d r d s dm dl,

where 5(r, l; s, m) is the contact function, which
is unity if a particle at r with orientation I would
intersect a particle at s with orientation m, and
vanishes otherwise. These assertions can be
established for a generalization of the Onsager
expansion by recourse to the arguments that
Priest gives. Equation (1) is essentially the same
as Priest's equation (28).

We will now evaluate Eq. (1) to second order
in the derivatives of n. The slow spatial varia-
tion of n(r) allows us to write

f(m n(s))-f(m ~ n(r))=f (m n(r)) f(] ~ V„)[n(r) m]+ —,'($ 'V„)'[n(r) m]]

+ —,
' f "(m n(r))((g ~ V„)[n(r) ~ m])'+ (2)

where )=s-r and f' and f" represent first snd
second derivatives of the distribution function
with respect to its argument. Replacing the term
in the square brackets in Eq. (1) by Eq. (2) re-
sults in the following:

=~p' l nr 5 ) lm 'm nr

xo) V„)[n(r) m]]dg dr dl dm

-2p $'V„nr 'I 'l nr
(4)

combine the second-order terms.
We may now proceed to do the integrals over

If the first term of Eq. (3) fails to vanish, then
the liquid crystal must be a "cholesteric". with a
finite twist in the equilibrium state. The first
term of Eq. (3) will automatically vanish if 5($)
is an even function of $; this corresponds to the
case of nematic liquid crystals. Further discus-
sion will be restricted to this latter case.

We introduce the representation

&=xl+ym+z(l x m)i l x mi

x 5(&; l, m )f '(m ~ n(r))

x [(g ~ V,)(n(r) ~ m)]d$ dr dl dm,

where an integration by parts has been used to
(3)

Reference to Fig. 1 shows that two rods will al-
ways overlap if -&L&x, y&2L and -D&z&D. It
is also possible for two rods to overlap with x or
y slightly outside the stated interval, but this pos-
sibility will be ignored as being a correction of
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order D/L. Then the domain of integration is a
rectangular box in the x, y, z space. Since s, y, z
are independent variables, Form off A S = (P2(~)) K«' K2)

TABLE I. Elastic constants.

K33

= vDL'~ lcm~[(m u)(m v)+(n u)(n v)]

+-', L'D'~ lxm~ '(l xm) u(l xm) ~ v

(5)

f~

f~

fp

6
7
8
9

10

0.71
0.76
0.79
0.82
0.84
0.80

0.063
0.066
0.068
0.066
0.065
0.062

0.021
0.022
0.023
0.022
0.022
0.021

0.24
0.30
0.35
0.39
0.44
0.392

for any vectors u and v. The last term will be
neglected (D/L « I). Thus, the integration of
Eg. (8) gives

Q p'kTL'D ' l n ' m n L &m

x([(l ~ 0)(n ~ l ) ][(l ~ 0)(n ~ m )]

+ [(m 0)(n l)][(m ~ 0)(n m))]dr dm dn,

(6)

where the explicit mention of the r dependence of
e has been dropped. As desired, this result in-
volves only the gradients of n, and is second
order in them.

The Frank elastic constants are defined by

K)]=-~p kTL D ' l' x

xf'(m x)~lxm((i)dmdn, (8)

where (i} for R=i+yy (splay),

fl)=(m y}(l'y)[(l y}'+(m'y)']' (9a)

[K»(V ~ n)'+K»(n ~ (Vxn)) '
2

+K„(nxpx n)']dr .
By considering the three cases of purely one type
of distortion, Eg. (6) can be rewritten as an evalu-
ation for K», K», and K33 in each case

~The values quoted are for the dimensionless quantities
K„/p2L, ZeZ.

which is an approximate solution to the Onsager
integral equation near the phase transition. ' The
results are given in Table I. It might be noted
that K» = 3K», independent of the form of f.

A principal difference between the present ap-
proach and that of Priest is that it has not been
necessary to introduce a Legendre-function ex-
pansion for f. This is important since such ex-
pansions are not very rapidly convergent near
the phase transition. ' Another difference is that
Priest keeps some terms of higher order in D/L.
These are not significant because there are cor-
rections to the molecular-field theory of the same
order' and because the shape of the ends of the
rods can make changes' of the order of D/L. In
order to translate the present results into a form
comparable with Priest' s, one factor of pkT must
be replaced by z(4.541)kT,. The results are other-
wise the same.

It is difficult to apply these results to the more
commonly studied liquid crystals (such as MBBA')
not just because these are thermotropic (where
the theory as presented here is not), but also be-
cause D/L is much too large to permit the third
virial terms to be ignored. Such application does
give order of magnitude agreement, however.
The results may be directly applied to a mixture
of PBLG and PBDG, which forms a nematic liquid
crystal 'For th. is system, D-25 A, and for L/D

(ii) for n =x+zy (twist),

(2}= (m y)(l ~ y)[(l ~ z)'+(m ~ z)']; (9b)

and (iii) for n=x+zy (bend),

(8}=(m y)(l y}[(l x)'+(m x)']. (9c}

There remains to evaluate these integrals for
various choices of f (m z). This has been done
numerically for the case f„(cos8}= const.
x exp(A cos'8) with various values of A, and for
the choice

f,(a = cos 8}= 1.483 exp(-6. 92 + 4.58a'

+2.0%a~ —2.01az+2.28a'), (10}

FIG. 1. Geometry of two intersecting rods. The dis-
tance $ between the rods can be expressed as ( =el, +ym
+z (Lx'm}(l, xm (
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-50, ,'vD—'Lp-0.1 at the phase transition (T=300
'K). Then using the values from Table I for f„
K„=4.2~10 ', K22=1.4~10 ', and K„=26.0 10
dyn. These values are comparable to those that
have been measured in other systems and thus
presumably are measurable. Priest' s equation
(38) for the same system would give K» = 2.8

~ 10 ', K„=0.9x 10, and K33 6.7 ~ 10 ' dyn,
where the values' (P,) =0 79.6 and (P,) = 0.51V

consistent with f, have been used.
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