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The object of the present paper is the elaboration of a model formalism for solid He®. This is based
on postulating isotropic first-neighbor antiferromagnetic — J, and second-neighbor ferromagnetic J ,
exchange interactions between pairs of atoms. Using some of the averaged pressure data along isochores
of the unmagnetized and magnetized solid, due to Kirk and Adams, and assuming the
exchange-strength functions to have constant logarithmic volume derivatives y, and v, we derive
—J V), J(V), v, and ¥,; a satisfactory theoretical representation of all the isochore data, restricted
to the asymptotic high-temperature range, is thereby achieved. The complete verification of the model
formalism, however, can only be performed once data become available on various thermal properties of
the solid, in absence and presence of external uniform and constant magnetic fields of moderate
strength, at low enough temperatures T < 10 mK. Earlier high-temperature
nuclear-paramagnetic-susceptibility data of low precision can be accounted for by the model and its
parameters at small-volume isochores, but numerical discrepancies develop at the larger volumes.
Accurate susceptibility measurements are required for a detailed comparison of theoretical and
experimental values of the asymptotic Curie temperatures of the solid along a series of isochores.

I. INTRODUCTION

The present paper is devoted to the elaboration
of a theoretical model of solid He® in the high-
temperature paramagnetic region. Recent experi-
mental work of Kirk and Adams'*? on the pressure
variations along isochores of the unmagnetized
and magnetized body-centered-cubic (bcc) solid
has proved that the simplest nearest-neighbor
isotropic antiferromagnetic exchange interaction
scheme failed to account for the pressure varia-
tions along isochores of the magnetized solid
calculated earlier.® These accurate magneto-
thermodynamic measurements, however, first
established qualitatively the antiferromagnetic
character of this solid, as indeed they should,
according to the formalism advanced by us.®
The magnetic isochore measurements suggested,
as indicated by Kirk and Adams,® that the domi-
nant antiferromagnetic interactions, arising
possibly from nearest-neighbor-pair exchange
couplings, were opposed by second- or higher-
neighbor-pair ferromagnetic exchange inter-
actions.

The formalism of model systems subject to
first- and second-neighbor-pair exchange inter-
actions had been established earlier, at high
temperatures, by several investigators.*™® It
appeared interesting to extend the formalism to the
case of solid He®. The experimental data had
then to be used, with certain limitations, to
derive with them the approximate empirical
parametric functions which define the strength
of the antiferromagnetic and ferromagnetic pair
exchange interactions. The determination of

|oo

the parametric functions is restricted to the
asymptotic high-temperature range of the data.
The empirical strength functions could then be
used with the formalism to predict the various
thermal properties of the model solid at sub-
asymptotic temperatures, which range has not as
yet been explored experimentally. Comparison
of low-temperature data with the predictions of
the model could contribute to an improved under-
standing of the nature of the forces responsible
for the anomalous properties of solid He® dis-
cussed earlier.” The magnetic isochore measure-
ments of Kirk and Adams' may be said to have
already disclosed the increasingly complex as-
pects of solid He?.

The present work is restricted to bcc-solid
He? in its paramagnetic region.

II. SOME HIGH-TEMPERATURE PROPERTIES
OF CUBIC SOLIDS WITH FIRST- AND
SECOND-NEIGHBOR-PAIR EXCHANGE
INTERACTIONS

The nearest-neighbor-pair or first-neighbor-
pair isotropic exchange interactions in a system
of localized atoms with spin vectors S, with the
spin Hamiltonian

JCI="2JIZ §¢'§j3 (1)
i.4

determine the component partition function of the
system,

ZL=tr(e~¥V), (2)

In (1), the (¢, j) subscripts refer to first-neighbor
pairs alone, with the parameter J,<0 in an anti-
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ferromagnet. At high temperatures, ZL is seen
to be expandable into an infinite series of as-
cending powers of J,/kT. The combinatorial
problem resulting from the spin summations in
(1) and (2) has been the subject of many investi-
gations.® For our present purposes, it will be
justified to consider the various series expan-
sions limited to relatively few terms of powers®
of J,/kT. The generalization of (1) to include
second-neighbor-pair exchange interactions may
be written down at once as

s, =-2J, . §,-§,, 3)
iom

where J, is the effective second-neighbor -pair
exchange-energy parameter and the [,m sub-
scripts refer to second-neighbor atoms only.

In any given crystal structure, the second-neigh-
bor sites define their own specific lattice,
secondary to the dominant lattice arising with the
first-neighbor sites. In the present system with
the component spin Hamiltonian

=3¢, +3C;, 4)

the associated partition function is
Z g=tr(e"®r¥ Ve, (5)

According to (4), the formalism assigns every
atom or spin to two lattices with specific inter-
action parameters of effective character J, and
J,. In the low-pressure or large-volume modifi-
cation of solid He®, the two lattices are, respec-
tively, the dominant antiferromagnetic first-
neighbor bee lattice, and the secondary ferro-
magnetic simple-cubic lattice of the second
neighbors, with the effective parameters J, <0
and J,>0.

In the single-lattice approximation, the parti-
tion function (2) leads, at high temperatures,
to the infinite-series representation of the heat
capacity®' *°

Ci/Nk=" (=)Pc,olJ,/RT)*. (6)

p=2

Henceforth J, will refer to the numerical value

of this parameter. The coefficients c,, depend

on S, the coordination number z of the lattice,

and on characteristic numerical quantities, the
so-called structure constants.®~!° Correspondingly
with (5) one is led, as first shown by Wojtowicz,*
to the heat-capacity double series

CII/Nk = E (_)’C”(Jl/kT)p(Jz/kT)' ) (7)

p,r=0
ptr=2

where the p summation, with » =0, refers to

the antiferromagnetic first-neighbor bcc lattice,
in the present system, and the » summation, with
p=0, to the ferromagnetic second-neighbor
simple-cubic-lattice heat-capacity components.
The mixed coefficients c,,, p#0, » #0, depend
on S, on both lattice coordination numbers z,

and z,, as well as on specific structure constants
referring to both lattices. It is convenient to
rewrite the two-lattice heat capacity (7) in the
following form:

Cr=CP+CcP+cly?, ®)
with
C{P/NE=" (<), /kT)?, (9a)
=2
CO/Nk=" copd,/ kT (9p)

r=2

the component single-lattice heat capacities, and

(1,2) _ JN? /(I \"T
chom- 3 cren (i) (7)o
p+r=3

the mixed heat capacity. Since in the present
work we will be concerned with the entropy of
the model system at hand, it is convenient to
introduce it here. One has with (8) and (9)

S(J,,‘Jz, T)/Nk = fOT(CH/Nk)(dT/T) = (J;c - f:)(cu/Nk)(dT/T)

=In(28+1) = 3 (=)P(c,o/ DI, /RT) = 3, (Co,/7)Jo/RT)

p=2 r=2
- D (=Pc, /P +P)]X (T, /RT)(I,/RT)" . (10)
p=1,r=1

p+r=3

A number of coefficients ¢, c,,, and c,,, p+»=3, 4, and 5, have been derived for all S and various
cubic structures. The volume dependence of the entropy (10) is indirect through the parametric functions
J,(V) and J,(V). Hence, the temperature coefficient of the pressure along the isochore of volume V is
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The pressure variations along the isochores Vv, p(J,,J,, V, T), with p(J,,dJ,, V, T~ =)~ 0, are, on

integration,

P 5 V, T)= (RT/V){(? an,> >

(cpo/b = 1)U, /RT)?

alnv /, P
’ (Zi_—lnnJV r E (Co,/7=1)(To/RT)" +p§,; (=Ple,,/p+7)1/p +7 =1)
ptr=3
alnJ 8 InJ, '-
x[ﬂ (——‘8 an), (8 oV ) ] (,/kT)?J,/kT) } . 12)

Since the pressure variations along a series
of isochores of bcc-solid He® have been measured
earlier,'! the way was open to attack the problem
of deriving from the data approximate empirical
first- and second-neighbor-pair exchange-energy
parameters J,(V) and J,(V), as well as their
logarithmic volume derivatives

9 InJg 9 InJ
= (oo, = (oo
(V) <81nV)T’ Yz (aan)T' (13)

Once these quantities are available it becomes
possible to explore, in some approximation, the
isochores of the model over an extended tempera-
ture range reaching into the subasymptotic inter-
val. Similarly, the knowledge of J,(V) and J,(V),
though necessarily approximate, should enable
the calculation of approximate solid entropies
down to quite low temperatures. This in turn
leads to an estimation of the spin-ordering temper-
ature by bracketing it with earlier conjectured
transition-temperature or critical entropy values.
However approximate, the entropy of the genera-
lized second-neighbor-pair exchange-coupling
model should yield new melting pressures which
may reasonably be expected to be improvements
of those obtained earlier with the more restricted
nearest-neighbor -pair coupling model.” These
latter problems, however, will not be discussed
in the present paper, which is devoted to the
generalized treatment of the high-temperature
bee solid phase of He®.

T
III. PARAMAGNETIC SOLID WITH FIRST- AND
SECOND-NEIGHBOR-PAIR EFFECTIVE
EXCHANGE INTERACTION IN UNIFORM
MAGNETIC FIELDS OF MODERATE STRENGTH

Before proceeding to the calculation and dis-
cussion of the various thermal properties of the
free unmagnetized model solid given in Sec. II,
it is appropriate to generalize them first to
the case of the magnetized solid to which we now
turn.

In a constant, uniform external magnetic field
of low or moderate strength |H|, the nuclear
paramagnetic moment induced in the system is,
per atom or per spin,

MJ \,dy, Ty H) =X, J5, TH , (14)

x being the paramagnetic susceptibility per spin.
In the present model, with x,(T) denoting the
limiting high-temperature ideal Curie-Langevin
susceptibility per spin, one has*

J
Xpdp 1)y, > (=)a X,

Xo(T) m,n=0
m+n=1
(15)
x,=J/RT, x,=J,/kT.

This results from the partition function of the
magnetized system whose Hamiltonian is

3y =3¢, +3¢, - gBH - 3 §;, (16)

with the first two compoﬁent Hamiltonians
defined by (1) and (3); g is the relevant splitting
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factor and B the appropriate elementary magnetic
dipole moment associated with the spins S. As
was the case with the properties considered in
Sec. II, the susceptibility ratio (15) may be re-
written in terms of the two separated lattice
susceptibilities, the first-neighbor antiferro-
magnetic bece lattice and the second-neighbor
ferromagnetic simple-cubic lattice, together with
the mixed susceptibility,

J1sd o - m
Mg 15 e

+ Z AonXy" + Z (=)@ ¥ Ty . (17)
n=1

m,n=1

A number of single-lattice susceptibility expan-
sion coefficients a,, or a,, have been obtained
sometime ago for various spin values S and
cubic structures, as well as for several types
of exchange interactions, such as the totally
anisotropic Ising type, the isotropic Heisenberg
type, and their combinations.®:871°:1? A number
of the mixed coefficients a,, referring to these
structures and interactions have also been de-
rived.* 512

From thermodynamics the molar entropy change of
the N-spin system on isothermal magnetization
up to a field strength H, of moderate value, is

ASG, %5 9) _ f “1(%&@) d(uH), (18)
H

NE o M\ a(RT)
with M given by (14) and (17); here
y=uH/kT, p=gBS. (18a)
With
XoT)=F /kT , T =(@@BPS(S+1)/3, (18b)

one obtains, using (17),

AS(xy, X5y ¥) - _%yz:[l + Z (=)™(m +1)a,ox™

Nk
m=1
+ Z n +1)ag,xs
n=1
+ Z (=)™(m +n +1)amx’1"x’2'].
m,n=1
(19)
To order H® or j?, the total entropy of the
magnetized solid is
S(xpxz’ y)=s(x“xz,y=0)+As(xux2’ y): (20)

with S(x,, x,, y=0), the entropy in the absence

of a magnetic field, given by (10). Corresponding-
ly, the heat capacity of the magnetized system
becomes

C(%y, %5, ¥) =Cx,, %, y=0) + AC(x,, x5, ¥, (21)
with C(x,, x,, y=0) given by (8) and (9), and

_A_C_‘ch_t,,?xu_y_) =%y2[2 + E (=)"(m +1)(m +2)a,ox™
m=1

+ E n +1)n +2)ay,x;

n=1

# 3 (2)rm +n 1) omen + Dy 1)

m,n=1

(22)

With the entropy (20) the temperature coef-
ficient of the pressure along isochores of the
magnetized solid becomes

(M)Vm: <aS(x1,x2, y))T= <8p(x,,x2, y=0))v

aT av aT

4 (280(x), %, 9)
oT Vo>

(23)

where the first zero-field derivative was given
above, Eq. (11), and the second is, by (19),
with the definitions of y, and vy, given by (13),

2,5,
=—%(R/V)y2[y, T ()l +1)aye]

+y22n m+1)ay,xs +E (<™ (m+n+1)

n=1 myn=1
X(my, +nYz)amnx'{‘x’£] . (24)

The temperature coefficient of the pressure
arising from the effect of the applied external
field is seen to be normal, or positive, in contrast
with the anomalous negative temperature coef-
ficient of the pressure in the absence of a magnet-
ic field. This is so because, over the tempera-
ture range of convergence of the series in (24),
the contributions of the antiferromagnetic first
sum on the right side of (24) are expected to
remain dominant and the sign of this derivative

is expected to be that of the first term of the anti-
ferromagnetic series, which is negative. The
normal -temperature coefficient of the field-
dependent pressure Ap(x,, x,, y) along isochores
tends to reduce first the magnitude of the anoma-
lous negative temperature coefficient of the
pressure of the unmagnetized system to end up

by overcoming the latter completely so as to
modify the thermally anomalous unmagnetized
system to become of normal thermal properties
in presence of the field. This result was already
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obtained by us earlier in connection with the
magnetized nearest-neighbor-pair exchange-
coupled antiferromagnetic system.®

The pressure variations along isochores of the
magnetized system are, on integration of (24)
and with Ap(x,, x,, y) 7= 0, that is, the second
term on the right side of (23),

Ap(xu X2y y) = %(RT/V)yz

x [7’1 S (D)"ma Ty, Y nag

m=1 n=1

+ 3 (—)"‘(mh+nwz)amx'1"x§]- (25)

m,n=1

The resulting pressure variations become then
P(xyy %5, ¥)=pW 1, d5, V, T) +8P(x, %5, 9) (26)

with p(J,,d,, V, T) given by (12). Again as was

the case with (24), in the region of validity of

the series in (25), Ap(x,, x,, y) is seen to increase
with increasing temperatures in contrast with

the anomalous field-free term p(J,,d,, V, T). At
low enough temperatures, the magnetic pressure
term is expected to overcome the zero-field
pressure term.

This achieves the general formulation of those
thermodynamic and magnetothermodynamic
properties of the present model of paramagnetic
solid He® which we propose to discuss in some
detail in the present paper. Before applying the
above formalism, it is necessary to obtain the
empirical parametric functions J,(V) and J,(V)

oo

of the first- and second-neighbor-pair exchange
energies. These will be shown to result from the
currently available isochore data of Kirk and
Adams' as well as from earlier isochore data

of Adams and his collaborators.!! We should

like to emphasize, however, that the parametric
functions J,(V) and J,(V) derived here are subject
to various limitations. First of all, the.experi-
mental errors of the data affect necessarily these
functions. The method of derivation, within the
limitations of the above model, succeeds only
under a restrictive assumption on the volume
dependence of these functions. While this as-
sumption appears indispensable for exploiting

the still relatively meager isochore data, it
could be omitted if simultaneous measurements
existed either along isochores or isobars on

the free unmagnetized solid heat capacities and
the paramagnetic susceptibilities in the asymptot-
ic high-temperature range. This latter approach,
requiring a major experimental program, may,
however, present specific difficulties preventing
the accurate determination of the functional
values J,(V) and J,(V) without involving their
derivatives.

IV. DERIVATION OF THE EFFECTIVE
EMPIRICAL EXCHANGE-ENERGY
PARAMETERS OF SOLID He®

At the present time, essentially all the isochore
data on free and magnetized solid He® refer to
the asymptotic high-temperature range. At these
temperatures, p(x,, x,, y) reduces to

nl:lpp(xu %y ¥) = (RT/V){Czoyxxi [1+ (Coz/czo)(72/71)("2/"1)2] —%alo'y,yle[l - (aox/axo)(Yz/Yx)(xz/xl)]} ’
T

keeping only the lowest-power terms in (1/7) in
the zero-field series as well as in the factor
series of y? in the magnetized system, in (26),
using (12) and (25). The asymptotic terms of

the pressure variations along isochores refer

to the lattices of the antiferromagnetic first-
neighbor spins and the ferromagnetic second-
neighbor spins. At these high temperatures,
these two contributions simply add. The relevant
lattice expansion coefficients are the following®:

c20=§zl[s(3+1)]2 ’ Coz=%zz[s(8+l)]2»
a,,=%2,5(5+1), (28a)
a,, =3%2,5(S+1).

@7

r
one has

€0=3, C=%,
a,=4, a,=3. (28Db)
It is seen that, with J, and J, assumed to be

independent of the temperature, in the absence
of a magnetic field, y=0,

71(J1/k)2+(z2/zl)72(J2/k)2:72(V) (29)

is the square of a characteristic temperature

of the system along an isochore V. If one intro-
duces the restrictive assumption wherein y, and
72, the logarithmic volume derivatives of J,(V)

and J,(V), are constants independent of the volume,
or that

J (V) evn, J,(V)xV, (30)

then isochore measurements at four distinct
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volumes supply, in the asymptotic range, four
transcendental equations in the four unknowns

Jd,, J2 Y1, Yes the exchange energies referring
to one of the four volumes. This system of
simultaneous equations enables, in principle,

the determination of these four quantities subject
to the limitations tied to the restrictive assump-
tions on the volume dependence of J,(V) and J,(V),
as well as to those referring to the empirical
values of 7(V), or, by (27) and (29),

12(V)=pW,,d5, V, T)/[20(R/VT)], (31)

where p, T and V are measured quantities.
Before considering the determination of the four
indicated unknowns, it appears interesting to
discuss a very much simpler idealized problem.
In the latter, one attempts to approximate the
system through its dominant first-neighbor lat-
tice subject to an apparent fictitious exchange
coupling mechanism of antiferromagnetic
character. This yields, instead of (29),

[,(V)/RP (2;11{3(/_"_)) =T (32)
Then let V, and V, +AV, or V, refer to two
isochores along which 7%(V,) and 7%(V,) have

been evaluated from the measurements of
pU,(V), vV, T) and pi (V,), V,, T). One then
obtains at once, with (32), the system of two
transcendental equations

vl (VI/RP =75(V),

(33)
Yald o(VI/EP[1+(aV/V)a=72(V,),
where use was made of the assumption equivalent
to (30), according to which

J(V,+AV,)=d, (V)1 +(AV,/V,)]%. (34)

By (32), y, is seen to be positive. We denote by
J, the numerical value of the parameter, as we
have done consistently with the effective anti-
ferromagnetic nearest-neighbor parameter J, (V).
The system (33) yields at once

TABLE I. The logarithmic volume derivatives v, of
the apparent nearest-neighbor exchange energy J,().
The isochore pairs (V;,V;) used for the v,’s refer to
the row and column volumes (in units of cm3/mole) (Data
from Ref. 11.)

v, V, v,

23.32 23.72 24.02
V 1(22.84) 15.7 17.7 18.4
V,(23.32) e 20.6 20.6

V3(23.72) 20.6 e 20.5

_In[7(V,)/7(V,) (35)

Yo~ TIn(v,/v)

In(v,/V,)
In[7(V,)/7(V)] "

Of the five isochores measured by Adams and
his collaborators,!! it is convenient to choose
four with the largest volumes V,. The four
isochores V,, V,, V,, and V, define six pairs
of Eqs. (33). It is clear that if the assumptions
leading to (33) are valid over the volume range
V,-V,, and if the 72(V,) values given by the
pressure variations, the solid volumes V,,
and temperatures T had been measured with
sufficient accuracy, the six pairs of Eqs. (33)
should yield essentially the same J,(V,)’s and
a unique y,, regardless of the isochore pairs
(v;, V,) used to calculate them. Table I gives
the values of y,(V;, V,) obtained with the six
pairs of experimental isochores.!! It is seen
that while the larger volume isochores, V,,

V, and V,, give rise to the almost constant

7, Of 20.5-20.6, the pairs involving V, yield
7, values ranging from 15.7 to 18.4.

Table II gives the J, (V) values at the four
volumes V,, as obtained with the indicated
isochore pairs (V,, V,), as defined by the
experimental volumes of Table I. It is seen
again that the J, values obtained with the isochore
pairs involving the smallest volume V, tend
to range over a larger interval. The J, values
at the larger volume isochores are again almost
constant.

With regard to the smallest volume isochore
V,, it should be noted that its pressure varia-
tions are small compared with those along the
larger volume isochores, tending to decrease
the precision of their measurements. Further-
more, the restrictive assumption on the constant
value of y,, while valid approximately at the
larger volumes, may become less valid at
the small solid volumes. The difficulties
raised by the small-volume isochore data
foreshadow certain problems in connection with
the extended task of deriving J,(V), J,(V), v,,
and vy, using simultaneously the four isochores

[To(V)/RP=13(V) (36)

TABLE II. Numerical values of the apparent exchange
energies [J, V1) &ly, v , MK, obtained with the isochore
pairs (V;,V;) defined in Table I.

I (Vo) e I (Ve J (V) /e I (V) /e
(mK) (mK) (mK) (mK)
V,:0.294 V,:0.404 V,:0.532 V,:0.676
V4:0.273 V3:0.347 V,:0.493 V,:0.638
V4:0.268 V4:0.347 V4:0.494 V3:0.640
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Vi, ©=1,2,3,4, to which we return now.

Given the four experimental isochores V,,
one obtains with them the quantities 72(v,)
through (31), as

TZ(VS) =p(J1)J2, V‘, T)/CZO(R/VlT) ’

; (37)
i=1,2,3,4, c,=3.

These define the simultaneous system of four
transcendental equations

Y (Vi/ VYT (V) /R v, (V,/ V)P

x[J,(V,)/RP=723(V,), i=1,2,3,4 (38)
where, by (29), (z,/z,) reduces to 3. These four
equations determine, in principle, the four
unknowns J,(V,), J,(V,), v,, and y,. In the
above formulation, the last three equations of
the system involve the volume ratios V,/V,,
i=2,3,4, at the high powers 2y, and 2y,, as
expected from the y, values of the equivalent
apparent nearest-neighbor-pair model obtained
above and first derived by Adams and his col-
laborators'! through a somewhat different numeri-
cal approach. These expected large exponents,
7, and y,, suggest that unless the four volumes
V, are known with sufficient accuracy, a satis-
factory solution of the system (38) in terms of
unique values of the four unknowns may be dif-
ficult to achieve.

At the four molar volumes given in Table I,
the 72(V,) values derived from the data were
found to be approximately 1.32, 2.48, 5.01, and
8.39 mK? for the four isochores, in increasing
order of their volumes. The system of four
transcendental equations (38) was investigated by
my colleague, Myron L. Stein, from the Computer
Science Division, using the MANIAC computer.
Various procedures with reasonable starting
values for the unknowns failed to yield, however,
a satisfactory solution. As implied above, this
state of affairs was not particularly surprising
since the empirical volumes V, of the various
isochores are known, at best, to within a preci-
sion of 0.5%, and their ratios to within 1%, a
rather optimistic estimate.!®* The apparently
relatively small errors on the volumes and the
volume ratios affect, however, considerably
the factors (V,/V,)*"1 and (V,/V)*"2, and with
them the solution of the system of equations. We
will return below briefly to the problem of the
system (38), after consideration of a second
approach to the determination of the empirical
parametric functions and their logarithmic
volume derivatives.

The Kirk-Adams® data on the isochores of
the magnetized solid can indeed be used effectively

with the stated assumption of the volume indepen-
dence of y, and vy, to obtain the latter logarithmic
volume derivatives, J,(V) and J,(V). However,
the magnetic isochore data' cannot as yet be
normalized in a satisfactory fashion so as to
ensure their correct limit behavior p(J,,J,, T
- o, H)-0, as was the case with the isochores
of the unmagnetized solid. This lack of satis-
factory normalization will necessarily affect the
functions J,(V) and J,(V), as well as y, and y,.
The magnetic isochore measurements at a
chosen molar volume V of the solid are also
performed at this volume in the absence of a
magnetic field, enabling one to determine the
details of the modification brought about by the
applied field. The zero-field data give, as above,
at the volume V,;, equations of the type (38) and
(37). In presence of a field, and with the help
of (28b), (27) yields

(P15, Vi 9=0) = plxy, x5, 9)]/2(R/V,)y?
= Ap(xy, %5, ¥)/2(R/V)y?
=v,[J,(V;)/k] = %Yz[Jz(Vf)/k]
=T(J,d, V),
(39)
a characteristic temperature. At two volumes,

V; and V,, one has two independent equations
indJy, J, v,, and y,; or at V,,

T(V) =y, (V,/ VO[T (V)R] = 57, (V,/V )2 (V) /R].
(40)

In absence of the field, at these two volumes, one
has, with (38),

T2V =y [ (V) /B + 3y,[d,(V,) /R)? (41)
and
THV) =y (V,/V NI (V) /R
+ 3y, (V,/ V)2 Rd,(V,) /R . (42)

Equations (39)—-(42) enable one, in principle,
to obtain the four unknowns of the problem.

The Kirk-Adams' data used here to obtain the
above system of four transcendental equations
referred to v, =23.34 cm®/mole, at H=0 and
70 kG, as well as to V;=24.0 cm®/mole, at
H=0 and 40 kG. As was the case with 7%(V,),
the characteristic temperatures T ,(V;) and
T 4(V,) exhibited deviations from constant tempera-
ture-independent values, at the various tempera-
tures of the data. This was expected because of
the finite precision of the data and the lack of
satisfactory normalization of the magnetic iso-
chores. In addition, the data had another type
of defect. At a chosen volume, at two field
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strengths H, and H, or two y values y, and y,,
at the same temperature, one has, by (39),

Ap(xv Xas ya)/Ap(xn Xas yb) = Vz/yi
=H§/H§ . (43)

The empirical Ap ratios satisfied the preceding
requirement only marginally, a fact soon
recognized by Kirk and Adams.! This may be
another manifestation of the lack of satisfactory
normalization of the magnetized-solid isochore
data.

The 7%(V) values at V, =23.34 cm®/moleand V,
=24.0 cm®/mole were found to be approximately
2.69 and 7.62 mK?, respectively. At 70 kG,
T(23.34 cm®/mole) amounted to 3.37 mK, approxi-
mately, while 7(24.0 cm®/mole) at 40 kG varied
between about 4.02 and 4.60 mK, with a median
value of 4.36 mK, approximately.

The solution of the system of four simultaneous
equations (39)-(42) has been obtained by Mr.
Stein. This time the solution procedure converged
fairly rapidly for all three values of the charac-
teristic empirical temperatures 7T(V =24 cm®/mole)
and H =40 kG given above. Starting values of
the unknowns were similar to those used in
attempting to solve the system (38) referring to
the four isochores in the absence of a magnetic
field. We give in Table III the solutions J,(V),
J,(V), y,, and y, referring to 23.34 cm®/mole.
Over the indicated T(V =24 cm®/mole) range,

J, and y, are seen to vary moderately, while

J, and v, show larger changes. These solutions
are all of fair accuracy, and we intend to use
those referring to the median value of 4.36 mK
of T(V=24.0 cm3/mole).

The question which arose here was to what
extent did these solutions, using two isochores
of the unmagnetized and magnetized solid, verify
the system of four Egs. (37) referring all to the
unmagnetized solid. One finds that with the solu-
tions given in Table III, the differences between
the two sides of the Egs. (37) vary between 2 and
8.3%, which may be termed acceptable. This
could further be improved and these percentages
reduced by a factor of 0.1 on modifying slightly
the molar volumes of the unmagnetized solid
appearing in the system (37). These modifications
were computed by Stein with the following results:
22.89 instead of 22.84, 23.29 instead of 23.32,
23.73 instead of 23.72, and 24.06 instead of 24.02,
all in units of cm®/mole. The modified system of
Eqs. (37) had solutions essentially identical with
those given in Table OI, referring to T(V =24
cm®/mole), at 40 kG, of 4.36 mK, approximately.
The indicated small modifications of solid volumes
are entirely within the present accuracy of molar

volume measurements of the free unmagnetized
solid.'®

We mentioned briefly that an experimental ap-
proach is available wherein asymptotic heat-
capacity and paramagnetic susceptibility measure-
ments, along the same isochores, enable the
empirical determination of J,(V) and J,(V) without
involving 7, and v,. One has, indeed, in the
asymptotic range,

lTllm C/NE = Coo(J, /RTY + cp(Jo/RTY, (44)

arge

and with (15),
;ihr;;ex(Jl, Iy, T)/Xo(T) =1 = @,o(J, /kT) + ag, (J,/kT),
(45)

with the coefficients given by (28). In the
asymptotic range, the susceptibility ratio may
be rewritten as

}iggex/xf (1-6,/7)", (46)

with
9p=-a‘10(J1/k)[1 - (aol/am)(Jz/Jx)] (47)

the asymptotic paramagnetic Curie temperature,
which is negative in the present case, J; referring
to the numerical value of the nearest-neighbor-
pair exchange energy and anticipating here the
factor in the parentheses to be positive.

The limiting paramagnetic Curie point 6, is
seen to be decreased numerically from its value
in the limit of J, -0, or it is increased algebra-
jcally. The actual spin-ordering temperature or
Néel point, T,, is accessible approximately
through either the mean-field theory'* or through
a formalism® based on assuming a power-law
approach, (T+T,)"7 of the susceptibility, for
instance, toward the critical transition tempera-

TABLE III. Numerical values of the parametric func-
tions J4(V) and J,(V), (8 an,/a InV)y or vy, and (@ 1nJ2/
9InV)y or v,, at the isochore of volume V =23.32 cm3/
mole of bee-solid He®. The three characteristic tempera-
tures of the second isochore, T'(24.0 cm3/mole), are
possible choices allowed by the ischore data of Kirk and
Adams. As discussed in the text, the above quantities
refer to solutions of a simultaneous system of transcen-
dental equations, (39)—(42), formed with the experimental
isochores at the indicated volumes, with each isochore
defining a pair of equations, in the presence and absence
of an external magnetic field.

T (24.0 cm®/mole) ik Jo/k
(mK) (mK) (mK) Y4 Ys
4.02 0.368 0.143 16.9 26.4
4.36 0.362 0.154 17.2 24.8
4.60 0.357 0.161 17.4 23.7
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ture T,. While the discussion of the approximate
determinations of T is outside the subject matter
of the present paper, the following remarks appear
to be of interest here. The mean-field approach
may considerably overestimate T,. There is a
qualitative similarity between the two indicated
approaches toward the calculation of 7,. Quanti-
tatively, the power-law formalism should yield
better approximations to the actual Néel points
than the mean-field theory over most of the range
of the J,/J, ratios relevant in the present model
of bce-solid He®.

The system of the two simultaneous equations
(44) and (45), over their range of validity and
for the same isochore V, determines J,(V) and
J,(V). The volume dependence of these exchange
energies becomes accessible through the rather
laborious approach of the determinations of J;
and J, through measurements of heat-capacity
and susceptibility ratios over a series of isochores
Vi Vay ..., V,. The asymptotic susceptibility
ratios (45), or (46), will have to be measured
with great precision in order to detect reliably
with them their deviations from unity. The
precision and accuracy required for a satisfactory
determination of 6,, Eq. (47), may be quite high
for its successful use in combination with the heat
capacity for a derivation of acceptably approxi-
mate J, (V) and J,(V) values.

In attempting to assess the approximations
involved in the here-obtained J,(V) and J,(V)
parametric functions resulting from the isochore
data, one must keep in mind the limitations of
the model, the assumed constant values of ¥, and
Y., the logarithmic volume derivatives of J,(V)
and J,(V), and the limitations arising from the
finite precision of the data combined with the
fairly serious lack of satisfactory normalization
of the magnetic isochore data. The general failure
of the data to satisfy acceptably the requirements
expressed by Eq. (43) cannot but introduce dis-
crepancies between the experimental pressures
and their theoretically derived values. To some
limited extent, the J,(V) and J,(V) functions
derived here must be termed as being of tentative
character. They are to be tested through new
measurements of various thermal and magneto-
thermal properties of bee-solid He® in the sub-
asymptotic temperature range. We turn now
to the calculation of some of these properties.

V. VARIOUS THERMAL PROPERTIES OF
PARAMAGNETIC SOLID He* ACCORDING TO THE
FIRST- AND SECOND-NEIGHBOR-PAIR ISOTROPIC
EXCHANGE INTERACTION MODEL

In order to calculate the various thermal
properties of the solid model, one must use

leo

polynomial approximations to their formal
infinite-series representations given in Sec. III.
For our present purposes, it will suffice to limit
the polynomials of the heat capacity and entropy
to terms up to 1/7*. The coefficients of these
polynomials defined through Eqs. (7)-(9) are
thus c,, withp equal to 2, 3, and 4, referring
to the nearest-neighbor antiferromagnetic bee
lattice. The c,, coefficients refer to the ferro-
magnetic second-neighbor simple-cubic lattice,
r=2,3,4. The mixed coefficients c, needed here
are such that p,7 =1,2,3. These coefficients are
as follows:

- - _21
C0=3, C3==3, Cp=%

Co=%, Cos="_2', Cu=—%,

48
€1 =27, g, =-18, €, =¢3=0, “8)

Cyp =63.

General expressions for the single-lattice co-
efficients c,, or c,, in cubic structures were
given up to p or 7 equal to 7 by Rushbrooke and
Wood® for any S. For S=3, Baker et al.!° gave
numerical values of c,, or c,, up to p or 7 equal
to 10. General expressions for the mixed co-
efficients of cubic structures for any spin S were
first given by Wojtowicz® up to p +» =5. It is
convenient, however, to rearrange terms in the
polynomial approximations of the various series
so as to group together all terms of the same
power in 1/T. The coefficients of these poly-
nomials now become functions of J,(V) and
J,(V). A number of these latter coefficients of
the free-energy and paramagnetic susceptibility
series of the isotropic second-neighbor-pair
ferromagnetic exchange interaction model for
spin-3 systems were given earlier for cubic
lattices.®®* For cubic and some planar lattices,
a number of these coefficients were also given
for both isotropic and anisotropic exchange inter-
actions.'? Up to the indicated power in 1/7, the
generalized coefficients, depending on J,/J; as
given earlier,® are identical with those calculated
here, if account is taken of the negative sign of
this ratio in the coefficients given earlier.’"'s
The present polynomial approximation to the
heat capacity series is

CU,,d,, V, T)/R=3[J,(V)/RT]?TW,,J,, T),
TW,,J5 T)=Co+C,(J,/kT) +1C,(J ,/RT)? .

We recall that J,(V) refers to the numerical value
of the first-neighbor-pair isotropic antiferro-
magnetic exchange parameter. One has

C,=1+3d?, C,=1+9a-3%a°,

C,=1+Za+12?-Za*, a=Jd,/J,.

(49)

(50)
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The heat-capacity high-temperature series in
terms of the generalized coefficients is given
in the form®

C/R=Y (=y"m(m =1)e,(J,/kT)"/2"m!. (51)

One has thus
e,=12C,, e,=24C,, ¢,=168C,. (52)
The entropy in the absence of a magnetic
field is, up to (1/7)%,
SW,,d5, V, T)/R=1n2 = 3(J,/kTVs (J,, J,, T)
§Wy,dyy T)=Co+3C,(J,/kT)+3C,(J,/RTP.

?(53)

In the limit -0, (49) and (53) are seen to reduce
to the polynomial approximations of these pro-
perties for the nearest-neighbor-pair isotropic
exchange-coupling model.

The method of probing into the detailed physical
behavior of bec-solid He® through isochore mea-
surements may be expected to be extended into
the subasymptotic temperature range. It thus
appears of interest to give several items of the
model-isochore-property series. One finds with
the series given in Sec. II, Eq. (11),

#),- (),

=(=)3(R/V,(J,/kT)DW,, d,, T), (54)

with
D=Dy+D,(J,/kT) +1D,(J,/kTV; (55)
Do= 1 +%(7’2/71)a2 9
D, =1+3[(2y, +v.)/m Ja =3 (vo/1)0?, (56)

Dz =1 +:‘[(371 '*")’2)/71]&
+6[(y, +72)/7,]0? —:-Z, (va/r1)0 .

It is seen that the coefficients D, reduce to the
C,’s, Eqgs. (50), in the limit of y,~y,~ 1.

On temperature integration of (54), and with
p(V, T-=)-0, one obtains the pressures along
disochores in the above polynomial approximation.
One finds,

pW,,Jd,, V, T) =3(R/V)(Jx/k)')/lxxD’(xl, a),
D,=Do+3D,%, + 5D, %3, %, =J,/kT.

(657

The asymptotic high-temperature forms of the
heat capacity, entropy, and pressure along iso-
chores are seen to reduce to the following ex-
pressions:

11}:};e C/R=3Cy2,
}ihr:nge S/R=1n2 - 3C3, (58)
}im b= 3(R/V)(J1/k)71Dox1 .

large

The characteristic 1/7? behavior of the asymptot-
ic heat capacity and entropy, as well as the 1/T
behavior of the asymptotic pressure, are seen

to appear in (58). Inasmuch as the coefficients

C, and D, are positive over the volume range

of interest here, V<24 cm®/mole, the heat
capacity and pressure along isochores at sub-
asymptotic low temperatures increase over and
above their asymptotic values.

We turn now to the calculation of the thermal
properties of the magnetized solid. The para-
magnetic susceptibility ratio will be given up to
terms in 1/7*. The relevant a,, a,, and a,,
coefficients of the series (17) are as follows:

Go=4, =12, a30=}%, a40=5-;-§,
aoﬂ = 1:_:_5 ’ (59)
a,=24, a,=84, a,=105, a,,=232,

a; =391, a,,=535.5.

0 =3, ap=6, a5,=11,

On rearranging the polynomial approximation
to the susceptibility-ratio series (17) one obtains

X/Xo=1=4kyx, +12k,x3 = Thox + Thox{,  (60)
with the k, coefficients given as follows:

r,=1-%a, k=1-2a+30%,

ky=1 —f‘ﬁaﬂ—iaz—%as,

_ 2346 . |, 628.2
ky=1- 575 X+ 15 o

(61)

The susceptibility ratio (60) is found to be identi-
cal with the one given directly earlier® up to
terms in 7°%, and written as

X/Xo=1+ Y (=)"j,ar/2mm ! . (62)

On identification, the connection between the
j 8 and the k,;’s are found to be as follows, using
-a for a in the j,’s:

jy=8ky, j,=96k,, j,=1664k,, j,=36 800k,.
(63)

The polynomial approximation to the entropy
change AS(x,, x,, ¥) given by the series representa-
tion (19) may be rearranged to yield

AS/R = -3y%0(x,, @), (64)
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with
0=1=8kx, +36k,x3 = Ulkyx] + 282k i} | (65)
The corresponding heat-capacity change is then
AC(x,, x,,Y)/R = Tg%—sTﬂ)-
=y2c(x,, @), (66)
with
cx, @) =1 =12k x +T2k,x] - 1280k x} + 2805k x|

(67)

The polynomial approximation to the magnetic
term of the temperature coefficient of the pres-
sure, Eq. (24), will be seen to take on the following
form after rearrangement:

9
(_(aA_ﬁ)-) =4(R/V)71x1y21’(x1, a), (68)
v
with
P(x,, a)=Py—= 9P, x, +52P,x% - 2P x3 (69)
and

Py=1=3(r,/n)e,
P =1 [(y, +v.)/nla+3(r./m)e?,
Py =1-2[(2y, +7,)/n:]a

+2[(r, +27,)/7 10 = Zly /1),
Py=1-12[By, +v.)/n]a+ %2 [ +7v.)/7, ]

- 2%[(71 +3')/2)/‘)/1]013 +%(72/7,)a4 .

(70)

It is seen that the coefficients P; reduce to the .

|,5..,,I,,,,’,,,,l.,,,!,
- o

} V = 23.34 cm¥mole

p (103atm)

0'5 I L T ] L " 4 1 1 T S T [ R E— ni L " F—

TUK™
FIG. 1. Theoretical asymptotic high-temperature pres-
sure variations, 10~% atm units, as a function of the re-
ciprocal temperature, in K~! units, along the isochores
of volume V =23.34 cm®/mole in free and magnetized bec-
solid He®, at the indicated field strength H, in kG units.
The data points are those of Kirk and Adams, Refs. 1.

coefficients k,, Eqgs. (61), in the limit y, =7, ~1.

The magnetic pressure decrease along isochores
given by the series (25), when rewritten in the
polynomial approximation takes on the following
form:

ap(V, T,H) = =2(R/V)J,/k)r15*Q(x,, @),  (71)
with
Q(x;, @)=P,— 6P, x, +26P,2% - 5P+, (72)

This achieves the formulation of the various
thermal properties of the free and magnetized
solid to the approximation of the model and within
the limitations of the polynomial representation
of these properties, to terms quadratic in the
magnetic field strength, We turn now to the
numerical evaluation of these properties, per-
formed by Stein, with the approximate empirical
parametric functions here obtained, J,(V) and
J,(V), and their logarithmic volume derivatives
7, and y,, restricted by assumption to be constant,

The pressure variations p(J,, J,, V, T) and
pW,,Jd,, V, T, H) were calculated both at asymptot-
ic and subasymptotic temperatures using (17),
(67), and their superposition defined by (26).
Comparison of the data with the calculated
asymptotic pressure variations is displayed on
Figs. 1-3. The three graphs refer to the three
currently available sets of isochore measurements
in presence of a magnetic field. As stated in
Sec. IV, we used the averaged data points at
70 kG, at 23.34 cm®/mole, Fig. 1, through the
characteristic temperature 7(23.34 cm®/mole),
as well as the zero-field characteristic tempera-
ture 72(23.34 cm®/mole). It is seen that at this
molar volume, there is satisfactory agreement
between the theoretical pressure curves and the
data. The discrepancies may be attributed to

4Vvvxlvxv|lvlv

F V = 23.88 cm¥/mole

I I BT N R
% 20 30 20 50 60
7K
FIG. 2. Same as Fig. 1 at V =23.88 cm®/mole. The

data refer to H=0, 40, and 60 kG.
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the failure of the magnetic isochore data to
satisfy the important field-normalization condi-
tion (43).

At the intermediate volume of 23.88 cm®/mole,
Fig. 2, whose data points are not involved in the
determination of the J functions and the ’s, the
discrepancies at 60 kG are seen to be relatively
large. Again, this indicates, to a certain extent,
failure of the data to satisfy the field-ratio condi-
tion (43). The zero-field experimental points
appear well represented by the calculated 1/T
function (58).

Finally, at 24 cm®/mole, where use was made
in deriving the J’s and y’s of the 40-kG averaged
data through the characteristic temperature
T(24 cm®/mole), the 40-kG data points are well
accounted for by the calculations, However, at
60 kG, at the lower temperatures, discrepancies
seera to develop. This again must be due in
part to the failure of the data to satisfy the field-
ratio condition (43). However, the present model
with the derived J functions and the derived y’s
can only be judged in part through.future data at
subasymptotic temperatures, 7 <10 mK, for
instance. The calculation of the pressures at
the lower temperatures may be performed without
difficulties, to the given order in 1/7, through
the formulation given above.

As shown in the earlier discussion of the
nearest-neighbor-pair exchange interaction
model,® the competition between spin ordering
arising from the antiferromagnetic interspin
couplings and the ordering process imposed by
the applied external magnetic field reappears also
in the present generalized model. This competi-
tion manifests itself through the external field
imposing normal thermal behavior on the pres-
sures along isochores, which are anomalous
in the absence of a magnetic field, since they
decrease on temperature increase. The tempera-
ture coefficient of the pressure is negative, i.e.,
(8p/8T), <0, or, equivalently, isothermal volume
increase is accompanied by entropy decrease,
(8S/8V),<0, or isothermal compression leads
to entrcpy increase, (385/8p),>0. In the asymptot-
ic temperature range, the system becomes
normal at temperatures T< T,, T, being the
temperature where the anomalous temperature
derivatives [8(V, T, H)/9T],, , vanish. By (23),
(54), and (67),

}LI!I‘}C [3P(V, T, H)/aT]v.n
=(35/3V)1'.H
=(=)3(R/VY,J,/kTYD,

bes(mend. o

where D, and P, are given by (56) and (69).
Explicitly, at asymptotic temperatures,
T,=%(uH/RY
PX (Jl/k)-l[l - %(72/71)“]/[1 +%(72/71)02] ’
(74)
which is quadratic in the applied field strength
at moderate field strengths. At a constant field
strength then,
T,(H,)/T,(H,) = (H,/H,) . (75)

The measured pressures along the isochore
of smallest volume, V=23.34 cm® at 70 kG,
clearly exhibit T,(H) through the maximum of
the pressure in the (p, 1/7) representation.

Always in the asymptotic range, one has, by
(26), (54), and (70),

J']l'alzg}e LD(JUJZ, vV, T, H) =3(R/V)(J1/k)71(J1/kT)Do
x{1 = S[(wHY/J, (. T)|(Po/Dy)},
(76)
which is seen to change sign at temperatures
T<T,, with
T, o=3(uH/RY¥(1/(J,/R)](Py/Dy) (77)
the zero of the pressure p(J,,J,, V, T, H). In this
asymptotic range,
T, o(H)/T,(H)=3%. (78)

At the lower field strengths, both T, and T, ,
recede rapidly, quadratically in the field strength,
toward lower temperatures.

The existence of the characteristic temperature
T, . the zero of the pressures along isochores

T
4—  V=24.0 cm3/mole —
3._
E.
[
Lot
= 2
[~ S
L
|._-
ol
0 10 20 30 40 50

THKY
FIG. 3. Same as Figs. 1 and 2, atV =24.0 cm®/mole.
The actual data refer to H=40 and 60 kG.
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of the magnetized solid, should help for purposes
of normalization of the measurements at the
higher field strengths. At this temperature, the
pressure variations arising from the exchange
interactions, in absence of magnetic field, are
exactly compensated by the pressure variations of
opposite sign arising from the effect of the ex-
ternal magnetic field, as clearly exhibited formal-
ly by (76), referring to the asymptotic tempera-
ture range. This compensation effect is, of
course, a general feature of the pressure varia-
tions along isochores of the magnetized solid.
‘Our concluding topic of discussion refers to
the paramagnetic susceptibility of bce-solid He®,
The measurements along isochores by Kirk et al.'®
yielded the asymptotic paramagnetic Curie tem-
peratures at four solid volumes, all negative as
expected. The 6, values, in mK units, derived
from the asymptotic high-temperature suscepti-
bilities, were found to be as follows: -2.9:0.7,
-1.3+0.3, -0.48+0.16, and -0.44+0.30, at the
respective volumes of 24.0, 23.1, 22,0, and
21.0 cm®/mole. The 6,values derived by Sites
et al.,'” at a pressure of about 34 atm, may be
associated approximately with a solid volume of
about 24.0-24.2 cm®/mole. This 6, is given as
-2.71+0.3 mK. With the here-obtained J,(V),
J,(V), and a(V), and 5, and y,, which parameters
give an acceptable account of the pressure varia-

tions, in the asymptotic temperature range, along
several isochores in the absence and presence

of a magnetic field, the calculated ¢, values differ
significantly from those derived from susceptibility
measurements. Using Eqs. (47), with the approxi-
mate J,(V)’s and J,(V)’s, one finds at the volume
indicated by Kirk et al.,'” in order of decreasing
volumes: -1.42, -0.85, -0.42, and -0.20 mK.

It is seen that while at the smaller volumes the
experimental 6, values of rather low precision

are compatible with the calculated ¢,values, the
discrepancies at the two largest volumes are

quite large. It may be hoped that new and more
precise susceptibility measurements along iso-
chores will be performed in due course, enabling
a detailed discussion of the data in the light of

the model and its parameters advanced in the
present work.'®
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