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Collective Modes of a Two-Dimensional Wigner Crystal
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Calculations of the frequency spectrum of lattice vibrations of a finite two-dimensional electron crystal
show a soundlike shear mode and a longitudinal mode that has an anomalous dispersion relation. At
long wavelengths the frequency of the longitudinal mode varies as the square root of the wave vector.
This arises because of the long-range nature of the Coulomb force between the electrons and is

analogous to the longitudinal plasma vibration in a three-dimensional signer lattice.

I. INTRODUCTION

igneri pointed out that a system of electrons
immersed in a compensating background of posi-
tive charge will, at sufficiently low density,
assume a lattice configuration to minimize its
energy. Since then there has been considerable
theoretical interest in this model, even though the
system was not expected to exist in the laboratory.
Van Horn' suggested that the degenerate positive-
ion core of a white dwarf star would be in a
signer lattice configuration. Crandall and
Williams' recently suggested that electrons on the
surface of liquid helium might form a two-dimen-
sional signer crystal. Therefore, it is appropri-
ate to develop this idea and calculate the vibra-
tional modes of a two-dimensional electron crys-
tal to stimulate possible expeximents. A new
feature of this electron crystal is that the frequen-
cy of the longitudinal mode of vibration is propor-
tional to the square root of the wave vector in the
long-wavelength limit. This particular dispersion
relation arises from the long-range nature of the
Coulomb force. It is the two-dimensional analog
of the longitudinal plasmalike Inode in a three-
dimensional %'igner crystal. The remaining mode
is acoustic at long wavelengths.

The properties of a three-dimensional electron
crystal have been investigated in detail by several
authors. %'igner' predicted and Fuchs~ confirmed
that the bec lattice is the minimum-energy con-
figuration. Nevertheless, the other possible lat-
tice configurations are only slightly higher in
energy. Foldy' later showed that there is a phase
transition to the fcc or some other lattice at
higher temperature. Various estimates, 8 based
on the harmonic approximation to the electron
lattice, give 10-50 A as the minimum distance
between electrons required for crystallization.
Kugler' demonstrated that an anharmonic electron
lattice may not be stable for electron spacings
less than about 350 A. Clark, Coldwell-Horsfall
and Maradudin, ' and Carr" calculated the vibra-

tional spectrum in the harmonic approximation.
Kugler' made corrections, due to anharmonicity,
to the lattice spectrum.

In Sec. II we outline the model and calculate the
dispersion curves. %e calculate the electron
distribution in Sec. III.

II. MODEL CALCULATION

It would be natural to model the two-dimensional
Wigner crystal by analogy with its three-dimen-
sional counterpart where the electrons are
lIIlxIlex'sed ln a uniform backgx'ound of positive
charge. However, since we are interested in cal-
culating properties of a possible experimental
system, we follow the suggestion of Crandall and
Williams for obtaining electron crystallization.
In this approach an electric field confines the
electron system to a dielectric surface. This is
fundamentally different from the three-dimen-
sional case, where a uniform background of posi-
tive charge surrounds the electrons.

Figure 1 shows the proposed experimental
arrangement for producing a two-dimensional
electron crystal. The dielectric is liquid helium
since it is known" that 4He presents a potential
barrier of about 1 eV to electron penetration.
Since the helium surface is relatively fx ee of
charged impurities, electron-electron interactions
should be the dominant electron localization mech-
anism in the x, y plane. The metal plates, A and
B, biased in such a way as to force the electrons
against the helium, confine the electrons, shown
by a dotted line, to a finite region of the liquid
sux'face. The electrostatic depx ession" of the
liquid surface is exaggerated for clarity. Since
the mean spacing between the electrons in the x, y
plane is ordex's of magnitude larger than their
average distance from the helium surface, "we
may consider the system as two-dimensional.
Thus, the function of the helium and the electric
field between plates A and B is to confine the
electx'ons in a two-dimensional configuration.
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To minimize end effects, the distance between
the plates is less than their diameter, and to en-
sure uniformity of the electric field between the
plates, their separation is much greater than the
mean spacing between electrons. Therefore, in
the following calculation we neglect end effects at
the edges of the electron sheet and furthermore
assume that the electron density is uniform across
the helium surface. These approximations affect
only the very-long-wavelength vibrations. Also
we assume that any interaction between the elec-
tron and the liquid that would modify the motion
parallel to the surface can be accounted for in
the framework of the effective-mass approxima-
tion. '~

The above describes a system of electrons lo-
calized just outside the surface of liquid helium.
However, ions inside liquid helium can similarly
be localized near the surface for arbitrarily long
times. '"'"" Inside the liquid an electron forms
a bubble and the positive ion forms a solid sphere
of helium about it. These highly correlated struc-
tures have a mass many times that of a helium
atom. '6 Since this state is mobile and charged,
the above considerations will apply. The following
calculations will apply equally well to electrons
on the surface and iona in the liquid.

For the system of electrons described by Fig. 1,
the potential energy is

e2
V(x, y, z)= V~+ V(z)+& P, ~, I +m

(1)
where V~ represents the potential of interaction
between the electrons and the plates A and B, and

V(z) is the image-potential interaction" between
the electrons and the ~He. The remaining term

H:6. 1. Schematic of the electron system on liquid
helium. The metal plate 8 is immersed in the helium,
and the plate A held at ground potential is above the he-
lium surface. The electrons are shown by dots on the
helium surface. The length 1., a rough measure of the
size of the electron system, is given by the plate size.
The z direction is perpendicular to the liquid surface.

is the electron-electron interaction where the r,
are the coordinates of the electrons.

The form of V(z, y, z) differs from that for a
three-dimensional Wigner crystal by the absence
of a term representing the interaction between the
electrons and the uniform background of positive
charge. In our case the positive charges reside
on the plate B and their interaction is taken into
account by the term V~. Since the number of
positive charges on the plate is equal to the num-
ber of electrons on the helium, the sytem is neu-
tral. The image potential does not appear in the
three-dimensional model. It depends on the s
coordinate only and does not affect the x, y motion
of the electron.

The combination of V(z) and the electric field
due to the metal plates localizes the electrons to
within 70 A of the surface. " A typical electron
density is 10'cm ', giving a mean electron spacing
a, of 10' A. Therefore a, »(z). Essentially, the
characteristic frequencies of the s motion are
much higher than those of the x, y motion. Thus,
the z motion can be ignored in calculating the x, y
motion. This property permits the electron-elec-
tron interaction term to be separated into a term
depending only on x and y and a remaining term
depending on x, y, and z which is smaller than

V(z). Since we neglect end effects, V~ is indepen-
dent of x and y. Of course the end effects are im-
portant in that they confine the charges to a finite
region of space. Therefore, as long as the elec-

0

trons remain within say 10'A of the surface,
V(z, y, z) separates into a term depending on x
and y, and one depending on z. Since the s-depen-
dent term serves only to localize the electrons
near the 4He surface, we will not consider it
further.

For a sufficiently dilute system, the energy of
Coulomb repulsion between electrons will domi-
nate the kinetic energy due to their localization.
The Coulomb energy is minimized when the elec-
trons are ordered in a crystalline array. For
the very dilute system of electrons considered
here, the Coulomb energy is certainly much
larger than the localization energy. Thus we need
only consider the Coulomb energy in determining
the ground state of the system.

Using well-known methods" we can readily de-
rive the classical equations of motion of an elec-
tron in the x, y plane. In the third term in Eq. (1),
we replace r, by 8&+u„where 8& is the coordi-
nate of the l th lattice point and u, is the displace-
ment of the E th electron from its lattice point
R& =X&+Y&. We then expand the third term in Eq.
(1) about the lattice points. Because we are con-
sidering a dilute system of electrons, the harmon-
ic approximation to the lattice expansion is rea-
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sonably weQ justified. The anharmonic terms
contribute less than 1% to V(x, y, e). This also
makes it unnecessary to treat V(x, y, e) self-
consistently. Therefore, the potential energy that
depends on & and $ is

V=2 Qu, A' ~ u„,
l, m

where the tensor A' has the property that for l +m

e2g fm

iH, -H„i' '

and for E=m

gl re

iR, -R I' '

The tensor B'™is

(S)

2(x, -x )'-(1; —1' }' s(x, -x )(y, y )

S(X, -X }(Fg—Y' ) 2(1', —F )' —(X, —X )'
(5)

where X, and F, are the coordinates of the elec-
tron lattice points in the x, y plane. The normal
modes of this coupled system, which are de-
scribed by wave vector q and frequency gq),
are those that diagonalize &'™.Diagonalization
proceeds in the normal way to give for the two
eigenf requenc ies

aP(q) =
2

D„+D a(D„—D„„('+4(D (' ' 'I, „
2fPS)[

where

and mi[ is the effective mass of the electron in the
x, y plane.

Because the Coulomb force is long range, the
sums over lattice sites converge slowly. There-
fore, we use the Ewald method" to sum the series
in Eq. (7). However, the Ewald method applies to
a lattice of infinite extent whereas, we are con-

sidering a finite lattice. This may be accounted
for by writing a finite sum as Qo
where g, is the desired sum over a finite area
and Qo is the Ewald sum. The last sum may be
converted into an integration for large area.
When q»L, ' this last sum can be neglected.
Since we are not concerned with the region in
which this condition is violated, we neglect the
third sum in what follows.

Since the Ewald technique is well known, "we
give only the results of its application to the sums
in Eq. (V). This summation method replaces the
sum over lattice sites by two sums: one over the
reciprocal lattice and one over the real lattice.
The advantage is that both sums are rapidly con-
vergent. It is convenient to define the following
dimensionless vectors: Z=g/2G, P=(t, +q)/2G,
and y=R, G, where g is a reciprocal-lattice vector
and 6 is a parameter chosen to make both sums
converge equally well.

After some algebra, the contributions to the
tensor D,& can be written

g)„+D,„=2ne' Q(2v'wG[e ~e s ]+2Gw[perfc(p) —aerfc(n)]j

ry
+ 2e g ', ' [ye r + —,'w erfc(y)],

D,„—D„„= -2e'nm Z (:-g',) e,fc(a) (P.—P.) erfc(P)
g 2QP

0

(X' —1")[0.75 Ww erfc(y)+y(1. 5+y') e ~ ],
[1 e(((' R] 2

R

and the off-diagonal element is'wp' fqe R

D,„=— g ' erfc(P)- Se' P, XF[y(1.5+y') e & +0 75 vw erfc(.y)], (10)
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where erfc is the complimentary error function
and n the electron density. The subscripts x and

y refer to the components along the coordinate
axes. The vector 8=X+Y is the distance from
the 1th to the mth lattice site. Because of the
exponential factors in the sums, they converge
rapidly and summation to next nearest neighbors
gives sufficient accuracy.

In evaluating the dispersion relation (6) over the
first Brillouin zone, we find that there are two
important regions of q space. When q is smaller
than the reciprocal of the length of the system,
we have the hydrodynamic regime where, ne-
glecting end effects, both ~, and co, are propor-
tional to q. However, this is not physicaQy real-
izable since, for these long wavelengths, electron
motion is a translation of the electron system
against the charged plate B, which gives a re-
storing force. This restoring force produces a
finite-frequency longitudinal vibration even at
@=0. This vibration is analogous to the plasma
vibration in three dimensions. In the two-dimen-
sional model the electric field due to the bottom
plate is assumed uniform. Therefore, the plasma-
like vibration arises from edge effect and not
local charge imbalances.

To determine exactly the oscQlation of the
charge sheet against the fixed conducting plate is
a difficult mathematical problem beyond the scope

- of this paper. Nevertheless, we can make an
estimate of the frequency of this mode if we model
our system by analogy with the three-dimensional
Wigner crystal. To do this we replace the con-
ducting plate by an insulating plate of the same
configuration with a uniform fixed positive charge
density equal to the electron density on the liquid
surface. For the q=0 mode, we consider the
motion of the electron sheet to be a rigid displace-
ment by a distance 5 relative to the bottom plate.
Fox small 5, lt is stl aightforward to Show that the
restoring force leads to a harmonic vibration
whose frequency ~~ is given by

88
(dp

In deriving this expression, we assumed that the
distance between the plate and the electron sheet
was small compared with the plate size. Simi-
larly, the assumptions leading to Eqs. (6) and (7)
are no longer valid for wavelengths the order of
the size of the system. For wavelengths much
shorter than the system size, end effects can be
ignored and Eq. (6) is expected to give the vibra-
tional frequencies.

In the region where the wavelength is longer
than the lattice spacing, we find that only one of
the frequencies is an acoustic-type vibration.

The other vibration, which is longitudinal for any

q direction, is given by taking the positive root
of Eq. (6). This gives

This square-root dependence of frequency on wave
vector holds for any lattice structure. This can
be readily seen if the D& are expanded in powers
of q. For a nonzero reciprocal-lattice vector,
the leading term is proportional to q'. However,
the @=0 terms, which are independent of lattice
structure, are proportional to q. This leads, via
Eq. (6), to one frequency being proportional to q
and the other being proportional to q'~'. Since
the longitudinal dispersion relation comes from
the g = 0 term in the sum, we see that it is due
to the long-range nature of the Coulomb force.
At the end of this section we use the uniform-
background model for the electron crystal to show
this more clearly.

In Fig. 2 numerical solutions of the dispersion
relation (6) are plotted for the principal directions
of a square lattice. The frequency is in units of
(e'/m~~ 8',)' ', where A, is the lattice constant.
The two directions (1, 0) and (1,1) serve to illus-
trate the main features of the dependence of &u(q)

on q. The values of the sound velocity 8 are given
in the figure in units of eQq A,) ' '. For a lattice
constant of 10' k, the values of 8 are greater than
10' cm/sec. The high sound velocity is due to the
light electron mass. Substantially the same re-
sults are found for the hexagonal lattice.

Of course ~, does not go to zero as q tends to
zero but approaches the limiting value co~. How-
ever, for B,= 10 4 cm and I.=—1 cm, ~~ is about
four orders of magnitude smaller than the highest
lattice frequency. Thus, the finite value of ~, at
@= 0 is not apparent in Fig. 2.

We can apply the above arguments to the ion
lattice inside the liquid by simply scaling the
expression for w(q) by the square root of the mass
ratio. This reduces the frequencies and sound
velocity by a factor of about 500.

Because it might be inferred that the particular
form of the longitudinal dispersion relation, Eq.
(12), is due to the particular configuration of
electrons on 4He, we prove that this form of the
dispersion relation is a general result of the
uniform-background model of the electron lattice
in bvo dimensions. It arises when the range of
the Coulomb force exceeds the wavelength of the
disturbance. We show the connection with the
three-dimensiona1 Wigner lattice and demonstrate
that the longitudinal vibration in two dimensions
is the counterpart of the longitudinal plasma
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FIG. 2. Vibrational fre-
quency cu(q) in units of e/
(m~~Rp) is plotted vs nor-
malized wave vector q for
the two principal directions
of a square lattice. The
maximum wave vector qm
is the value of q at the zone
boundary. The transverse
and longitudinal branches
are labeled at ~z and ~&,
respectively.
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vibration in three dimensions.
These results are best presented by expanding

the potential energy that depends on only x and y
in a Fourier series. This implies, then, that the
lattice is of infinite extent. The dispersion rela-
tion can thus be written as

~(q)e= V, qq Z

+ g [V;,g(q+$(q+g) .s- V;g g. s],
m)(

(13)

where Vq is the Fourier transform of the potential,
7 is a unit polarization vector, and N is the num-
ber of electrons. The first term is responsible
for the longitudinal vibration. The second term
is caused by the periodicity of the lattice and is
thus responsible for the transverse vibration. In
what follows we are only concerned with the long-
wavelength behavior of the longitudinal vibration.
Therefore, only the first term in Eq. (13) need
be retained since it gives the longitudinal vibration
at long wavelength.

Equation (13) shows that the q dependence of the
dispersion relation is determined by the q depen-
dence of V~. In three dimensions V~ ~1/q' for a
Coulomb potential. Therefore, the longitudinal
vibration is independent of q. This is the familiar
result that the longitudinal frequency is equal to
the plasma frequency. " In hvo dimensions, the

I

Fourier transform of a Coulomb potential is
V~ = 2we'(qQ '. Substituting this into Eq. (13) we
derive a dispersion relation that is identical to
that derived earlier for the system of electrons
on liquid helium. In fact, this longitudinal vibra-
tion in two dimensions is the analog of the plasma
vibration in three dimensions. However, the two-
dimensional vibration is manifestly different be-
cause its frequency goes to zero as q goes to zero,
whereas in three dimensions it remains finite as
q goes to zero.

It may seem strange that there is no plasmalike
vibration in two dimensions. However, one must
remember that we are considering a specialized
model where the positive background is uniform
in space. Since plasma vibrations arise from
polarizations, these can only be due to real
charges at the edges of the system. In three di-
mensions these charges lead to finite forces when
the size of the system becomes infinite. These
forces give a plasma or finite frequency vibration
at q=0. In two dimensions, however, the force
due to charges on the edges of the system goes
to zero as the size of the system goes to infinity.
Therefore, for this model, there is not a finite
frequency vibration at q= 0. Of course, if one re-
moves the restriction of a uniform background
of positive charge and treats the positive charges
as discrete and movable charges, then local
charge imbalances lead to a plasma vibration of
the same kind in both two and three dimensions.

The nonsoundlike longitudinal vibrations in two
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and three dimensions are a consequence of the
long-x ange nature of the Coulomb force. This
becomes apparent if a short-range force, such
as a screened Coulomb force, is assumed.
Then, for wavelengths longer than the range of
the force (wavelengths larger than the screening
radius), V~ is a constant. U V~ is constant then

Eq. (13) gives a soundlike dispersion relation.
This result is reminiscent of the argument given
earliex, for the system of electrons on liquid
helium, that for wavelengths larger then the size
of the system (if end effects were neglected) the
longitudinal vibrations were soundlike.

(u') =~ at finite temperature. This logarithmic
divergence of (u ) is the reason for the argument'~
that two-dimensional lattices are not stable. How-
ever, this axgument is only true for infinite sys-
tems." In a finite system it is not physically rea-
sonable for vibrational modes of the system to
have wavelengths longer than the size of the sys-
tem. Thus q, is not zero in Eq. (7) since the sys-
tem is finite. Therefore, it is possible that crys-
talline order might exist in this system of finite
size. ~ It is reasonable to take the minimum value
of q equal to the reciprocal of the length L of the
system. Then

III. PARTICLE DISTRIBUTION IN THE LATTICE

Now that we have computed the vibx ational
modes, it is instructive to calculate the electron
distribution in the electron lattice to justify the
assumption that the electrons are localized on
lattice points. The average value of the electron
density distribution (p(r)) is a guide to the con-
ditions under which we might expect the electron
lattice to exist.

To find (p(r)) we need its Fourier transform,
p~ which ls

(14)

e«ling that rr =R, +u„we take the transfoxm o

pr and arrive at the average value of p(r);

(pe) (2v(u2))-1 Q sf r Rg) /2(s )
R)

The calculation of (u') is straightforward using
the well-known result

(15)

I coth(5(u, (q)/MT)
Nng„2~~(q)

qe0

where N is the number of particles, p is the
polarization index, and the sum extends over
a. Brillouin zone. An exact determination of (u')
requires a numerical integration using the calcu-
lated values of &u(q). Nevertheless, an upper
limit to (u') can be obtained readily using a
Debye approximation for &u(q). This is equivalent
to replacing the longitudinal phonon branch by a
soundlike branch. Then we find that

( 2) kT l (
slnh(cxq~))i

'gled()

tlS (slllh(&qo) )

where o. = RS/2kT, and q„and qo are the maximum
and minimum q values, respectively. 8 is an av-
erage sound velocity. The replacement of ~, by
&ur gives an upper limit to (u') since e, & &or.

If the minimum q value is taken as zero, then

y q I T (1 s-snsMwlarsp)
(u') = " + ln

nm Zv vm nZ' (1 —e ""4r~)

(18)
The first term arises from the zero-point vibra-
tions. In the high-temperature approximation,
with a lattice constant of 10' A and L = 1 cm, we
find that (u2) -2x10 ~'+3x10 7 cm~. The fluc-
tuations due to thermal vibrations exceed the
zero-point vibrations above 0.1 K. Nevertheless
(u') «~', atl K.,

Returning to Eq. (15), we see that the smallness
of (u') ensures that an electron is localized about
at lattice point. Owing to zero-point fluctuations
alone, an electron is confined to a volume of 10 '
of a unit cell. These arguments do not prove that
long-range order exists. However, because of
the localization of the electxon to the vicinity of
a, lattice site, we might expect a crystalline state
over a finite region.

IV. CONCLUSION

Ne conclude by mentioning some ways that one
might observe electron crystallization in two
dimensions and speculate as to whether crystalli-
zation might already have been observed. The
most convincing evidence fox crystallization would
be the observation of the diffraction of laser light.
This experiment would be best performed on the
ion state inside the liquid because these states
would give a larger scattering cross section for
light than the bare electron outside the liquid.
The propagation of a shear sound wave through the
electron system would also demonstrate crystalli-
zation. The presence of the anomalous longitudi-
nal mode could also be detected in this way. 7he
lifetime of the electx on in the image potential sur-
face state outside the liquid is dependent on wheth-
er the electrons are crystallized or not. Similarly,
one might expect the attenuation of surface waves
by the electron system to depend on its state of
crystallization.
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At present, there is no direct evidence for a
lattice of electrons on the outside surface of liq-
quid helium. However, there is some indirect
evidence or at least a hint of a lattice structure
from some earlier measurements. '"" Sommer
and Tanner" made puzzling observations during
their mobility measurements of electrons on the
surface of 4He. They interpreted these observa-
tions as if there were regions of the surface
charge that were immobile. This occurred only
below a minimum electron density and at low

temperature. The speculation of regions of im-
mobile electrons is consistent with the idea of
crystallization since an electron crystal is an
insulator in the sense that a band gap must be
overcome for single-particle excitations. " The

entire crystal, however, can move in response
to an electric field." Crandall and Williams"
measured a depression in liquid helium caused
by the condenser force between the electrons and
the bottom plate B (see Fig. 1). From a knowledge
of the electric field on the electrons and an anal-
ysis of the equilibrium between electrons bound
in the image potential and free in the gas, they
concluded that the electron motion parallel to the
surface must be localized.
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