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The nonlinear response of an atom to a near-resonant light pulse is studied using a novel

approximation scheme. In first order, the approximate solution reduces to the well-known rate
equations. The secondwrder approximation contains Grischkowskys adiabatic-following approximation.
In each order, the approximate solution of the Bloch equations is presented with a closed-form

expression for the error that can be used to investigate its range of validity.

INTRODUCTION FORMULATION

The resonant interaction of short coherent
light pulses with matter has recently generated
much experimental' and theoretical interest. '
This article presents a theoretical analysis of
some nonlinear effects which can occur when a
near-resonant coherent light pulse interacts with
matter. The work that follows was motivated by
a series of elegant experiments involving near-
resonant pulse propagation which were performed
by Grischkowsky. ' ' The experiments of Hefs.
3-5 were adequately explained by an intuitive
vector model. It follows from the vector model
that when the effective field changes direction
slowly compared with the precessional period of
the Bloch vector and when the pulse is sufficiently
short that relaxation times 1', and T,' can be
neglected, the Bloch vector remains paraQel
to the effective field. If the two conditions stated
above are satisfied, then the adiabatic following
approximation is good and the atomic dipole
moment induced by the off-resonant light pulse
is a relatively simple nonlinear function of the
light pulse's amplitude. Adiabatic following can
be thought of as an optical analog of spin locking. e'
The goal of this article is to present an analytic
derivation of the adiabatic foQowing approximation
from the Bloch equations which describe the
interaction of a two-level atom with any coherent
light pulse. The derivation of the adiabatic-
following equations will also provide a closed-
form expression for the error incurred in this
approximatfion.

In order to describe the response of an atom
to an off-resonant light pulse, a new approxi-
mation scheme is introduced. If pursued in-
definitely, the Ansats presented below would
provide a complete description of the response
of an atom to an off-resonant pulse. As usually
occurs in such expansions, only the first few
terms are of simple enough form to be useful.

Consider an atom that is perturbed by a light
pulse which propagates in the z direction and
has an electri. c field of the form

R(z, t) = h(z, t)(e, cos[&u(t -z/c) —y(z, t)]

+e„sin[&u(t -z/e} —p(z, t)]}.
If the pulse frequency ~ is in near-resonance
with an isolated pair of levels and other levels
are not populated, any state of the atom can
be described by the wavefunction

e =a(t)g.(x) +b(t)q, (x),

where g, and y, are eigenfunctions of the un-
perturbed atomic Hamiltonian. Instead of
solving the SchrMinger equation for the time-
dependent coefficients a(t) and b(t) it is useful
to introduce three real variables' X, Y, and

S, which are related to the quantum amplitudes
according to

(X- i Y) exp -i [&u(t -z/c) -y] =-3ab*,

Z =—aa*- bb*.

(3a)

(31)

In terms of these variables the expectation of
the atom's dipole moment operator and energy
are

(y.,„)= pRe((e, +ie„)(X—iY) exp[-j~(t -z/e) +iy]}

Oc„, ) =(SA/2}z,

where 0 = (8, -E,)/I is the transition frequency
and p. the dipole moment matrix element between
the levels a and b.

From Eg. (4a) it is seen that the polarization
which wou1d result from a collection of X atoms
per cubic centimeter is given by

2128



A DI A BA T IC - FO L LONI NG A P P HO XI MA T ION

(X-ir) exp-i[(o(t-z/c} —y] =~, —j~, ,

S-rs
(6a)

(6b)

The variables z, g, and W'of McCall and Hahn'

are related to X, 7, and S as folloms:

u = ~NOIX, (Va)

(Vb)

(Vc)

If relaxation processes are absent, conservation
of probability requires that

When written in terms of X, I', a,nd Z the
SchrMinger equation has the form

X —ii'= [1/r,'+ i(~+-y)](X-i y) i(q 8/—a)Z,

S= (p(g/g) -r (Z Z~—)/T, , —

(Qa)

(Qb)

where ~=A —& is the difference between an
atom's transition frequency and the laser pulse's
frequency. Equations (9a} and (Qb) are referred
to as the optical Bloch equations. The homo-
geneoQS tx'Rnsvex'se relaxation time T2 Rnd

longitudinal relaxation time 7, have been intro-
duced phenomenologically.

Propagation of the light pulse through a medium
consisting of a dilute collection of N atoms per
cubic centimeter is described by the reduced
wave equation'

—+——g(z, t)e'~ "= i(u6'(z, —t) -2
c

a le 2z . 6'( st)z
88 c at C

(10a)

4'(s, )) ))g f [x(z, t, al -i)'w, ), a)]=(!(a)doe'+'".

(10b)

The derivation of the approximate reduced mave

)'(Z, )) N=p RaI(i, +Pe, ) f (X—/)')g(() —(a) dQ

aery[ (w-() -z/c) +i(]I,

where the integral over the inhomogeneous line-
shape function g(Q —e) takes into account the
possibility of a distribution of transition fre-
quencies Q. In the case of a gas the inhomogeneous
broadening mould result from the Doppler effect.

Feynman, Vernon, and Hellmartho have intro-
duced three real variables y„y„and r, that
differ from X, F, andS by a simple rotation
about the S axis,

equation from the exact second-order equation
is discussed in Refs. 1 and 2. This derivation
requires that the amylitude and phase of the light
pulse varies little over a distance of a wavelength
and in the time of an optical period. In the
analysis of the atomic response to an off-resonant
light pulse that appears below, the rate of change
of the amplitude and phase of the light pulse
is compared with the amount off-resonance ~,
not the optical frequency &o. The fact that 6/&u

is small (it is about 10 ' in the experiment of
Ref. 3) indicates that higher-order derivatives
may be kept in the mork that follows. The term
involving sd'/si on the right-hand side of Eq.
(10a) is usually neglected when discussing
resonant pulse propagation. However, when
discussing near-resonant pulse propagation
it is not as good an appx oximation to neglect
sd'/si when compared with i~d'. For the near-
resonant case, the ratio of the tmo terms mill
be of the order of b, /&u. The general description
of pQlse px opRgRtlon 1 equil es R simultaneous
solution of Eqs. (Qa), (Qb), (10a), and (10b).
An adequate description of most experiments
can be obtained with the initial conditions

X(z, -~, a) —i F(z, -~, g) =0,

S(z, -~, s) =+1.

(11a)

(11b)

The positive sign in Eq. (11b) refers to an atom
yrepared in its uypex' state; the negative sign
refers to an atom prepared in its ground state.

VECTOR MODEL

Since the primary goal of this article is to
analytically derive the adiabatic-following ap-
proximation from the Bloch equations, it seems
appropriate to begin by reviewing its dexivation
fx om the vector model. ' The optical Bloch equa-
tions of Eqs. (Qa) and (Qb) can be written in the
form

R=Q&R, (12}

when the relaxation times T, and T~ are very long
compared with the pulse duration. The Bloch
vector is given by

R=Xe„+JQ, +Se„
and the effective field is

5(t) = [] b(t)/a]e„-+ze„ (14)

when the frequency modulation p is negligible.
Equation (12}has the geometric interpretation

that the Bloch vector tries to pr ecess about the
effective field as Q varies in both magnitude and
direction. The instantaneous precession frequency
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of R about Q is

lfi(f) I =([v &(&)/g]'+&'}' '

When the amount off-resonance ~A ~
is large

enough, the precession frequency of the Bloch
vector will be large compared with the rate
of change of the effective field. For such large
ih~ it is a good approximation to assume that
the Bloch vector remains parallel or antiparallel
to the effective field as it moves adiabatically.
Figure 1 illustrates the motion of the Bloch
vector when b, (which is chosen negative in the
figure) is so large that this adiabatic-following
approximation is good. In this limit the angle
o. between the Bloch vector and the effective field
will remain very small. The fact that the Bloch
vector is essentially parallel to the effective
field in this limit enables one to immediately
write down expressions for X and Z from the
figure. Using simple geometry, it follows that

of the adiabatic-following approximation that it
is not possible to derive an expression for Y
from it. This failing will be corrected in the
analytical derivation which appears below. An

expression for the Y component of the Bloch
vector can be deduced in a self-consistent manner

by substituting Eq. (16a) into Eq. (9a} when

T,' = ~ and jh =0.' The resulting expression for
Yis

(16c)

This expression along with Eq. (16b) satisfies
Eq. (9b) with T, = ~.

APPROXIMATION SCHEME

Equations (9a), (9b), (11a}, and (11b) can be
recast as integral equations of the form

t
[X(i) —i Y(t}]e'e ' = -i [p.h (t')e'+' /k]Z(t')

a

p, 8
[(p 8/h)'+ a']~' '

[(~g /@2 + g2 ]
1/2

(16a)

(16b)

xexp-(1/T, ' +in.)(t —t') dt', (1Va)

t
Z(i) =Z(- ) — [qS(i')/e]Y(t') exp (t t')/-T, «-',

(17b)
The signs in Eqs. (16a) and (16b}would be re-
versed if it had been assumed that R(z, -~, d)
=+e, instead of R(z, -~, a) = -e,.

Of course the Bloch vector cannot remain
exactly parallel to the effective field because
this would make the right-hand side of Eq. (12)
identically zero and the Bloch vector would not
be able to change as the direction of 0 changed.
This means that the angle u must be finite,
although small, and the Y component of the
Bloch vector is not exactly equal to zero. It
is a shortcoming of the geometric derivation

x exp-(1/T,' +is)x dx. (18)

The form of the integrand above suggests that when

the pulse amplitude and phase are slowly varying
compared with exp-(1 /T,

' +is) z, it would be use-
ful to use the Taylor expansion

p, S(t —x)e'@' 'Z(t-z) ~ (-)"z"
n~

n=0

where, for the sake of brevity, the dependence
of the variables X, Y, and Z on z and ~ and the
dependence of 8 and P on z is not explicitly in-
dicated.

Changing the variable of integration to x —= t —t
in Eq. (1Va) results in the expression

[X(t) -iY(t)]e'@"=-i 'I [p.S(t —x)e'+' *'/8]Z(t -x)'

n

F1G. ].. Precession of the Bloch vector R about the
effective field &. When the requirements of adiabatic
following are satisfied, the angle 0. is small and the
Bloch vector is essentially parallel to the effective field.

gn + b (i)e l 'tb(t)Z(i)

"di" a

When this expression is substituted into Eq. (18)
the integral over x can be carried out explicitly
yielding

)n+ 1

[X(i)-iY(t}]e'""=iP
dn g i)&l4(t)

z(t)) . po)
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The expansion given by Eq. (20) is the basic
formula which mill be used to obtain approximate
expressions for the xesponse of the atom to
an off -resonant light pulse. Intuition suggests
that the series convex ges rapidly when the
quantity (he' Z) does not vary a great deal in a
time [(1/T,')'+t),'] ~'.

p(z, t) = Re[(e, +te„)}t8exp[i(t) -i~(t e/c)]3,

where the nonlinear susceptibility is

T,'(i + ar,')Z(-~)
[1+T,r,'(y. 8/I)'+ (t().T2}']

'

(25)

(26)

FIRST-ORDER APPROXIMATION

(X ir)e-" =
1jT,'+is

(21a}

where

+( "' d )ik(i )e'i" 'Z() )'}'
1/T'+it J dt'

x e-(~/ rz+ 4 b)(e- t')dl. t (21b)

An alternate derivation of the result shown
in Eq. (20) can be obtained by repeatedly in-
tegrating Eq. (1Va} by parts. A first integration
by parts yields the exact expressions

g t e&Nt)
Z(t) +It,(t),

This expression is equivalent to the nonlinear
index of refraction derived by Javan and Kelley
for a homogeneously broadened system. It
should be emphasized that going from Eqs.
(21a) and (23) to Eq. (24) required a longitudinal
relaxation time 7, so short that only the n =0
term in the expansion of Eq. (23) is significant,
Thus the Javan and Kelley solution of Eq. (24)
is valid when the pulse envelope varies slowly
compared with the relaxation time 7,. The
adiabatic-following solution requires the oPPosite
condition, i.e., that the pulse be short compared
with 7,.

Integrating Eq. (1Va} by parts a second time
gives the foQoming exact expression

When the remainder term is negligible Eq. (2la)
can be used to substitute for I' in Eq. (Qb). The
result is the mell-known" rate equation

T,' ~8 ' (Z-Z~)
1 + (T,'S}' I' T,

i d Qe'eZ
(1/T'+it), )' dt )I

(2Va)

The rate equation is usually mritten in terms of
the expectation of an atom's energy which is
related to Z according to Eq. (4b).

Also contained in this first-order approxima-
tion is the expression for the nonlinear index
of refraction which was first derived by Javan
and Kelley. " To verify this, note that when the
longitudinal relaxation time g, is shox t then
Eq. (1Vb) can be expanded in a manner similar
to Eq. (1Va) to form the series

Z(t) Z( ~)+ Q ( T )8+1
dP

n=0

(23)

(i +aT,')T-,'Z(-~) h
1+T,T;(pig/8)'+ (t)T,')'. (24)

Substituting this result into Eq. (5) results in a
dipole moment per unit volume,

When the lifetime T', is short compared with the
rate of change of the pulse envelope and (g/t(, g}
and (I/t), ), as it is for the systems analyzed in
Ref. 11, only the first term in the series of Eq.
(23) need be considered. Substituting this
approximate expression for Z into Eq. (21a)
yields

-i (' d' Qe'~Z
ff, (t) =

((/7, +is)', „d) 'li )'

(2Vb)

(28)

When tt, (t) is negligible, the substitution of this
expression into Eq. (2Va) yields expressions
for X and Fin terms of Z,

X= -Z (p,8/gx),

Z[d(p g/8)/dt]
(p (g/it@ + a'

It follows from Eq. (29) that the ratio,

(29a)

(29b)

First it mill be shown that the adiabatic-following
approximation is contained in Eq. (2Va) when

g, is negligible. To do this, consider a pulse
without frequency modulation ((t) = 0) and of a
durabon short compa, red with T, and 7", . Under
these restrictions the second term of Eq. (2Va)
may be expanded with the aid of Eq. (Qb) as
follows:
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Y d(MS/t)/dt
Z (Q/|I)'+A' '

and

t '» (Q/tt)'. (33b)
is small compared with unity when the rate
of change of the pulse envelope d(Mh/5)/dt
is small compared with either a' or (ph/}f)'.
The expressions of Eq. (29) can be used in Eq.
(8) and the resulting equation solved for Z. From
this expression for Z it follows that:

(Soa)

(30b)

(30c)

COMPARISON WITH SIT SOLUTION

An exact solution of Eqs. (9a) and (9b) with

T2 = T, = ~ and (i =0 was presented in Ref. 1.
This self-induced transparency (SIT) solution
can be written

8 = 8, sech(t/r),

X = 6(PS/h)[(1/T}'+ A'] ',
d Q 1
dt tt (I/~)' n'+'

(31a)

(31b)

(Slc)

[(p8,/2g)'+ a'] —-', (t(h/tf)'
(1/T)'+ ~' (31d)

for the initial condition Z(-~) = -1. The dura-
tion T and amplitude g, of the SIT pulse are
related according to

The fact that P 2 is negligible compared with
Z' was used in the derivation of Eq. (30).

It is seen that Eqs. (30a)-(30c) are the same
as Eqs. (16a)-(16c) which were derived geometri-
cally from the vector model. In addition, the
analytic derivation of the adiabatic-following ap-
proximation has provided a closed-form ex-
pression for the error incurred in making the
approximation [Eq. (27b)].

It follows from Eq. (33b) that the special con-
nection between the pulse duration and amplitude
of an SIT pulse restricts the region of overlap
with the adiabatic-following solution to the
linear regime. "

ESTIMATE OF ERROR

An estimate of the error incurred in using the
adiabatic-following approximation given by
Eqs. (30) will be made in this section. To ac-
complish this, substitute Eq. (30c) into the ex-
pression for the error term which is shown in
Eq. (27b). In the limit that I/T, is negligible,
it is seen that the error term is given by

f, i "
~/if d'E 3f(df/dt)')

v'e'+ b,' dt e'+A'

x e' ~'dtZ( ~)-
where the short-hand notation

e = Jig/k

(34)

(35)

e = e, (t'/7')e '~'U(t), (36)

where U(t) is the unit step function, and if it is
assumed that the inequality

Q2 )) g2 (37)

is satisfied. A graph of the pulse envelope de-
fined by Eq. (36) is shown in Fig. 2. Comparison
with the adiabatic-following expression for Z,
given in Eq. (30c), reveals that the condition
a'»e2 implies that Z(z, t, a) =el, and the atomic
system's response is linear. " When Eq. (36)
is substituted into Eq. (34) under the restriction
of Eq. (37) the resulting expression for the error
term is given by

has been introduced. An investigation of the
integral in Eq. (34) for a particular pulse shape
would in general require a numerical integration.
An analytic expression can be found, however,
for a pulse envelope which is given by

7(y8, /tt) =2. (32)

&' » (I/r)' (33a)

It is easy to show that the exact SIT solution
given in Eq. (31) reduces to the approximate
adiabatic-following solution of Eq. (30) when the
square of the pulse duration z is much larger
than the square of the precession time I/n, . In
view of the condition of Eq. (32}, this restricts
both the duration and amplitude of the light
pulse as follows:

E, —
0

2

0 I 2 3 4 5 6 7 8

FIG. 2. Pulse envelope of Eq. (36) is shown in this
graph.
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2(A~)'
z'v (1 it-27) .(1 i-n. ~)'

The corresponding adiabatic-following expressions
for g and 1 are

„, t' 2(1 2i-t ~)t
{1-iaT) 7.

,2/„28
S [1+(~,/~) e2&/-2" ]

/2 (43a)

Z(-~) . (38)
(1 —is~)'

If relaxation processes had been included, the
first term within the brackets of Eq. (38) would
show a damped oscillating time dependence of
the form e ' ~2+'~'. This transient term occurs
because the light pulse is turned on at a definite
time. It is seen that the error term in Eq. (38)
is of order R2- «, /n, '7 for large ZT. The adia-
batic-following expressions for X and 7, which
correspond to the light pulse of the form of Eq.
(36), are

(39a)

(t/7)e '~'
Q2y [l, + (e /Q)2e-22/&2]2/2 (43b)

It,/x-I{t, ~„t )/(~~) (44a)

respectively. As long as the amount off-resonance
is sufficiently large that e, s 44, a comparison
of Eqs. (42a) and (43a) with {43b) reveals that the
fractional error incurred by using the adiabatic-
following expressions will be

It2/Y-I(t, C2, 6) (44b)

Y = (~,/~'v }[(2t/~) (t'/H)]e—- t/'V(t)Z(- ), (39b}

respectively Comp. aring Eqs. (38) and (39a) and

(39b), it is seen that the ratios of the error term
to/ and F are of the order of

It, /X-1/(n, ~)'

and

(40b)

(41)

For this pulse shape the error term is given by

It2 (t}e'~' = [(-i~,)/n2 r]I(t, e„n}z(-~), (42a)

where

&f, b,»
[1+ (e /~)2e-22]1/2

1+(e,/&)'e "'

for large values of ~v. It is thus seen that in
the limit of Eq. (37), the adiabatic-following
expression will be a good approximation for X
when (67)'»1 is satisfied and a good approxima-
tion for Y when (b,T)»1 is satisfied.

The adiabatic-following approximation is not
limited to the region described by Eg. (O'I). To
see that it has validity in the nonlinear region
(where p8/hs is not negligible), the expression
for the error term given in Eg. (34) was investi-
gated numerically for a light pulse which has a
Gaussian time dependence,

t(t) = 608'

for the variables X and P. It can be expected
that for Lw sufficiently large the oscillating
exponential in Eq. (42b) will lead to cancellation
that will decrease the value of the integral.

For constant t and b„ the integral of Eq.
(42b} drops off as 1/e, when the pulse amplitude
z, becomes large. This result suggests that
the conclusions of Eqs. (40), which were reached
in the linear limit, will not break down in the non-
linear limit.

The integral I(t, e„a}has been studied numeri-
cally for a wide range of values of t, e,/n, , and

Figure 3 shows a three-dimensional graph
of the absolute values of I as a function of e,/g
and ~T for the particular times t =0 and 0.5 7.
A study of this and other plots indicates that
I(t, e„a) drops off at least as fast as 1/av for
large n, T and values of pulse amplitude e/A= p8, /
Its s 4. According to Eqs. (44), this result
indicates that the adiabatic-following expression
for X will be valid when (A~)2»1 and the expres-
sion for Y will be valid when {b,v}»1. This
conclusion holds for pulse amplitudes e, = (pg, /tf)
that are less than or comparable to the amount
off -resonance 4~.

The conclusion of this section can be expressed
in physical terms as follows. The adiabatic-
following approximation will be valid when the
product of pulse duration v times the precessional
frequency ~ is large compared with one. Alter-
nately it is required that the pulse bandwidth
1/v- be much less than the amount off-resonance

The two statements are essentially equivalent
for a light pulse with a smooth envelope.
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PROPAGATIONAL EFFECTS

In the adiabatic limit, the polarization of
a resonant medium can be found by substituting
Eqs. (30a) and (30b) into Eq. (5). When the

amount off resonance ~ is large compared with
the inhomogeneous linewidth 1/T,*, the integral
involving the line-shape function g(a) ca,n be
factored out and set equal to unity. Thus, the
polarization is then

(45)

For large b, v (where v is the pulse duration),
the term containing d8/dt in Eq. (45) will be
small compared with the first term. When this
term is neglected, Eq. (45) can be written in the
form of Eq. (25) where the nonlinear susceptibility
is equal to

Z(-~)
g

~ a) [(y8/t)'+a'j"' ' (46)

A nonlinear susceptibility of this form can give
rise to self-focusing or self-defocusing. Experi-
mental observation of these two effects together
with their analysis can be found in Refs. 3 and 4.
Note that the nonlinear susceptibility that follows
from the adiabatic-following approximation is of
a different functional form than Javan and Kelley's
result shown in Eq. (26).

Propagation of an off-resonant light pulse in
the adiabatic limit is described by substituting
Eqs. (30a) and (30b) into Eq. (10). Evolution of
the amplitude e = Q/8' and phase p of the light
pulse is then described by two simultaneous
nonlinear differential equations,

where the parameter

u, =- -(2zNp, '/hc)(uZ(-~) (48)

1 uo~A~—+ —+ —=0,
Bz c (e +Q') ~ cjf

(49a)

+8 1 +8 uoh
Sz +c St I ~ I (e'+d, ')~' ' (49b)

Equation (49a) is satisfied by a solution of the
form5, i~

e=F(~ -z/v),
where the intensity-dependent group velocity
is given by

has been introduced. This definition of u, gives
a positive number when the atoms are prepared
in their ground state. For most practical
experiments the carrier frequency of the light
pulse ~ will be much larger than the amount of
off-resonance b, and frequency modulation p.
Thus it is a good approximation to replace these
equations by the decoupled equations,

1 uo ~
b,

~
(2Q —(u —2 jh) ee

sz c (d(e +LF) ~ Bt
(47a)

v ' = c '+ [u, ~
a

~

/(e'+ a')'~'] .
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