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A systematic formulation of the theory of a ring laser is given, based on first principles
and using a well-known model for laser operation. The discussion begins with a simple
physical derivation of the electromagnetic field equations to first order in @ for a noninertial
reference frame in uniform rotation, and a qualitative analysis of the traveling-wave Fox-Li
modes for a polygonal cavity. The polarization of the active medium is obtained by using a
Fourier-series method which permits the formulation of a strong-signal theory. The formal-
ism can also be applied to another problem of current interest: the absorption line shape for
a weak wave in the presence of a strong one traveling in the opposite direction. In the last
few sections, the small-signal ring-laser theory is recovered as a special case, and a sys-
tematic calculation of the various equations of this theory is included. The limitations of
laser gyroscopes arise mainly because of effects of backscattering of radiation and nonreci-
procities of the optical path, leading, for example, to frequency-locking phenomena, Non-
reciprocal losses have been used to shift the locking threshold, but for rotation rates above
this threshold the observed beat note departs from the desired rotation rate in a typical
manner shown in previous articles. However, the theory indicates that if more-detailed
measurements are made, they should provide sufficient information for determining the ro-
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tation rate (apart from noise fluctuations).

I. INTRODUCTION

In the past seven years, a large number of ex-
perimental and theoretical articles have been
published dealing with important aspects of ring-
laser operation at small signals. These features
include the effects of rotation, stability of the
different modes of operation, behavior of the beat
note, influence of backscattering of radiation in
frequency-locking phenomena and hysteresis ef-
fects, effects of collisions and admixture of iso-
topes, and noise fluctuations. These are all of
practical importance in understanding the limita-
tions of laser gyroscopes. Some articles dealing
with these problems are those by Aronowitz,!'?
Aronowitz and Collins,® Lee and Atwood,*
Hutchings et al.,® Klimontovich et al.,*"® Landa
and Lariontsev,’*° Zhelnov et al.,'' Andronova and
Bershtein,'?''? Bidikhov et al.,'* and Rybokov
et al.*® An extensive list of others can be found
in the review article by Privalow and Fridrikhov.'®

What appears to be lacking in this extensive
literature is a sufficiently systematic calculation,
based on first principles and more closely related
to a well-known model for laser operation,'” and
a formulation of a strong-signal theory for a ring
laser.

There is considerable disagreement concerning
the form of the electromagnetic field equations,
in terms of E and B, for a noninertial reference
frame in uniform rotation. A simple physical
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derivation of these equations, to first order in

Q, has been included in Sec. II. Section III A rep-
resents an attempt to clarify the nature of the
Fox-Li modes for an open polygonal resonator.

To derive convenient amplitude- and phase-deter-
mining equations, one has to choose an appropriate
representation for E(T, ). Because of the effects
of backscattering of radiation, it is not clear

a priori that the running-wave representation is

in every case the most convenient one. This prob-
lem is discussed in Sec. III and IV.

The atomic system and its interaction with the
optical field is described in Sec. V. In Sec. VIA
the polarization of the active medium is obtained
by using a Fourier-series method which permits
the formulation of a strong-signal theory, and
solutions are given in terms of continued fractions.
Analytical solutions are easily obtained in special
cases of current interest. One of these has im-
mediate application to the problem of the absorp-
tion line shape of a weak wave in the presence of
a strong one traveling in the opposite direction.'®'*®
When the continued fraction is expanded to third
order in the fields, as in Sec. VIB, one obtains
the familiar small-signal ring-laser theory; and
the remainder of the article is devoted to a sys-
tematic calculation of the various equations for
this theory. The effects of collisions, velocity
flow, and admixture of isotopes are included in
Sec. VIL.2° Owing to effects of backscattering of
radiation and nonreciprocities, the time average
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of the beat note, (¢$(¢)), departs from the desired
value of the rotation rate in the typical way shown
by different authors (see, for example, Refs. 6,
9, 20). However, the theory indicates that more
detailed measurements should provide sufficient
information for determining the rotation rate.
This possibility is discussed in Sec. VIII.

II. ELECTROMAGNETIC FIELD EQUATIONS

Maxwell’s equations have been the starting point
for the semiclassical theory of gas lasers. To
follow the same general procedure with ring la-
sers, one has to use a proper generalization of
the Maxwell equations for a noninertial frame of
reference in uniform rotation with angular velocity
€. A rigorous approach requires general relativity
theory,?' and many papers have been devoted to
this purpose.??~26  Although there is no disagree-
ment regarding the covariant form of the equations
written in terms of the electromagnetic field ten-
sor F,,, there is, however, considerable disagree-
ment concerning the form of the equations ex-
pressed in terms of the field intensities E and B.

In dealing with the theory of the ring laser, a
less formal approach may be used to derive a
sufficiently accurate set of equations. This is
possible because in actual experiments, perimetral
speeds |V(¥)|= Ianl<<c occur and therefore only
first-order effects in IQI are important. Under
these circumstances, the electromagnetic field
equations up to first order in (v/c) can be ob-
tained by using the following three assumptions.

(a) For an inertial observer characterized by
the superscript 0, the electromagnetic equations
are given by the well-known Maxwell equations:

V- B°=0,

VOX E° +9B%a10 =

-v.o ° §°=P°/€o ’

VOXBO - p € 0EY01 0=, J,

2.1)

where polarized media will be described by as-
signing suitable charge and current distributions.

(b) Since we are interested only in terms of the
first order in 2, the equations for coordinate
transformation can be taken to be

x =x°cosft® +y°sinQt °,
y ==x°8inQ#° +y° cosQt°, 2.2)
z=2°
t=t°,
A careful definition of simultaneity in a rotating

frame is not necessary because the “local” de-
pendence of the Lorentz time dilation

| oo

dt =[1 —(Qr/cPR]V2dt°

is of the order 92, and consequently has been
neglected (dt is the time interval between events
taking place at the same point for a rotating ob-
server).

(c) It is assumed that an observer on the ro-
tating frame, after neglecting the effects of in-
ertial forces can relate his “physical” field quan-
tities E(r t) and B(r t) to the inertial ones
E°(1"° %) and B°(1"° t°) by the well-known formulas

of the special relativity (order v/c),
E?I"-EIU B‘I]I=Bll’ (23)
E0=(E, -¥xB), BY=(B, +n,€,vxE)

(Il,+ implies parallel and perpendicular to ¥ ),
except that here

F(F)=QxF (2.4)

varies from point to point. By the word “physical”
we mean that E and B are related to force on a
test charge and torque on a current loop in the
same way as they are in inertial systems. As-
sumptions (2.3) has been tested for quasistatic
fields and slowly rotating bodies (v/c<<1) in ex-
periments on unipolar induction and electrically
polarized bodies.?”'* For current and charges
(J,p) we assume the same transformation equa-
tions as for the coordinates. To first order in ,

3°=3+pw7, p°=p. 2.5)

The electromagnetic field equations for a ro-
tating observer can now be easily obtained from
the Maxwell equations in the inertial frame. Using
(2.2) for coordinate transformation we have

(8/0x9),0 =Z) (0x,/9x9)y0 8/0x,, (2.6)

which means V° =V. Similarly, we find
(a/at°)=(a/at)—(v-v)+szx, 2.7)

where the last term of (2.7) has been added so
that the operation on vectors will take into account
the rate of change of the vector due to rotation.
Using the above operators in the Maxwell equa-
tions (2.1) and using some auxiliary formulas, we
obtain the electromagnetic field equations for a
rotating system to first order in | (£ x¥)/c|:
Ve [B+pye (xF)xE]=0,
VXE +(0/08)[ B +p, e, (8 xF)xE] =0,
'[E- (ﬁxf)xg]'—'P/fo,
VXB-uy€,(0/0t)[E - (8xF)xB]=p,J.

(2.8)

<

The discrepancy between the above set of equa-
tions ahd the one proposed by Schiff and by Heer



8 THEORY OF A RING LASER 2105

(to first order in ), i.e.,?*'%

‘B=0

<4

)

xE +8B/at =0,

<

- . (2.9)
[E - (@xF)xBl=p/e,,

<

VX[B = oo @XF)IXE] -, €50 /02)
X[ E - (@xF)xBl=p,7,

can be attributed to a different definition of the
tensor F,, in terms of the fields E and B in a ro-
tating frame of reference. In fact, using the co-
variant equations

J

(9F,, /3x°) + (3F, ,/8x") + (8F,,/8x") =0,
(a/axv)[(_g)xlz Fuu] = (_g)l/zJM,

Schiff and Heer have obtained set (2.9) by assum-
ing that

(2.10)

0 B, -B, E,
-B, 0
Bz -B,

Bl E2
0 E,
-E, -E, -E; 0

F,=

@.11)

On the other hand the set of Eqgs. (2.8) suggest

that a proper definitmn of F,, in terms of phys-
ical fields E and B for a nonmert1a.1 rotating frame
should be (first order in Q)

0 [B+(@xP)xE], -[B+(@x¥)xE], E
-[B +(8xF)xE], 0 [B+(@xPxE], E, , (2.12)
[B +(@xF)xE], -[(B+(@xF)xE], 0 E,

-E, -E, -E, 0

which for inertial systems (£ =0) reduces to the
more familiar definition (2.11).

Our results are in agreement to first order in
v/c with those obtained by Irvine** using a covari-
ant method with the requirement that “the fields
EandBina rotating reference system are given
by the same physical measurements as determine
those quantities in an inertial system, once the
effects of the inertial forces has been subtracted
out.”

In deriving Eqs. (2.8), we have considered only
charge and current sources, deliberately avoiding
any discussion of constitutive relations for a
macroscopic medium. Such a medium will be
considered here simply as an array of atoms with
an electrical state described by a polarization
P(r t) (electric dipole moment density). In the
usual way, we may regard the macroscopic charge
and current densities as partially due to polariza-
tion charge and polarization current, assuming
the validity of the familiar replacement for non-
magnetic materials?®

p—=p —divﬁ,

oL (2.13)
J-J +0P/at,

where, after the substitution, J and p stands for
free current and charge densities. Thus, accord-
ing to our assumptions, replacing (2.13) on the
right side of Eqs. (2.8) gives us the “macroscopic”
Maxwell equations for a rotating system. Com-
bining Eqgs. (2.8) with the specifications (2.13), we

may obtain the following wave equation for the
electric field (first order in Q):

curlcurlE +u €, 02E /012 + 1, €,(2/0¢)
x{curl[(@ xF)x E] +(@xF)x curlE}
=—po(a/00)[T+0B/ot).  (2.14)

Equation (2.14) is a generalization of Eq. (3) of
Ref. 17, and will be used as a starting point for
our discussion of the ring laser. The same wave
equation may also be obtained from (2.9) with
specifications (2.13).

III. RING LASER—WAVE EQUATION
A. Fox and Li Modes for a Polygonal Cavity

Before trying to reduce the wave equation (2.14)
to a form more appropriate for ring lasers, it is
useful to discuss the normal-modes problem for
a cavity of polygonal type. An open cavity, with
finite mirrors, has a continuum of modes because
it is not enclosed by reflecting walls. However,
for a cavity of the Fabry-Perot type shown in
Fig. 1(a), Fox and Li%* have shown that there are
discrete sets of quasistationary states for which
the losses from the tube are small. Their itera-
tive method of calculation was analogous to the
physical process of launching an initial wave con-
figuration in the interferometer and letting it
bounce back and forth between the mirrors. It
was found that after many reflections a state is
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FIG. 1. (a) shows schematically the mirror arrange-
ment for a Fabry-Perot resonator. (b), the same as
(@), but the mirrors are badly misaligned. A plane op-
tical wave is incident on the mirror system.

reached in which the relative field distribution
does not vary from transit to transit and the am-
plitude decays at an exponential rate owing to
leakage from the cavity. This field distribution
is regarded as a normal mode of the interferom-
eter. The analysis of Fox and Li shows that the
cavity modes of lowest diffraction loss have even
symmetry across the tube diameter, and fre-
quencies determined by the familiar Fabry-Perot
condition that the plate separation d be a half-
integer multiple of the wavelength,

Q, =(mnc/d),

typically d ~100 cm, n=2Xx108,

For these longitudinal modes of highest @, the
field has its largest intensity at the middle of
the tube diameter, diminishing toward the edges
with a slow variation over distances of the order
of a wavelength. It is also shown that the diffrac-
tion losses diminish very rapidly with increase of
the number of Fresnel zones seen in one mirror
from the center of the other. For example, for
a cavity of the first type used by Javan, Bennett,
and Herriott, this number was about 200 and the
diffractive spillover per transit, being much less
than 0.1%, was negligible compared to the 1%
mirror reflectance loss.%

Similar calculations for the polygonal geometry
of a ring laser are necessarily more complicated
than for a Fabry-Perot resonator. For our pur-
poses, it is more instructive to take a qualitative
approach based on well-known consequences of
scattering theory. Consider the arrangement
shown in Fig. 1(b), where the perfectly conducting
mirrors of Fig. 1(a) are badly misaligned. Let a
plane optical (scalar) wave be incident on the
mirror system. The wave function has the form

B(K,T)=e % T15(K, )

of an in_c_ident plane of unit amplitude and wave
vector K and a scattered wave S(K,¥). Each of

|oo

the eigenfunctions ¥ (K, ¥) describes a normal
mode of the open system, and the spectrum of
allowed K values is continuous. These normal
modes supply us with a complete set of complex-
orthogonal functions which can be used to expand
the space dependence of any physical wave field
satisfying the boundary conditions at the mirrors.

At large distances from the mirrors, |§(K,¥)|
-1, and for the geometry of Fig. 1(b) one would
expect that, away from the edges, |¢(K,¥)| would
not be much larger than unity anywhere. For the
direction of the incident wave shown in Fig. 1(b)
there would also be a reflection at one of the mir-
rors and the wave amplitude would have a standing-
wave character for a distance of the order a?/
in front of the mirror, where a is the mirror
width and A is the wavelength.

If the mirrors are nearly aligned as in Fig. 1(a),
and the wave vector is adjusted so that |K|d ~n7
(where # is an integer), with the direction of K
nearly parallel to the laser axis, a very sharp
resonance phenomenon occurs.® The amplitude
of Y(K,T) in the space between the mirrors will
be very dependent on the detuning ||K|d —nn|. The
average energy density tkzeve will be larger than
for the incident wave by a factor @ >>1, and its
dependence on detuning will be approximately
Lorentzian with a range of K given by |(AK/K)|
= (1/Q). In the region between the mirrors, the
spatial dependence of ¢(K, ¥) will be nearly that
of the standing wave obtained in the Fox and Li
treatment. Although the eigenfunctions ¢(K, T) for
a range AK of K values near resonance have nearly
the same spatial dependence in the region of the
Fox-Li mode, all of the eigenfunctions are orthog-
onal in the unbounded domain. The transverse
Fox-Li modes of lower @ can be obtained lgy
forming the derivatives of the functions ¢(K, T)
with respect to K. It should be noted that even
at resonance the function ¢(K, ¥) would have, be-
sides the dominant standing wave, a small trav-
eling-wave component. This could either be ne-
glected or cancele_q out by sending in a plane wave
in the direction - K.

We now consider the scattering of a plane wave
on the array of three mirrors shown in Fig. 2(a).
As before, the eigenfunctions ¢(K, ¥) have a con-
tinuous spectrum in K space, and provide us with
a complete set of complex, orthogonal basis func-
tions. In general, the amplitude of the distorted-
plane-wave field will not differ much from unity.
However, when the three mirrors are oriented
as shown in Fig. 2(b), a triangular optical path
can be found which satisfies the condition for re-
flection at all three mirrors. Under these con-
ditions, a plane wave incident on the mirrors can
form a resonant field in the vicinity of the geo-
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FIG. 2. Scattering of a plane wave of unit amplitude
incident on the array of three mirrors is shown in (a).
In general, the amplitude of the distorted-plane-wave
field will not differ much from unity. However, when
the mirrors are oriented as shown in (b), a triangular
optical path can be found which satisfies the condition
for reflection at all three mirrors. If the wavelength
of the plane wave is adjusted to fit an integral number
of times into the optical path, a sharp resonance occurs
and the field will have a region of strongly augmented
amplitude in the vicinity of the geometrical optical path.

metrical optical path. For this to occur, several
conditions must be satisfied. The wavelength of
the plane wave must fit an integral number of
times into the optical path, with due allowance for
phase shifts at each mirror reflection. In general,
these depend on the polarization of the electric
vector. Also, the direction of propagation should
be parallel to one of the triangular arms. Under
these conditions, the field (K, T) will have a
region of strongly augmented amplitude in the
vicinity of the geometrical optical path and will
there have very nearly the spatial dependence of
the corresponding traveling-wave Fox-Li mode.
The opposite traveling-wave solution can be ob-
tained by reversing the direction of the wave vec-
tor of the incident plane wave. Each longitudinal
mode has a twofold degeneracy. In general, the
traveling-wave Fox-Li modes will have a (very)
small admixture of the opposite traveling wave
because of back diffraction at the mirrors.

B. Backscattering of Radiation, Nonreciprocal
and Localized Losses

The wave equation (2.14) will now be reduced
to a form more appropriate for a theory of a ring
laser. Following the discussion of Sec. IIT A, it
is assumed that a polygonal cavity of the ring
laser type possesses normal modes of a similar
nature to the Fox and Li modes for a parallel-
plate resonator, and that the modes of highest @
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vary little in directions which are transverse to
the optical path 8. Then, the variation of the field
only along the polygonal path will be taken in ac-
count; i.e., V=8(3/3s). Furthermore, an electric
field polarized along a direction perpendicular to
the plane of the structure (E =2E) will be assumed
(Fig. 3). With these simplications, Eq. (2.14)
reduces to

92%E 9%E = 9%E
2 _ . 3
e TR S CLE e,
1 9 oP
—'6—0— a_t<J+_at ), (3.1)

where (u,€,)7 T =c?.

As in an earlier paper,'” an Ohmic current
J =oFE will be introduced as one simple way to
deal with energy losses. In addition, it is con-
venient to take into account the possibility of
having different losses for clockwise and counter-
clockwise senses of propagation. This may be
done by simply adding to Eq. (3.1) a differential
loss term of the type (c/n){(0,/€,) 9E/8s, where n
is the index of refraction of any nonactive linear
medium. In some experiments, controllable non-
reciprocal losses have been produced by using
magneto-optic Faraday rotators in conjunction
with Brewster-angle surfaces.*''> The fictional
constants o and o, are finally adjusted to give the
desired losses.

The electric polarization acting as a source in
Eq. (3.1) will be divided into contributions of the
active nonlinear medium

P(S,t),

and the contributions of any linear, nonresonant
media

P, =€ xE.

Experiments with ring lasers®~!® suggest that
under some working conditions it is necessary to
consider the effect of backscattering of radiation

\Z

o

FIG. 3. This shows the laser geometry and defines
some of the notation used in the derivation of Eq. (3.1)
from Eq. (2.14). Carets denote unit vectors.



2108 L. N. MENEGOZZI AND W. E. LAMB, JR.

at the finite mirrors of the cavity or by dust par-
ticles, as well as reflections on dielectric win-
dows. These effects involve a transfer of radia-
tion from one sense of propagation to the other,
which most authors have described by simply
adding phenomenological terms to the amplitude
and phase equations. The approach assumes that
a fraction (R,,R_) of fields (E,, E_) is scattered
into the opposite direction with phase changes

64, 0_, respectively. If one assumes that (R,, 6,)
# (R_, 6_) it becomes possible to give a schematic
treatment of cases cited in Refs. 5, 6, and 15 in
which a portion of the energy is transferred from
mode E, to mode E; via additional mirrors, ex-
ternal to the ring.

Dealing with a nonlinear problem we prefer to
bring these effects into Eq. (3.1) by permitting
steep space variations (bumps) in the electric
susceptibility of the linear, nonresonant media,
ie.,

Py =¢,x(s)E.

Possible differences in reflection coefficients

and phases will be allowed later in the final equa-
tions. However, they also may be brought into
Eq. (3.1) by considering, for instance, a localized,
resonant medium [an extra P(s, t) term] with a
velocity flow in one of the propagation senses.

The resonant atoms will then provide for different
dispersive properties for E, and E_, by Doppler
effect.

Aronowitz has shown?'?° that losses which may
be associated with x(s), e.g., finite conductivity
of dielectric bumps, dust particle and localized
mirror losses, etc., also contribute to the cou-
pling between oppositely directed running waves.
This will be taken into account by simply allowing

x(s) =x,(s) +ix;(s). (3.2)

Of course, the complex function y(s) may not be
very well known, and consequently will be treated
here in the lowest approximation by using a mini-
mum number of related parameters.

Finally, with the substitution P—-P(s, ) +€,x(S)E,
our wave equation (3.1) for the rotating ring laser
reads

9%’E
asat

L 9E A e
2 552 —[1+X(s)] e +2[8+(8 x7)]

c

8E ¢ 0; OFE 1 98%P(s,t)
_ oL L % %L _ - S \0,°)
(o/€0) 57 + n €, 9s € ot?

(3.3)

where x(s) is given by (3.2). Any physical solution
of the above equation must satisfy

foo

E(s,t)=E(s+L,t), (3.4)
where L is the perimeter of the polygon.

C. Free Oscillations of the Ring-Laser
Wave Equation

The main task of a ring-laser theory is the study
of the quasistationary self-sustained oscillations
of E(s,t) as described by (3.3). To derive con-
venient amplitude- and phase-determining equa-
tions from (3.3), one has to choose an appropriate
representation for E(s,¢). It will help us to select
this representation, to give first a discussion of
the free oscillations of Eq. (3.3). Thus, removing
P(s,t) and the damping terms, we seek solutions
of the type

E(s,t)=U(s)e"*"t +c.c. (3.5)

Substituting this form into the wave equation with-
out losses or active medium, we have

TEEL 4 (£) ntsruts) -2i(L) e @) 5]
auv
X d—s=0, (3.6)
where
n(s)=[1+x,(s)] (3.7

is the index of refraction of the linear transparent
media. We assume that »n(s) does not vary too
violently, except for discontinuities or small re-
gions of very steep behavior, which will provide
for reflections. For simplicity, discontinuities
will be replaced by “equivalent” bumps adjusted
to give the same amount of reflection (see Fig. 4).
The rotation term (v/c<<1), and the bumps
on(s) in the index of refraction, n(s)=n,(s) +on(s),
will be considered as small perturbations of Eq.

n(s) =ny,+An

i—(s/\)

A AL X

Vo

FIG. 4. Index of refraction for linear transparent
media, n(s)=[ 1+x(s)]}/2 =[ny(s)+An(s)). It is assumed
that 7#y(s) does not vary much in distances of the order
of a wavelength. Discontinuities or small regions of
very steep behavior of n(s) are replaced by equivalent
bumps Az (s) # 0, adjusted to give the same amount of
reflection.
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(3.6). Solutions of the unperturbed equation away
from bumps may be given in WKB approxima-
tions,*

U, (s) =[ny(s)] "2 exp[£i(vy/c) [*no(s)ds’].  (3.8)

They should be valid in regions where

(£ ror(5) G o

that is to say, regions where n(s)[:no(s)] does
not change by an appreciable fraction of itself

in a distance of a wavelength. The rotation term
could have been included in the WKB solution. In
that case, n,(s) should be replaced by

[ny(s) ¢ (% F)+ 8], from which it is apparent
that rotation introduces nonreciprocity in the in-
dex of refraction [see Ref. 25, especially Eq.
(32)]. The electric field will be single-value if

[w,/c) foL no(s’)ds'] +@ =2rm (m=1,2,3,...),

where & represents possible phase shifts at mir-
rors. This equation determines the value of the
possible unperturbed frequencies

(Vo/€)m = (2mm - 2)/(n,) L),

where (n,) is the average index of refraction de-
fined by

(noy=(/L) [ ny(s)ds =(n). (3.11)

The unnormalized functions U,, , satisfy the or-
thogonality relation

(8.10)

1 L
(TO>—I‘: J; ﬂo(s)2 Um,pUm’,p’ds =6mm'6uy' . (312)

A solution of the entire Eq. (3.6), with bumps
and rotation term included, may now be obtained
by degenerate perturbation theory by writing U(s)
as a superposition of the unperturbed U, .. Dealing
with the theory of the single-mode operation of the
ring laser, it will be sufficient to consider only
one m value in the expansion of the field, that
one which has (v,),, closest to atomic resonance
w=(E, - E,)/h. Consequently, we shall expand

U(s)=a,U.(s) +a_U_(s), (3.13)
where the index m has been dropped from U, .
and U, .. Substituting (3.13) into (3.6) by using

(3.9), and taking projections onto U, with the help
of (3.12),

{2 1% a, ¥2uuo{<nIT fL[c"(ﬁxf)- §]ds§ a,

"VZ{(nl)L j:‘ n(s)z U;U:d5§ a; =0. (314)

A closer examination of the integrals indicate that

the second curly bracket is the average value of
the tangential velocity (in ¢ units) divided by the
average value of the index of refraction, i.e.,
[(c 'v,)Anm)]. The third curly bracket is the ma-
trix element of (u/n,)* between U; and U,. Com-
paring this integral with the orthogonality relation
(3.12), one can see that its nonzero value arises
from the presence of bumps in the index of refrac-
tion, n(s) =n,(s) +on(s) (|on|<<n,).

At this point, it is convenient to define the fre-
quencies k and A characterising the effects of
rotation and bumps on laser operation:

k=[v,An)L] foL [c2(§xF)+ §)ds
=volc™'@ + (2A/L))An),

where A =§f°"F><d§ is the area of the polygon,35+38
and

(3.15)

where n(s)?=[1+y,(s)]. 1t is easily shown that A
and the amplitude reflection coefficient R, asso-
ciated with the dielectric bumps, are related as
follows:

Az-—le <%>R (Hz),

assuming R <<1. Neglecting higher-order terms
in Kk, A<<vy,, Egs. (3.14) may now be written as
(3.18)

The compatibility condition for (3.18) gives us two
positive frequencies,

(3.17)

+ié

[v2 -2 720 k] a, - 2v,Ae*°ra, =0.

=y - (K2 2\1/2
vy =V, = (K2 + AZ)2, (3.19)

v, =y + (K2 +A%)M2,

These frequencies together with the corresponding
two values for the ratio (z_/a,), which can be
obtained from (3.18), enable us to write explicit
expressions for the normal modes

E;(s,0)=[U,(s)e %t +c.c.] (=1,2), (3.20)
where the eigenfunctions U, are given by

U (s)=[1 +M2]~Y2[U  (s) + Me~®r U_(s)], (3.21)

Uy(s) =[1 + M?]"V2[U_(s) - Me**r U, (s)],
where

M= r(ni%ﬁﬁ’? (3.22)
and

1 L
=T fo no(s)2 U, U ds =0, . (3.23)

Depending on the values of x and A we distin-



2110 L. N. MENEGOZZI AND W. E. LAMB, JR.

guish four cases:

(i). k=0, A=0. Then M is indeterminate and
the normal modes may be running or standing
waves. We have degeneracy, and v, , =v,.

(ii). k#0, A=0. Then M =0 and

U, =U, =[ny(s)] "2 explri(vy/c) [*ny(s')ds'],
U, =U. = [ny(s)] "2 expl =i (vo/c) [*ny(s”)ds'].
(3.24)

The normal modes are counterrotating running
waves with frequencies

v, =Q, =V, = k), (3.25)
v, =80 =V, +k).

Rotation of the platform removes the degeneracy,
giving rise to the Sagnac frequency splitting 2«.
The expression (3.15) for « in conjunction with
(3.10) for v, means that Sagnac’s frequency in the
presence of matter is reduced from its vacuum
value by a factor which is the square of the average
index of refraction, (n(s))=((1 +x,)'?), for the
optical path. The influence of matter, as expressed
by (3.10) and (3.15), agrees with the results of
Anderson and Ryon.%

(iii). k=0, A#0. Then M=1. Furthermore, the
phase factors e**r may be dropped from the ma-
trix elements (3.16), and consequently fromU, ,.
In fact, the origin of the s coordinate has until
now been arbitrary and, from (3.8) and (3.16), it
is easy to see that a translation of the origin by
a distance s determined by

2(v/c) fo?no(s)ds =5, (3.26)

will change the phase factor to unity. The eigen-
functions may now be written as

U, =U,=[2/ny(s)]Y2cos[(vy/c) f: ny(s’)ds’],
U, =U = =[2/ny(s)]¥* sinl (v,/c) [’ no(s")ds"],
(3.27)

showing that the normal modes are standing waves
with frequencies

vV, =Q.=V,=A, (3.28)
V=R =V, +A.

These standing waves have loops and nodes cor-
related with the origin determined by (3.26).

(iv). k#0, A+0. Then 0<M<1, and the normal
modes are some combinations of opposite running
(or standing) waves depending on the value of M.

IV. SELF-CONSISTENCY EQUATIONS

In the presence of a given polarization P(s, t),
the forced oscillations described by (3.3) can be

leo

expanded in any complete set of functions satis-
fying the periodicity condition (3.4). In dealing
with quasistationary self-sustained oscillations
around a single frequency v,, we may choose to
express the field in any of the bases that have
been described in Sec. III, namely, {U,(s), U_(s)},
{U(s), Uy(s)}, {U,(s), U,()}-

In linear problems, where the principle of
superposition holds, the field is more conveniently
expanded in terms of the normal-mode eigen-
functions U,’s of Eq. (3.6). In that case, the ex-
pansion coefficients have their simplest form
(E(s, 1)|U,(s))=8,e~"s*, with constant §. How-
ever, when the polarization of the active medium
is included in Eq. (3.3), the problem becomes
nonlinear and the normal-mode eigenfunctions’
basis in general will not be the most convenient
one for expanding the field. In principle, the sets
of functions written above may be considered as
equally appropriate for single-frequency operation
around v,. This is so because they are eigen-
functions of operators which differ very little from
each other and from [8%/8s2 - (v,/c)?n,y(s)?]

(k, A<<v,). Thus, our choice will simply depend
on mathematical simplicity, and we shall describe
the quasistationary autonomous oscillations of
E(s,t) in both {U,, U_} and {U,, U} representations.
They will be called “running-wave representation”
(RWR), and “standing-wave representation” (SWR),
respectively.

A. Self-Consistency Equations in the
Running-Wave Representation

We adopt the following form for the electric
field:

E(s,t)=3[8 () U.(s)+& () U_(s)] +c.c.  (4.1)

As in Ref. 17, in order to determine the ampli-
tudes, frequencies, and phases of the possible
quasistationary oscillations, we look for solutions
of the type

81 =E, (1) e Hosn, (4.2)

where the amplitudes E,(¢) and phases are real
functions of ¢ slowly varying compared with cosv?,
and v is not yet determined, but will be a fre-
quency around v, .

The polarization P(s, ¢) is split up into a part in
phase with the field, and a part with a phase dif-
ference of /2,

P(s,t)=% E*{[C"(t) +iS, ()] emivtroueny (s)}
+c.cC., (4.3)

where, in agreement with (3.12), the (coefficients
are defined by
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[c,(8) +iSu(t)]=<n% fo"no(s)zp(s, DU, (s)*ds.
4.4)

The amplitudes C,(¢) and S, (¢) are also slowly
varying functions of ¢.

The expressions (4.1)-(4.3) are substituted in
Eq. (3.3). In evaluating the space derivatives we
use (3.9). Only first time derivatives of E (t) and
¢,,(¢) are retained. Small terms like E, ¢u s
PE,, (cpu) E,, and Y@ XT)VE, c"(ﬂXr)u(pu s
(0/€,)E,, etc., are neglected compared to terms
of the order sz . In the source term we replace
32P/at? by —v2P as in Ref. 17, because terms

J

E.e W(Vt+dy) s

2

4 (vo—K) —ne®r

VT | B emiviven

-Ae~®r (v, +K)

where (3.15) and (3.16) are used for « and A, lo-
calized losses associated with dielectric bumps
are given by (4.5), and nonreciprocal losses
(v/Q ,) and differential losses (A) are defined by

W/Q.,) ={[(0/€,) +volx;) 1 £ (0,/€) A m)?
=(/Q) £A.

The right-hand-side members of Eqs. (4.6) and
(4.7) suggest the convenience of defining

€ =€ (n)? =€, +{x,)). (4.8)

Multiplying Eqs. (4.6) by e**V**®+) and taking
the real and imaginary parts, - we obtain the am-
plitude- and phase-determining equations

(4.7

E,+3 (W/Q,)E, +AE, sin(¢ +9,)
+3 OF; cos(¢ +5,) = -(1/2€)S,,

[w+¢,) - (v, ¥K)]E, + AE, cos(¢ +6,) (4.9)

F3OF, sin(¢ +06;)=-(/2€)C,

where

Pp=Wt+o,) - Wt+o.)=(ps - ). (4.10)

In some experiments,5'®15 a portion of the energy
is transferred from one running wave to the other
via an auxiliary mirror. This extra coupling
implies different reflection coefficients and phases
for the opposite beams. Possible differences,
(R+,6.)#(R_, 5_), may be incorporated into Egs.

/Q.) et
ee ® (1/Q.)
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proportional to C S,, etc., are negligible.

After the above s1mplifications, we take pro-
jections onto U, (s) by using (3.12), (4.4) and the
expressions (3.11), (3.16) for the average value
and matrix elements of #(s)? =[1 +y,(s)]. Similar
expressions are also used in dealing with localized
losses [iy,(s)], i.e.,

o) = [“x)ds, s
0 .5
eﬂ549=<—:>ﬂ-l—l— J;L x:(8) Us Utds.

Finally, two equations are obtained which may be
conveniently written in matrix form:

E+e-£(vt+¢+)

E e—i(vt+¢_)

v [Cosisyeriomenl
T 2¢,(n)? (C. +iS_) e twironr| ’ @
r
(4.9) by the following substitutions:
AE, sin(¢ +0,) ~ Az E; sin(¢ +065),
AE; cos(p +6,)~ Az E; cos(¢ +6;). (4.11)

The corresponding formulas for the standing-
wave representation are given in Appendix B.

V. THE ACTIVE MEDIUM-
POPULATION MATRIX

The next task is to evaluate the macroscopic
polarization as a statistical summation over the
atomic dipole moments. The atomic system and
its interaction with the optical field was described
in Ref. 17. Briefly, the model for the active me-
dium is an ensemble of independent atoms with
two excited energy levels a and b, between which
the laser transition takes place in the presence
of the field. The frequency of the transition a b
is designated by w = (W, ~W,), and both levels are
allowed to decay to lower states at rates indicated
by v, and v,. The rate at which atoms are ex-
cited to the state a (=a or b) at the space-time
point (s, , £,) with velocity v (s component) is de-
scribed by

oS, 2y, V) =W (VA o (S5, o), (5.1)

where W(v) is taken to be the normalized Max-
wellian distribution function

W(v) = (m2u)t g~ W2 (5.2)
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with u« related to an effective temperature T by

u? =2(v?),, = (2kgT/M), and A (s,, t,) the number

of atoms excited to state a per unit volume and
unit time. A ,(s,,t,) will be assumed to be slowly
varying over distances of several wavelengths

and over times comparable to the lifetime of the
atomic states. If collisions are neglected, an

atom introduced at position s, at time ¢, with veloc-
ity v is at a later time />, situated at

s=s,+v(t=1,). (5.3)

Consider what happens to an atom initially spec-
ified by the labels [a, s,, ¢,,v]. Owing to the
presence of the optical-field-induced transitions
a-b the atomic wave function, which is §, at
time ¢,, becomes a time-dependent linear com-
bination y(¢) =a(¢)y, +b(¢)p,. Correspondingly,
the atom acquires an induced electric dipole mo-
ment given by the expectation value of the dipole
operator,

(w(t)le? T, 2|9() = p(ad* +a*b),

where p (assumed real) is the matrix element

of the dipole operator between a and b. Instead
of describing the atomic state by its wave func-
tion, it has proved advantageous to use the equiv-
alent description which is provided by its (“pure
case”) density matrix (in the subspace of ¢, and

¥s)

la|® ab*

b 157 - (5.4)

pa, Sq,t0,v; 8) =
The equation of motion of the density matrix is

9 .
il =5 p(a, s, ty,v; t)=[5¢(s, £), p] - 2i 71 (Tp +pT),

(5.5)
where
w, Vis,t) Ye O
X=n , I'= , (5.6)
Vi(s,t) Ww, 0 v,

and ZV (s, t)=-®E(s, t) is the matrix element be-
tween states a and b of the interaction energy
operator.

A. Population Matrix—Formal Solution

All the macroscopic quantities that we shall
deal with, such as polarization P (s, v, ¢) and popu-
lation inversion density N(s, v, t) for atoms of a
given velocity v, can be expressed in terms of a
population matrix p(s,v,¢; £).33% This is ob-
tained by summing the microscopic density matrix
contributions, up to a time £ (st), of all atoms
which, regardless of s, {,, and a, are charac-
terized by the three labels: velocity v and time
t of arrival at a given place s, i.e.,

oo

p(s,v’t; t)= Z; f:wdto
b

a=a,
xfdso)‘a(so; t,,v)pla, Sostys Vs ‘;)
Xo(s=5,=v(t=1t,). (5.7)
For £=t, we have [p(s,v,t; {)];-,=p(s,v, t), where
the right-hand-side member is the matrix defined

in expression (24) of Ref. 17. It is easy to see
that p(s,v,¢; ¢) and p(s,v, £) satisfy

p(s,v,t;E)=p(s =v(t=F)v,7),

which shows the relation between the “substantial”
and “local” time derivatives of the two matrices
[a/at — a/of +v (8 /0s)].

Using (5.7), the macroscopic polarization and
population-inversion density at a given place s,
and time £, are given by

P(s,t)= [ "P(s,v,t)dv

=0 [Payls,v,8; D) 4ppalieedv,  (5.8)
N(s,t)= [ " N(s,v, t)dv

=f_:° (0aals, 0,85 £) = pyy(s,v, t; )2 dv.

(5.9)

The population matrix p(s,v, ¢; £ ) obeys an equa-
tion of motion which can be obtained with the help
of the equation of motion (5.5) for the atomic den-
sity matrix (Refs. 38 and 39). In component form,

d .
;t.—Paa(S,v,l; t)

= Yo Paa +iV (8, 1) [Pgp = Pra) +Xo(5, F,0),

d
E"Pu(sﬂ;t; £)

=_-ybpbb"'iV(g)t)[pab—pba]'}'Ab(g, f’v),
d . , (a7
;t:—pab(s’v)t; f)=_7'((" _ZYab)pab+lV(srt)[paa—pbblr

(5.10)

Pra=Pas>

where y,,=3(y, +7,). When the contribution to y,,
Vs> Yap Of damping mechanisms of nonradiative
type, such as atomic collisions in gases, are taken
into account, the relationship between the three
decay constants is destroyed. We shall therefore
regard y,, 7,, and y,, as independent. In Eq.
(5.10), V(3,1) is given by

V(s,0) = o DB, (7) e iy, () +e.c.],
. H
(5.11)
with
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§=s-v(t-1), (5.12)

and the index pu takes on the values (+, =) or (c, 9)
depending on the representation adopted for the
ring-laser field. We note that in the region where
the active medium is confined, the normal-mode
eigenfunctions (3.24) and (3.27) take on the simple
form [n,(s)~1]

U,(s)=e*i¥s, (5.13)

or

)"a(gy E’U) - Ab(‘g; [’U)

N(s,v,t;f)=[ " ”
a b -

Pas(S, v, t; E)
= i.f_‘«,df’ (v, f/) e-i(w-i'lab)(;-u) N(s,v, t; 2‘/)]’
(5.16)

where A (3,,v) has been assumed to be slowly
varying in the sense already indicated.

The coupled Equations (5.15) and (5.16) with the
form (5.11) for V(3,7) are simple to solve in the
case where N(s,v, ¢; ') can be treated as a slowly
varying function of ’ over periods comparable to
the lifetime of the atomic states (1/y,). In that
case an iterative procedure can be applied in
which one begins with expression (5.16) for
Pas(S,v,t; £) with N(s,v, ¢; £') taken out of the in-
tegral and evaluated at # =7, After integrating,
the result obtained is inserted into (5.15), which
gives N(s,v, t; f) in terms of the parameters of
the system. The expression for N is then put
back into (5.16) to obtain an improved expression
for p,,(s,v,t; f), etc. In the absence of atomic
motion (v =0) this method is essentially exact
since the two (+, =) or (c, s) modes have very
close frequencies v +¢'>" =V, and the iterative pro-
cedure outlined is similar to the “rate-equation
approach” for a single mode as described in Sec.
16 of Ref. 17.

For moving atoms (v #0), the temporal varia-
tions introduced through U, (8') = e*iK ==t or
U, ,(8"), make it difficult to judge the accuracy of
treating N(s,v,t; {') as a slowly varying function
in the # integrals (5.15) and (5.16), and a closer
examination is necessary to justify the rate-equa-
tion approximation. A more rigorous treatment
of the problem with moving atoms is possible by
using a Fourier-series method applied by Sten-
holm and Lamb,? by Holt,'® and by Feldman and
Feld?® for a high-intensity single-mode linear
laser. We shall see this in Sec. VI, where the
abovementioned method, with slight modifications,
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U(s)=v2 cosKs,
U,s)=-iV2 sinKs,

(5.14)

with K given by (3.10).

The pumping terms A, in the equation of motion
for p(s,v, t; f) make possible a quasisteady-state
solution. Leaving aside transients, from Eqgs.
(5.10) it is easy to obtain the formal expressions
given below which couple only p,,(s,v, ¢; ) and
N(s,v,t; f)=[p,m(s,v, £ tA) —Phb] :

T - - s, s % A
} +f dt/{V(s/,tl)(e-Yu(l-t)+e-7b(¢—t))[pab(s’v,t; t')-P:b]}, (515)

is used to solve the coupled equations (5.15) and
(5.16) with the form (5.11) for the perturbation
V@, i),

VI. POPULATION INVERSION AND -
POLARIZATION (RWR)

A. Strong-Signal Ring-Laser Theory

An examination of the coupled equations (5.15)
and (5.16) shows that the population difference
has a dc term, and both N and p,, are proportional
to

N,(8, DW(v) = [“(s"’“) _ N6, t'“)]. 6.1)
Ya yb
Furthermore, considering that V (3, f) given by
(5.11) contains the factors

U,(E)=e*ifi= oK Is(t=E))

suggests that solutions may be found in the form
of Fourier series of the type

N(s,v,t; t)=N,W 23 d,,e""""?’/’e"""3 @.,=d%),

n==o

n even (6.2)

Puy(S, v, t; 1) =N, We™V1

w
XY pn e i+ 1)de= (n-1)8_1/2 e'"Ks
n=—co

n odd (63)

with the relative phase angle

p(E)=wi+d,)-Wi+¢.)= ¢, —¢_. (6.4)

The form adopted for the phase factors in (6.2)
and (6.3) is taken over from the case where the
field is weak enough that successive iterations
beginning with N,W can be applied to solve the
coupled equations. The possible dependence of
both d, and p, on {s,v, ¢; {} is not shown explicitly.
We assume that they are slowly varying functions,
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eg.,
ad ap
of << Yaplns of <<YasPn-

The Fourier series are now inserted into the
Egs. (5.15) and (5.16), and the expressions are
evaluated with the following considerations (a),

(b) taken into account: .

(a) Only resonant terms ~e*!"~“*' are retained,
and terms with the time dependence ~e*!("*)¥’,
~¢*2iVt" apre neglected (rotating-wave approxima-
tion).

(b) Because of the competition between cavity
losses and the gain provided by the active medium,
a typical time for appreciable net growth of the
field is much greater than (/@)™ (=107° sec).
Thus for times 7 -#'<1/y,, (~107® sec), the re-
placements

E,(f)=E,({),
b (E)= ¢, (8) = . (ENE-1),
¢.(I') =94 = ¢ = $(F) = (E)E-1")
are reasonable in the ' integrals (5.15) and (5.16).

Correspondingly, it will prove convenient to in-
troduce the notation for the “local” frequencies

V1=V+¢.)i (6.5)

and the “beat” frequency

d=W,—v)=(ds - p.). (6.6)

The coefficients of equal powers of ¢!"¥* are then
equated on the two sides of the equations, leading
to a system of coupled algebraic equations for
the Fourier amplitudes d, and p,. For n=0, 12,
...,

1
dn=0n,0 +[ a(z,,?,,) [, =Kv) = (v_ +Kv)] +iy 4 ]
X{(PE+/2h') [pn+1 'pfm-l]
+(®E_/21)[p,., -p*,.,1}, 6.7)

and for =41, 3, 45,...,

Pn= (v, FKv) =3(n ¥1)[2K1) =Wy = V)] = w+iyg,
() oe()end. o

where the upper signs in (6.8) are convenient for
n=1 and the lower signs for n<-1. The quantities
(v, =Kv) and (v +Kv) are the Doppler-shifted
frequencies of the + waves as seen by an atom of
velocity v.

It will be convenient to write the above equations
in a more compact form by using

- -1_ Y
I,= [?(l/yu)] = ;ﬂf;; (6.9)

with dimensions of a rate, and the dimensionless
quantities

neven:

D, () _§ —nKv + 3nW, —v_) +ivy ’

9,0)=1, D,(-n)=D,(n)*; (6.10)
nodd:

D,() = o

v, =nKv +3(n F1)v, —v_) - w+iy,, ’
n=1-upper signs, n<-1-lower signs.
(6.11)
Equations (6.7) and (6.8) will now have the form
neven:
dy =8y, = i/ T2, (n)
XUV e = Zand |+ 12 [Py =02, 1Y (6.12)

nodd:
Pn==i(T/7,) 2D, ()(1Y 24, + 1X?d,,,) (6.13)
Here
_PPEL P Eily,+y)
S WO A

is introduced as a dimensionless measure of the
intensity of mode .

It is not difficult to see that the above equations
are simple generalizations of Eqs. (60) of Ref. 39
for a single-mode linear laser. Also, as in Ref.
39, Eqgs. (6.12) with arbitrary values for the field
amplitudes can be rewritten for computer solution
by using properly truncated continued fractions.
In fact, inserting (6.13) into (6.12), and taking into
account thatd_, =d: , we obtain

a,(n)d,, ,+ ctn)d, +a_,n)d,_,=6, , 6.15)
where
ay() = (I, I_)"2D,(n) [D,(n +1) +D(—n - 1)],
a_y(n) =L I )2D,(n) [D,(n =1) +D¥(-n +1)]
=ay(-n)*, (6.16)
cn)=1+1, D,(n)[D,(n+1) +D}(-n +1)]
+I_5)2(n)[:Dl(n -1)+D¥(~n - 1)].

1

(6.14)

Dividing by d,, Eq. (6.15) can be written, for
n=0, as

_ 1

N C(O) +2Re [az(o)(dz/do)] ’

d, (6.17)
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while for n>2,

—a-z(n)

<dd,,':2> " cl) +a,0(d,.,/d,)

with the complex conjugate for n <-2.

Setting #» =2 and iterating Eq. (6.18), an expres-
sion for (d,/d,) in the form of a continued fraction
is obtained:

(6.18)

(ﬁz_) - ~a_,(2)
dO
c(2) +a, (2) ———2=2(8)
c(4) +ay(4) ——=2=28)
c(6) +a,(6)
(6.19)
After a number of iterations, the factor
ay(n) = f, (1, 1), Kv, v=w) (6.20)

becomes small compared with ¢(z)~1, and the
continued fraction can be truncated. An examina-
tion of the coefficients shows that for small in-
tensities or large velocities only small values of
n are needed to make (6.20) small. For high
intensities or small velocities many terms have
to be included in the continued fraction. Valuable
theorems dealing with “convergents’ of truncated
continued fractions show that more accurate con-
vergents (larger n) can be obtained from less
accurate ones by means of simple linear rela-
tions.

Numerical analysis and a general computer
program which contains this theory as a special
case have been given by Sargent.** For our present
purposes it is sufficient to see that the value ob-
tained for (d,,/d,), once inserted into (6.17), gives
an explicit expression for d,. Expressions for
d,, are next obtained by multiplication d,X d,,/d,).
The remaining Fourier amplitudes d, and p, are
obtained by using (6.15) and (6.13).

The method outlined above gives the basis for a
strong-signal ring-laser theory. In the particular
case where one of the signals E_ (or E,) is suf-
ficiently weak, solutions in analytic form can be
derived from (6.15) and (6.13). This is easily
accomplished by taking a perturbation expansion
in terms of the weak field E_,

=) (1) L eue 0) 1 cen
dn_dn +dn + ’ pr(v +.Dr£)+ ’

which gives

0 .
A= By, D == (T ) )Y 42,

6.21)

and for [>1,
dP = ={[c®m)d{? +a,m)dii

+a_y(n)dlizl/c @),

WD = =L ) 0, )1V 2 asD, + 125,
(6.22)

where ¢® (x)d{*~? appears only for [>2. Recently,
much attention has been paid to questions such

as the absorption line shape of a weak in the pres-
ence of a strong one traveling in the opposite
direction.'®'!®* Equations (6.21) and (6.22) can

also be used to discuss this problem, and our
results up to first order in E_ agree with those
independently derived by Baklanov and Chebotaev.
[See Ref. 18 especially Eqs. (18)-(22).]

B. Applications to a Third-Order
Ring-Laser Theory

In the remainder of the present article, the
general formalism of Sec. VIA will be applied
only to the case of a small-signal ring laser
(I, and I_<<1). Most of the results have appeared
in the extensive literature of the past six years,
especially in papers by Aronowitz,'~%2° Klimon-
tovich et al.,*"® Landa and Lariontsev.®''® Thus,
no attempt will be made to give a complete treat-
ment of all experimentally important aspects of
ring-laser operation at small signals. However,
it is desirable to have a systematic calculation,
based on first principles and the model described
in Ref. 17.

For low excitations such that /, <<1, only lower-
order terms are needed in Eqs. (6.17) and (6.18).
In restricted situations fifth-order terms seem to
be necessary [see Ref. 7, especially (1.7)-(1.10)],
but most features can be described by a third-
order expansion. Then,

dy~c(0)*~{1-[2I,L(v, - Kv - w)
+2I_LW_ +Kv —w)l},  (6.23)

where

LW, ¥Kv - w)=3[D,(£1) +0F(£1)]

_ Yab (6.24)
(v, FKv — w)? +y2,

and

2® =a_y(2)==(1, I )2

il
X[@ V. —Kv) - (v_ +K0) +ivy 1
X[ “Yap + — ]
Ve —Kv—w+iy, v.+Kv-w-iy,]’

(6.25)
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d_,=dy, and d, for |n|>2 are of higher order. Using the above expressions for d, and d,, and (6.13) for p,

we obtain

(9E./2m) |
Ve =Kv - w+iy,

P =

iT,

{1 - [21,,,(3(1/,, ~Kv -w)+2I_L(v. +Kv - w)

+1_ (Y‘

( ) . ) >:l
Y vy = Kv)=(v. +Kv) +iv, ) \v, =Ko —w+iy, v +Kv - w =iy, ’

(6.26)

p-, can be obtained from (6.26) by interchanging subscripts + and changing the sign of the Kv terms. The
amplitudes p, , have terms which are also of third order in the field amplitudes; however, their contribu-
tion to the total polarization will be zero after projection onto the {U,,U_} modes.

The expressions for N(s,v,t) and P(s, v,t) to be used in (5.8) and (5.9) are obtained by substituting d,,
d,,, d,, in the Fourier series (6.2), (6.3) evaluated at {=¢:

N(s,v,t)=N,(s, ) W(v){l -2 [1,,.,0(1/,, —Kv —w)+I_LW_ +Kv = w)+([,1_)'2Ree?iks g~ i¢

i T,

(2 omo=1

P(s,v, ) =9l po(s,v, t; f)+c.e];o, = PN,(s, )W (v

x{l - |:2I,,£(u+ —Kv = w)+2[_LWv_. +Kv — w) +1_ <E ) 1L >

X ( “%p =~i%p

YU vKv-w —i)/,,,,)]}

+same changing {(+ — =), (e*#¥%~¢~#¥%) sign of Kv}+c.c.

Vi =Kv ~w+iy,

Expression (6.27) is a generalization of one ob-
tained by Aronowitz,! who neglected the space-
dependent terms. These terms arise from in-
terference between both (t) waves interacting with
atoms of velocity K| v|<v,,. The expression for
P(s,v,t) shows that the interference term will

be small in the Doppler limit, but in general
should not be neglected. The steady-state inverted
population in the absence of optical oscillations,
N,(s, t)W(v), is modified by the presence of the
field-induced transitions a-—b. The terms en-
closed between the square brackets are propor-
tional to the spectral energy density giving rise to
stimulated emission or absorption. Expression
(6.27) shows that for a given detuning (v, — w) of
the cavity frequency vy(=v) from the atomic transi-
tion frequency w, there are two Lorentzian holes
“burned” into the Gaussian velocity distribution
W(v). For |(v,=-w)|>y,,, the holes are centered
at opposite sides of the W(v) curve at

Kv,=+{,-w) and Kv_=~=(v_. - w)

and do not overlap, since we assume that the beat
note ¢ =(v, —v_) does not exceed Yap- In this case

> < Ygp + s 71 J
v_+Kv)+ivy ) \ vy =Kv —w+iy,, V. +Kv—w=iy, ’
(6.27)
) (PE, /27y et (Vi++) g+iKs
v, =Kv = w +iy,,
- (v +Kv) +iyy
(6.28)

—

the opposite running waves primarily interact
with different sets of atoms. For | (v, - w)|<y,,
the two holes overlap and mode competition is to
be expected because the (+, — ) waves interact with
the same set of atoms. In this case, the inter-
ference term gives an additional kind of s-de-
pendent hole burning, because the Doppler-shifted
frequencies of the two waves (v, —Kv) and (v_+Kv),
as seen by an atom of velocity v (|Kv|<y,,), do not
differ by much compared to y,. The space stria-
tions caused by the term e?!¥* in the inverted
population can lead to observable effects through
Bragg-like reflections. For solid-state lasers,
Kv =0, the two waves are driven by the same
atoms and strong mode competition arises. The
criterion

[ = PELG %) (g

6.29
! 47 zyab’)/a'}’b ( )

for validity of the perturbation expansion in powers
of the I, ’s means a small population depletion.
From now on, in dealing with P(s,v,¢), the
difference between v, and v_ will be neglected in
the small third-order terms, and v, will be re-
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placed by v,. To obtain the total polarization
P(s,t) from expression (6.28) we have to integrate
over velocities as required by (5.8). From the
first-order terms we have

Vew ¥, *ee w(v)
=% Y ) - —_—
Z< Ku ’Ku) Ku f_., (v = w +iy,,) FKv dv,

(6.30)

which is a well-known representation of the com-
plex “plasma dispersion function” used in the
theory of Doppler broadening.*® Since W(v) is

an even function of v, the result (6.30) is inde-
pendent of the sign of Kv. The third-order con-

tribution P®'(s, t) will appear in terms of the
functions

v-w _m> -
JU-X( Ku ' Ku 2Ku

xf”” W)y -~ w - (M) Kv) v,

w (V=w+iy,) - (WK
(6.31)

with indices u, A =+. The symbol (u) is defined

to be 1 when =+ and similarly for (A). Third-
order contributions corresponding to interferences
[see Eqs. (6.27) and (6.28)] will be given in terms
of

vow % Y\l g f”’ W(v)
Y( Ku ’Ku '’ Ku) %) e W=werivg) TKv

It will be convenient to deal with Z, J, ,=J_ _,
Ji,-=d_ ., and Y as functions of a single complex
dimensionless quantity

_ P (V'—w) R _Yn_
g=g+in= Ku ' 'Ku

(6.33)
which permits also a more compact form for the
integral representations (6.30)-(6.32). Expres-
sions of J, ), and Y in terms of the plasma dis-
persion function Z=Z (&, ) +iZ,( £, 1) are given
in Appendix A.

After projection onto the {U,, U_} modes, the
total polarization, P(s,¢)=J""P(s,v, t)dv, can be
written in the form

P(s,t)=~(92N,/2h Ku) (E, e" V#*o01y, (s)
Xz, - {86, +e()1_}]

+same with +-— ¥) +c.c.,

(6.34)
where
_ L
No(t) =(1/L) f No(s, t)dS,
° 6.35)
§§=Et+in5(v—;{;ﬂ +%h-

In the third-order terms of (6.34) the approxima-
tion v, =v + ¢, ~v has been taken, and the “satura-
tion” (8) and “coupling” (@) functions stand for

8=(8, +i8;)=d, .,
e=(e, +ie,)=(J, ; +Y).

(6.36)

Functions (8, +i8;) and (e, +ie;) will have a role
similar to (p +iB) and (7 +i 6) of Eqs. (130) and
(136) of Ref. 17.

= iYo F2Kv

15 ] [ 7'%11: + —iyab } dv
(v - w+iy,) FKv (v - w =iy,) tKv ’

(6.32)

A simple comparison of (6.34) and (4.3) shows
the explicit form of the in-phase and quadrature
coefficients C,(¢) and S,(¢). Correspondingly,
the amplitude- and phase-determining equations
in the RWR are given by (see Sec. IV)

E,+3(v/Q.,)E, +ALE, sin(¢ +0;) + 30E; cos(¢ +;)

= (EV:%T) Efz,£,)-[8,(01, +e,(£)I,]},

(6.37)
[(4$.) = @o B, +8,E; cos($+2,)
#3OE, sin(¢ +0,)

- (i‘%“:) E{Z,(£,)~[8,(8)1, +e, (&), ]}.

(6.38)

The dimensionless intensities [, have been de-
fined in (6.14); nonreciprocal losses (v/Q,) and
localized losses © are defined in (4.7) and (4.5).
The parameters k, A <<y, which take into account
the rotation of the platform and the effect of back-
scattering of radiation are given by (3.15) and
(3.16), (3.17). A translation of the origin of the
s coordinate, allow us to eliminate one of the
phases &,, o, [see (3.16), (3.26), and (4.5)].

Approximate analytical solutions of the non-
linear, coupled equations (6.37) and (6.38) can be
obtained in a few simple cases.?'®!® However, in
most cases a computer treatment is necessary,®°
and for this purpose it is convenient to rewrite
the equations in a more compact form. This is
done by the following steps (a)-(c).

(a) The equations are multiplied by
(9%E,/4R%Tyy,,) so as to express them in terms of
the dimensionless intensities I,=[®2E2%(y, +v,)/
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4h 27a7b7ab]'

(b) The unspecified frequency v has been in-
troduced in (4.2) with the sole restriction that it
must be close to the cavity eigenfrequency v,, and
without loss of generality can be taken as

(6.39)

(c) Usually, the degree of inversion N, of the
atomic medium is described in terms of the rela-
tive excitation

Jl=(IT,(.)/ITIT);

vEv,.

(6.40)

where N, is the excitation required for threshold
when the cavity frequency v, is tuned to the peak
w of the atomic transition curve. Neglecting the
complications arising from the possible presence
of bumps A or nonreciprocal and localized losses
A, ©<<(v/Q), the value of N, it is determined
by setting the linear gain equal to cavity losses:

WON, /26iKu) Z,(0) =5 (v/Q). (6.41)

Using (6.40) and (6.41), the parameter (v¥2N,/
2¢#Ku) which appears in Eqs. (6.37) and (6.38)

can be expressed in terms of the cavity losses and
relative excitation as

1 wam
2 2,0

Writing (v/Q,)=(v/Q) tA, the net linear gain of

(w9?N,/2¢hKu) = =1G. (6.42)

J

8
the (+) modes becomes
GA,=GlZ,(t,,n) - w/Q,)G™]
=6l z(¢,, ) - Z,0) 3], (6.43)
where
%, =0 0/Q)/ /RN =71 72/ /Q)]. (6.44)

Finally, Eqs. (6.37) and (6.38) for the running-
wave representation take the form

I, =%2A,(I,1.)"%sin(¢ +06;)-O(I,1.)"'% cos¢
+GlA, -8,(),—e,(®)I]1,, (6.45)

G.1, =Fkl,= A, (1,1.)"%cos(p+6;)+30(I.1.)?sing
+36(Z,(8,) -8,(8)1, e (9], (6.46)

where 6, has been eliminated by a translation of
the origin of the s coordinate, and (6, — 6;) has
been written as §,. Frequency parameters A,
and corresponding amplitude reflection coeffi-
cients R, are related by A, =(c/L)R,. Functions
Z,8,¢ are given by (6.36) and corresponding
expressions of Appendix A. In the case of two-
mode operation (/, and I_#0), by subtracting one
of Egs. (6.46) from the other, we obtain a dif-
ferential equation for the phase difference ¢
=Wt+¢.)- Wt +p_)=(d, — ¢_), which gives the
behavior of the beat frequency

¢=(ps - p.)=-2k+3G6[Z,(£,) - Z,(£)] - 3G (C, -S 1. - 1,)
— (LI )Y2[I_A_cos(p+6_) =1, A, cos(p+d,)-20(, +I_)sing]. (6.47)

Equations (6.45)-(6.4"7) agree with those pre-
viously used by a number of authors. To deal with
them, a computer treatment is generally neces-
sary. Approximate analytical solutions can be
obtained in some cases of practical interest, es-
pecially when ($/GA), (A/GA), and (2A/GA) are
much less in magnitude than [(S, - C,) /S, +C,)],
which is usually called the “weak-coupling” case
in the Russian literature.”"!® In this case the
equations are more easily handled in terms of
the quantities Y =(I_+1I,) and X =(I_ - 1,).

VII. COLLISIONS, VELOCITY FLOW,
ADMIXTURE OF ISOTOPES

The effects of collisions have been studied both
theoretically and experimentally for standing-
wave gas lasers,*3'** and are easily brought into
Eqs. (6.45) and (6.46). With the definition I,
=[ 92E2 (3, +%,)/4% % v, %Y,) for the dimensionless
intensities, it can be shown that allowance for
collisions at moderate pressures reduces to a

T

redetermination of the parameters, i.e., a shift
of the transition frequency, and a linear pressure
(p) dependence of the damping constants

)
Ya=v& +Ko b, (7.1)
Yap =2 (v +70) +K gy b

In this approximation, Eqs. (6.45) and (6.46) are
left formally unchanged.

In the case where a dc discharge is used to ob-
tain population inversion, there is a net flow of
the gas components toward one of the elec-
trodes.?°*®> An obvious way to deal with this effect
is to replace the Maxwellian velocity distribution
by a suitably modified one containing adjustable
parameters. A sufficiently good approximation
would seem to be a Maxwellian distribution having
some nonzero average U,

W(v) = (1t 2%)t g~ L2 uP (7.2)

It is apparent that this will imply an extra Doppler
shift. With a shift of 7 in W(v), the two Lorent-
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zian holes in N(s,v,t) are equally shifted by Ko .
Formulas (6.27) and (6.28) for N(s,v, ¢) and
P(s,v,t), in conjunction with the integral repre-
sentations (6.30)-(6.32) for Z, J, and Y, indicate
that this is equivalent to the substitution of v, =v
+¢, by

v,~V,¥KT or {,—~¢,F(T/u). (7.3)

The effects in the net gain GA, and frequency
splitting can now be obtained by using the following
first-order Taylor-series expansions [see (AG)]:

Z(E+at,n)=2,(8n)
-2[£z,(&, ) +nZ, (5, W] Ag+e--,
Z,(E+AE,m)=Z,(m)
-2{1+£Z,(5,m) -0z, (&, M) ag+---.
(7.4)

Then, letting A%, =[(¢, TK7)/Kul= %[ (k+K7T)/Ku]
in expressions (6.43) and (6.47), one obtains

GA, =G{z,(&,n)[1 £2&(k +KD)/Kul - Z,(0, n) N3},
(1.5)

=2k +2G [ (« +K¥)/Ku] + (vest of the terms).
(7.6)

Expression (7.5) indicates that the beam traveling
in the direction of the velocity flow will have a
greater gain (for £>0). Expression (7.6) in con-
junction with (6.47) indicates that because of the
dispersive properties of the active medium [shape
of Z,(£,n)], for a velocity flow in the direction
of the rotation, the frequency-splitting contribu-
tions of the rotation and the velocity flow tend to
cancel (G =~0.6 MHz for typical values of the pa-
rameters).?®

Equations (6.45) and (6.46) are valid for gas
lasers containing a single isotope (for example
20Ne in a Ne-He laser). The presence of even
a trace of another isotope (*Ne) can greatly change
mode-competition phenomena. The influence of
admixture of a second isotope has been theoreti-
cally described by Aronowitz! and Klimontovich
et al.” Thus, we simply write down the general
equations, which can be derived by an appropriate
weighted average of the excitation inversion den-
sities N,(s,v, ¢), and corresponding polarization
Py(s,v,t), for each isotopic component j:

f;=(relative concentration of isotope j), f; +f,=1
w, = (transition frequency of isotope j), 7.7)
W,(v) = (1"2u,) "L em PMD? u = 2Rk T/M 2,

The population-inversion density will now be given
by [see (6.27)]

N(s,v,t)=Ny 23 f;W;(v)

i=1,2

x{1-2[1,&(v, -w, -Kv)

+1_L8(v. —w; +Kv)+4]}, (7.8)
where J are interference terms, and a similar
average for P(s,v,t) [see (6.28)]. After integration
over velocities, the amplitude and phase equations
can be written with the same format as (6.45) and
(6.46); and

A, ={lAZ(EP) + £,2,(2)]) - 2R3 },
Z,={hZ,(E") + 1, Z,EP),
8={/,8(£V)+ £, 8(¢®),

e={f; etW)+fe(t®)},

£ =(v-w,)/Ku, G=@//RQ)N/Z™,

zr> =max[f, Z,(§) + £, Z,(§®)]. (1.9)

Approximations Ku, ~Ku, =Ku and ¢, = #,=#¢ have
been used in expressions (7.9).

From expression (7.8) one can see that besides
the two Lorentzian holes of width 7,, burned into
the Gaussian velocity distribution W,(v) of the
main isotope (1),

Ko =+, -w,) and Ko ==(v_ — w,),
there are also two Lorentzian holes
Kv® =+(v, -w,) and Kv® ==(v_ - w,)

burned into W,(v). For a typical case (0.633-pu
transition in He-Ne laser at 2.5 Torr), Ku=~1000
MHz, |v, —v_|<<y,~200 MHz, and (w, - w,)

~ 850 MHz.

In the detuning region of strong mode competi-
tion (in terms of the main isotope), where (v - w,)
<Yu, Kv{’=0, the mode with lower losses would
be able to quench the oscillations of the other
mode. However, the presence of the two holes,
mode (+) interacting with atoms with Kv(?’
= —(w, - w,), and mode (-) interacting with atoms
with Kv ® ~ + (w, - w, ), where |w, - w,|>7,,, indi-
cates that if f, is such that f,N,W(v®) exceeds
a minimum value, the losses may be overcome
by an extra increase of the “effective” population.
In this case both modes will continue to oscillate.

VIII. RING LASER AS A ROTATION SENSOR

Depending on the values of the different param-
eters, i.e., k, A, etc., interference of the two
opposed beams emerging from a ring laser may
produce a beat-frequency signal. The lower solid
line of Fig. 5 shows qualitatively a typical diagram
of the observed beat frequency as a function of
the rotation rate (-2«).%9'15:2° Ag the rotation
rate increases, interference of the two beams
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results in beats whose frequency asymptotically
approaches —2x. When the magnitude of the pa-
rameter 2« is decreased to a value 0<2|«|<2«,,
the observed beat note disappears, and both fields
E, and E_ are present but have the same frequency
in spite of a nonzero rotation rate. At rotation
rates much greater than the lock-in threshold

2k, the beat signal is nearly sinusoidal and for
rotation rates approaching the locking-in thresh-
old, the signal has periodic time pulsations with

a distorted waveform.*2° It is generally observed
that the solid curve for the observed beat fre-
quency ¢'>(,,,s agrees very well with the relationship*®

Povs =[(20)? - (21 P]V2. 8.1)

The experimental behavior of the beat note, and
theoretical descriptions using equations of the
type (6.45)-(6.47)%°° appear to be in close cor-
respondence when the observed beat note is asso-
ciated with the time average value of ¢(¢) [see
Eq. (8.15) and Refs. 9 and 20]. The vertical lines
in Fig. 5 schematically indicate temporal pulsa-
tions of ¢(¢), and the lower solid line, the time
average value of ¢(¢) as obtained by a computer
treatment of Eqs. (6.45) and (6.47). As the rota-
tion rate approaches the locking threshold 2«
= f(A, A, ©), the pulsating ¢(¢) shows a distorted
waveform, spending more time in the region near
the threshold. The time average { ¢), then departs
from the desired value of the rotation rate (=2«).
However, the theory indicates that a measurement
of a few features of the time behavior of I,(#) and
$(t) may provide sufficient information for deter-
mining the value of the rotation rate above the
locking zone. This possibility will be illustrated
here by considering a simple case which can be
handled analytically. In more complicated cases,
a fitting of experimental curves with theoretical
expressions will be necessary.

Above the locking zone, it is generally observed
that both I, and I_ have pulsations at the beat
frequency rate, i.e., with a fundamental frequency
($), and with I, and I_ nearly 180° out of phase.
Then, it will be sufficient for us to consider Eqs.
(6.45) and (6.47) with A, =4, 6,=6, and © =0.

If rotation rates are not too high, and effects such
as a net flow of the active gas atoms are small
enough, the term 3G [Z7(£.)-Zr(£.)] can be
dropped from Eq. (6.47). The remaining phase
angle 6 can also be ignored.

Introducing the new variables

Y=(_+1,), X=(_-1,), (8.2)
Equations (6.45) and (6.47) become
Y=GA{Y[1-Y@,+e¢)/24]
+(6A/A)X -X2(8; - ©,)/2 A}, (8.3)

loo

X=GA{X[1-Y@S,/A)]+(6A/A) Y
+(2A/GA)(Y? -X?)V2 ging}, (8.4)

¢=-{2k+2AX (Y% -X?)"V2 cosp +3G(e, - 8,) X},

(8.5)
where the net linear gain of I, has been written
as [see (6.43)]

A,=AT8A, |8A|<<A. (8.6)

In the ideal case of zero coupling due to back-
scattering (A =0), the steady-state two-mode
solution is given by

Y°=2A(8, +e;), X°=284/(8,-¢,), (8.7
or

I9=A/(8,+€,)£8A/(8; - e,), 8.7")
which for excitations above threshold (A >0) is
stable only if |64 |<A(S; - €,) /(8; +€,), or equiv-
alently, if [X°|<Y° (i.e., away from the region of
strong mode competition).

For A#0, and rotations rates above the locking

zone, the intensities I, and I_ undergo time pul-

sations. We will restrict ouselves to those solu-
tions oscillating around {Y°, X%, i.e.,

Y(£)=Y°+Y'(t), |YY|<<Y®
X(t)=X°+X'(t), X*<<(Y°).

(8.8)

Of course, a solution of this type will be valid
only for restricted values of A, which will be
determined later on, (weak-coupling case so-
called in JETP, etc.). Substituting (8.8) into Eq.

-4

Ax(n/6)

i [@+2Ax(n/E)
IDEAL )
PERFORMANCE ¢ =-2x

PERFORMANCE
INDICATED BY THEORY

T 2«

2«

FIG. 5. Beat frequency ¢(f) vs the Sagnac difference
frequency (3.15). The vertical lines indicate the range
of the temporal pulsations. The lower solid line indi-
cates the time-average value of q'b(t ) As K approaches
the locking value x;, the pulsating ¢ spends more time
in the region near 2/k/—2K; .
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(8.4) with the restrictions imposed, one obtains
Y'=0,
X'=2AY° [o‘ sing(t') exp{-[GAB, - €,)/(,+e,)]

X(t=t')}dt, (8.9)

after transients have decayed. Away from the
region (8; = €,) of strong-mode competition, and
for rotation rates not too far from the.locking
zone, the integral is extended over times (¢ -¢')
short enough that ¢(#') = () - p(2)(t - t’) with
(£)(t =¢')<1 should be a good approximation.
Then

X'(£) =2aYGA(S, - €,)/(s, +e,)]
x {sing(t) - $ ()[GA®, - €)/6,+ )]
x cosp(£)}. (8.10)
The initial assumption, X2<<Y? is then valid for
(6A/A)=[v/Q.) - /Q.)I/GA, (#/GA), and (24/GA)
much less in magnitude than (8, - €,)/(8, +@,).""*°

The results to first order in the small param-
eters can be written in the form

Y=(_+1,)=24/8,+¢,),
X=(_-1,)=Y[P(5Q)+P(a)sin¢(t)],
(1) =2k - 2a[P(5Q) +P(A) sing] cos¢(t)
-3G(e, -8,)Y[P(Q) +P(A)sinp(2)],
(8.13)

(8.11)
(8.12)

where
P(6Q) =(6A/GA) (S, - e)/(5,+¢)] 7,
P(a) =(2a/GA)[ (8, -¢,)/(8,+e)] ™.

Equation (8.13) is a particular case of the more
general (6.47), and still contains most of the ob-
served features shown in Fig. 5. We will begin
by considering the case P(5Q)=0.

An equation (8.13) of the type

#(t)=-2k+asing(t)[1 - (b/a) cosp(2)],

k$0, a%0, 5>0

(8.14)

(8.15)

can be handled analytically*’; for our purposes it
is sufficient to see that pulsations cease (¢ =0)

at the locking threshold 2«; = max|asing - b sing
Xcos¢|, while for rotation rates |«|>|«,|, the av-
erage { $(¢)) departs from the desired value (-2k)
for a rotation-rate sensor. Nevertheless, Eq.
(8.15) indicates that using more detailed mea-
surements one can still determine the rotation
rate (apart from unavoidable noise fluctuations).
In fact, for |«|>«,, the oscillating ¢(¢) will have
extremes determined by the max and min values
of f(¢p)=asingp -bsinpcosp. From (8 f/8¢)=0,

these extremes occur for
cos, = (a/4d) £[(a/4b) +3]V2. (8.16)

Assuming a>0, the (-) sign of (8.16) always give
|cosg¢,|<1, while taking the (+) sign, |cos¢,|<1
only for b>4a. In any case, these two type of
behavior can be distinguished by an examination
of the experimental beat signal.

Taking a >0, and the (-) sign of (8.16), we have
cos$,<0. Then, from f(¢,)=asing,[1 +(b/a)
X|cose,|], we see that sing,>0 (i.e., ¢, in the
third quadrant) gives f =fma, while sing,<0 (i.e.,
¢, in the fourth quadrant) gives f =fun. Substitu-
ting these values into (8.15), and taking into ac-
count that fi;, = = fax, One obtains the analytic
result

%(d)max+¢"min)=_2"- (817)

Thus, whenever possible, a direct or indirect
measurement of ¢max and ¢ mi, should provide, at
least in this restricted case, the value of the ro-
tation rate. In this approximation, from (8.12)
one can see that X ,x = =Xmin.

In more complicated cases, more elaborate
measurements are necessary, but the theory indi-
cates that the possibility of determining the rota-
tion rate is generally present. For example, the
locking threshold may be shifted by introducing
a calibrated nonreciprocal phase difference be-
tween the counter-rotating waves (e.g., Kpis).®
Nonreciprocal transmission (6@ #0) may also be
present or externally introduced.* In this case,
and whenever the approximations (8.11)-(8.13)
hold, a measurement of Pmax and ¢ Will give

%(d’)mu +¢min)=—[2("+’(bh;)

+3G(e,-8,)YP(5Q)]. (8.18)
The term G(e, - 8,) depends on the losses of the
resonator and relative excitation of the active
medium, and varies with detuning &= (v - w)/Ku

as the dispersion curve associated with an ab-
sorption line centered on the Doppler curve
[(6.32), (6.36), and Appendix A]. We see that a
measurement of X . +Xmin =2YP(5Q), and Y gives
the possibility of determining P(6Q). Hence the
laser gyroscope can still prove useful in the pres-
ence of reflections and nonreciprocal losses.
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APPENDIX A: Z(}),J, , (£),Y(3)

The representation

25)=- [ R =t A1)

for the plasma dispersion function is valid only
for Imgz=0; and the above integral, with ¢* instead
of ¢, represents Z(¢£)* rather than Z(¢*). The
complex functions J,  and Y can be expressed

Y=%(11/K“)"Za;{[g+éi(21n—na)} [ ;

§+§i(2ﬂ—ﬂa)

'[E—éién—nq) } [&-%i(Zln-na)

where
(8- (V—Z’i)gwib i} &222712 ’ (45)
—a—Z;(gQ ==2[1+52(¢)], (A6)
Na=ro/Ku), T,=—tab— (A7)

T %t

In many gas lasers n=(y,/Ku)<<1, so that it
will be useful to expand the basic ingredient Z in
power of n. Using (6Z/9n)=-2i[1+¢Z], one ob-
tains

Z,(&,1) =2,(£,0) +2n¢Z,(§, 0)
+20%[z, -2£-2822 ]+,
Z,(&,m)=2,(¢,0) - 2q1 + £Z,(¢, 0)]

+20%Z,(£,0)[1 =2 €8] 4+« - (A8)

where
Zr(§9 0) ==2e" ng:e"zdx = —2& +% Es _T85_§5 +oee,
Z (¢, 0)=‘/‘;T—e-§2 (A9)

are obtained from (Al) by using the following
recipes for the 6-function and principal-value
distributions:

= lim—2— =6(x), lim—=

~-£ . @)
T oo X2 +1] noo X2+ X

The expansions (A8) and (A9) can be used to cal-
culate simple expressions for Z, J, and Y valid
for £=[(v - w)/Kul<1. In particular,

Y (£)~ Y (0)=i4v7 (L,/Ku)n for £<n,
Y (&) rapidly approaches zero for £>1.

(a11)

|oo

in terms of the plasma function Z=[Z,(¢,7)

+3Z,( &, n)] by separating the complex denominators
of the integral representations in partial frac-
tions. Then,

J, .. ==2n[£2, +0z,]1+ilz, +2n(1 -1z, + £2,)],

(A2)
g, ==&/ )z, - /9 7,]
+i2(8)[z,-m/8)z,], (A3)
1. YA
[2(¢) - 2z ino)] _a_g]
[z(¢)-zGin)] - (z,/ &)] } ) (A4)

r

The approximate Lorentzian ¢ shape of J, _(£),

and the & behavior of Y (£), may be qualitatively
related with our discussion of expression (6.27)
for N(s,v, t).

In the case of no atomic motion (x =0), the ex-
pressions for Z, J, and Y are easily found from
the integral representations (6.30)-(6.32) by
using

lim W(v)=lim @/2%)" e’ 25(v).  (A12)

u—0 u -0

APPENDIX B: THE STANDING-WAVE
REPRESENTATION

1. Self-Consistency Equations in the SWR

The following forms are adopted for E(s, ¢) and
P(s,t):

E(s,t)=3 2 {E,(D)e iy (s)+c.c.,

p=c,s
P(s,t)=3% 2, {[Cu+ iSu] e~y (s)h +e.c.
L=c,s
(B1)

Projections onto U,, U, are obtained by (3.23) with
L=c,s. With the origin of the s coordinate deter-
mined by (3.26), the matrix elements (3.16) and
(4.5) will have the form

L
2a =_(:>_L n*(s)U; Utds, n*(s)=1+x,(s)
0
L
een(ai-sr)=<_:§r§ x:i(8)U; Ut ds. (B2)
]

Taking into account that {U,, U_} and {U,, U,} are
related by a simple transformation, it is easy to
find the corresponding expressions for the matrix
elements in the SWR:
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Vn L L
(n)L f n? Ue,s U:,cds =0, _—_‘L—Q:)L j Xi UsU:dS =10 sin(@i - 67), (B3)
o V]

where the signs (+) and (~) are correlated with
U, and U, respectively.
Substituting (B1) and (B3) in Eq. (3.3) and with

v, L
Tﬁf w3 U, (|2ds =v, +24,
o

Yo f L U. 12ds=v Sxﬁ_ +©cos(s, -6 the same type of approximations already used
(m)L Jy XilUe,d °(n)? (64 -5,), in deriving (4.6), one obtains
J
i | B e ivtreo (Ve - 4) K . (v/Q)+© cos(s; = 5,) —A +i© sin(p; - 5,) E e ivt+eo
15— - ——éi
dt E ety K (v, +4) -A-i©@ sin(5; -~ 5,) (¥/Q)-©cos(s,; - b,) E e i vttds)
(C,+iS ) emivt+o
=3¢ (B4)
2€ | (C, +iS ) emive+sy
—
2. Polarization and Population Inversion (SWR) Uc(§ )=v2 coskK$ , Us(§) =-3V2 sinks. (B6)
We begin with the pair of coupled equations For a small-signal theory, the solutions can be
(5.15) and (5.16) for N(S,v,¢; ¢) and p,,(s,v,¢; ¢). obtained by iterations beginning with zero order,
The perturbation takes the form o NOG, v, 8 f)=N°(§,f)W(v). (BT)
Vs, t)=~(9/2k E, (f)ettviroutng (s
&, £)=-(¢/ )u=2c,s{ A 46 The calculations are straightforward and we shall
+c.c.}, (B5) only quote the results.
The velocity -dependent population N(s,v,¢) is
with given by

J

N(s,v, £)=N,(s, t)W(v){l- [[Ic +1, ][ +Kv - w) +&v -Kv-w)]+2(I I, )2 [£(v +Kv — w)- £(v = Kv - w)] cosge

+2Ree+2”{s< » (29 > ( _éiyab N _%i'yab >

a=a,p Ve~ 2Kv V=Kv - w+iy,, V+KU = w =iy,

X[[c-[s_27;(1513)1/251“(?]]} ’ (B8)

where T,=[y,7,/(7, +7,)], and the dimensionless intensities I, are introduced as in (6.14). The phase
difference has been denoted by

@(£) = () = d5(2). (B9)
The expression for the total polarization P(s,t¢) is given by

P(s,t)=0[p& (s, ) +p(s, t)] +c.c.

- -ols, D] () 1 50 () A~ 45 @), 5436 - )L

+(%§‘—) e U9 T () (2(E,) - {3(8 + )1, +[8 +3(8 - @) €77 zc})} +e.c., (810)
where the functions 8§ =J,, and €=(J,_ +Y) have been defined by the integral representations (6.36) and
(6.30)—(6.32). In Appendix A, the functions 8§ and € are evaluated in terms of the plasma dispersion func-
tion Z.

The amplitude- and phase-determing equations are obtained by using (B4) and (B10). It is convenient to
express them in terms of the dimensionless intensities I,  =[92E2 [(, +7,)/4%%),;),,] by using the steps
indicated in (6.39)-(6.42). For simplicity we consider the case A,=A_=A and ©=0:



2124 L. N. MENEGOZZI AND W. E. LAMB, JR.

I,=+2k(I 1,)"?sing +A(I I)"'2 cosp - (v/Q)I,

|eo

+GILZ,(£)-{36 + )1, +[3(8 +@); +3(S - €),(1 +c0s2¢) +3(8 — €), sin2¢] I, }), (B11)

Gl ==DI +k(I 12 cosg -3 A(I I)? sing

+3GI,(Z, () -{3(8 +e), I, +[3(8 +@), +3(8 — €),(1 +cos2¢) - 3(8 - €), sin2¢] I, }), (B12)

and two more equations obtained by interchanging
¢ and s and replacing A by -A and ¢ by —¢. In
the case where [,#0 and I,#0, from (4.11) we
can obtain a differential equation for the phase
difference ¢ = (¢, - ¢,). This is given by

P=(po= Ps)==-2A =3G (I, = 1)(8 - €),(1 +c0s2¢)
+3G (I +1,)(8 - ), sin2¢ +k(I, -1 I 1,)"V2 cosp
= 3N +1)(I,1,) Y ?sing, (B13)

where the approximations Z, (£, )~ Z,() has been
made.

We shall limit our discussion of the above equa-
tions to a simple case, which can be handled
analytically:

|&]>n, k=0, A=0, A#0

(see Ref. 14). The results for this case are easily
obtained in both the RWR and the SWR. In the
weak-coupling case, when (24/GA) is much less
than [(8, - €,)/(8; +€;)], the approximations of
Sec. VIII apply, and one can write I, and ¢> in

the form

I,~3Y[15P(A)sing(#)], Y= —S-‘—Z:Ae—{ ,
p(t)=-3G(e, ~8,)YP(A)sing — 3AP(A) sin2¢.

(B14)

Making use of the fact that €, = £(£)8;, 8;~Z,
(8,>>e, for | £|>7), and the series expansions of
the different functions (see Appendix A), one can
write

p~+2A(M/E)sing - A(RA/GA)sin2¢. (B15)

If the second term is much smaller than the first,
the phase angle will lock at

p=2xm for (£/A)>0,

(B16)
¢=0 for (£/A)<0.
Substituting (B16) into (B14), one finds
A A
I, —I-NS;"‘eg NS—‘ (B17)

Furthermore, substitution of (B16) and (B17) into
Eqgs. (6.45) for ¢, give us

b.=¢_=+A for (£/a)>0,
$_=¢,==A for (¢/a)<0.
Using (B16) and (B18) one can write, for (£/A)>0,

E(s,t)= (10)1/2{e-i(u+A)teu(s+eﬁ1re-¢(y+me-”{s}

(B18)

o« (IO)llze-i(U+A)tSinKs’ (B19)
and, for (£/A)<0,
E(s,t) o (IO0/2 =V = Dt cosKs, (B20)

The same results also follow from Eqs. (B11)
and (B12) of the SWR. These equations for | £|>7,
A#0, k=0, and A=0 can be written as (we have
taken ¢, =0, 8,=0, e,/8;=-n/§)

I.c=aclc_Bch::_ Oes Is 1,

jc=asIs"BsI§-esc1cls’

(B21)

where a,, p=c or s are given by
a, =G{Z,(&)[1 - 2&(¢, /Ku)] - /Q)G*},  (B22)
and
B.=Bs=B=18,, (B23)
6, =B[1 + (1 +cos2¢) +(n/£) sin2¢] (B24)
6,.=B[1 + (1 +cos2¢) - (n/£) sin2¢] .
The beat note ¢ is given by
¢==20+3G(I,~1,)) e, (1+cos2yp) (B25)
+3G(I,+1.)8,sin2¢.

For | £|>n, the second term on the right-hand side
is small compared with the third and will be ne-
glected. Under these conditions, one can see that
if two-mode oscillation were possible (SWR), the
phase angle ¢ would lock at a value ¢, for which

. 2A
sin2¢; = m . (B26)

For weak coupling, (B26) is much less than one

in magnitude, so that ¢, ~7/2. Substituting (B26)

into (B24), the coupling parameters take the form
66, =B[1+(m/8)sin2¢, ], (B27)
85.=Bl1 - (n/&) sin2¢, ).

The expressions for the steady-state two-mode
solution of (B21) are now given by



|oo

aB-a. 6, aB-6,
B2-06_6

cs ’sc h Bz_ecsesc

I.= asB ~-a; asc ~ a(B - 9&4:)
$ Bz - ecs esc Bz - ocs esc

1=
(B28)

The range of validity of these equations should be
examined. First of all, one can see that the de-
nominator D is

D =p% -0, 6,,=B%-B%[1 - (n/£)?sin?2¢,]>0,

but when one of the numerators is positive, the

THEORY OF A RING LASER

2125

other is negative, i.e., for (¢/A)>0, (3 - 6,,)<0
and (8 - 6,.)>0, while for (£/A)<0, (3 - 6,,)<0
and (3 ~ 6,,)>0. Consequently, two-mode oscilla-
tion is unstable, and we shall have only single-
mode operation:

{1,=0, I,#0} for £>0

and (B29)
{1,#0, 1,=0} for £<0,

which coincides with results (B19) and (B20).
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