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Previous Hylleraas calculations of K = & QHQ & for the lowest 'P autoionization state of helium are here
supplemented by calculations of the shift (h,), width (I ), and shape parameter (q) using a (ls, 2p)
pseudostate nonresonant continuum function. The function is constructed to e»~enate the dominant (2s, 2p)
configuration of the autoionization state, while at the same time containing three variationally determined
radial functions. Both 5 and q are also shown to contain contributions from the discrete part of the
nonresonant spectrum, although quantitatively that contribution is found to be small. Final results change
previous polarized-orbital results minimally, which means that the resonance position, C = E + 6,
continues to be on the edge of the experimental error, and q remains somewhat outside the experimental
result. Further relativistic corrections are briefly discussed, but a simple argument indicates that they are not
likely to explain the differences with experiment. It is concluded that more-accurate experiments should be
carried out.

I. INTRODUCTION AND FORMULAS

As has been previously emphasized, ' the photo-
"excitation" of the autoionization states of He
afford a unique testing ground for precision checks
of the continuum solutions of the Schr5dinger equa-
tion. The basic parameters that are compared
with experiment are the energy E, width I', and
photoabsorption shape parameter q. The energy

of the resonance is usually written' (rydberg units
are used throughout)

E= g+b, . (1.1)

h is the result of a well-defined projection-oper-
ator variational calculation

(eqaqe)
(eW&

which we shall not discuss further except to repeat
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6= &4HopGH~o@),

where

(1.3)

that a calculation of h to better than five-signifi-
cant-figure accuracy has been carried out using
a Hylleraas form for 4 with up to 84 linear terms. '
The function 4 is then used for all further quadra-
tures to calculate &, I', and q. Consider the ex-
pression' for ~

r(E') = 2k'I &PT(E') I HI Q@& I
' (1.9a)

r(E„')= 2I&PT„IHIQc&l', (1.9b)

The normalization constant in (1.9a) assumes that
the continuum solutions are normalized as plane
waves at infinity (k ' normalization). For the
discrete part this reduces to

a~~ = Pa@, (1 4)
with PTv now quadratically normalized,

P P) + P2 PIP2 (1.5a)

etc. , P and Q being the explicit projection opera-
tors for the one-electron target':

&PT„I»„&= 1.
The function I'(E') is the width of the resonance
when E' is equal to E:

(1.5b)
r= r(E). (1.9c)

PI = @0(&l)&&4'0(&l) (1.5c)

(H' E}G= 5-(r, -r,')5(r, -r,'}. (1.6}

If t" is expanded in terms of the eigensolutions of
the homogeneous equation

(H' E')PT =-0,

then 0 takes the form

(1.7a)

and g, is the He' ground-state wave function. The
Green's function G in (1.3) is that associated with

the nonresonant scattering equation at the resonant
energy E,

q = qo+ 5q~ + 6 q~,

q. =~-'&Q4 ITI~,),
(1.10)

(1.11a)

Although the continuum (principal value) part of
& is well known, ' the discrete contribution has
not generally been exhibited nor calculated.
Nevertheless, it is clearly necessary that this
contribution be assessed in any calculation that
presumes to deal accurately with &.

The discrete states also make a contribution to
the (electromagnetic) shape parameter q. We
exhibit here those formulas also:

P PT &&&&PT &I
(P PT(E )&(PT(E ) kg

m' E„'-E m' EI E

(1.8)

(1.1 11}&PT„I TI@' & V(E„')k'

V V

, &PT(E') I TI &k, & V(E')k'

The principal-value (5') integral in (1.8) indicates
that we are using the standing-wave Green's func-
tion. The discrete sum then denotes the fact that
(1.7a) may admit of a discrete spectrum

(1.11c)

where 7.'= z, + z, is the radiative transition opera-
tor and

(H' E„')PTp
= 0-,

l.e.
y

PT„= PT(E„'),

(1.7b)
V = kV(E)(PT(E) I TI4'0&,

I'(E') = &PT(E') I HI Qq»,

k = (E + 4)~~2& k = k~ls =s ~

(1.12)

(1.13)

(1.14)

z'„"r E' dz'

V

(1 3')

where we shall abbreviate the two contributions

6 —h~+ h,~

in addition to its continuous solutions (1.7a).
(H' will be discussed in Sec. II.) In the case of
interest (e+ He') there are in fact an infinite
number of such discrete states (as opposed to
e -H, wherein there is only one such state in the
'S case}.

Substitution of (1.8) into (1.3) then yields explic-
itly

+0 is the wave function of the ground state of He.
Again the explicit inclusion of the discrete contri-
bution 6q& in addition to the continuum' will be
considered for the first time.

II. PSEUDOSTATE NONRESONANT CONTINUUM

The nonresonant Hamiltonian H' in (1.6) and (1.7)
is the full optical-potential Hamiltonian less the
resonant term3:

»'-» + g' f a}
P

where the prime on the summation indicates that
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the resonance being calculated (that 4) being unsub-
scripted) is omitted.

The first nontrivial approximation of the non-
resonant equation quite obviously retains only
H~~ in (1.7):

and

u„~(r) = [729(v 43)u» ~(r)

—4096R»(r)]/ 6074747, {2.7)

(H~J, -E')PT,„=0. (2.2a) where R» is (r times) the radial orbital of the
2P state,

The equation is the well-known exchange -approxi-
mation equation'; its solutions have been calcu-
lated many times and in the 'I' case they may be
written

T,„=PT,„=[ (r,)/r, ] " ~2" ' + (1—2}.

(2.2b}

R»(r)= 2r'e "/v 3,
we have

(u„~(r),R»(r)) = 0.
The function y» in (2.4) is then

(2.8}

(2 9)

(2.10)
In (2.2b) we have also indicated the fact that T,„
is an eigenfunction of the I' operator.

In considering corrections to (2.2) it is impor-
tant to realize that the major contribution will be
made by the continuum {which starts at the energy
of the first excited state of the target) rather than
the discrete terms in (2.1}.' In fact, if the discrete
resonances are much narrower than the separation
between resonances, the discrete terms are neg-
ligible and only the continuum need be considered.
That contribution is well known to be associated
primarily with polarization, ' so that a polarized-
orbital wave function' naturally presents itself as
a next approximation:

T~ = [u(r,)/r, ] '0 ',[y„(r,)+ Q (r„r,)] + (1 2).Xs 2

(2 3)

Both approximations (2.2) and (2.3) were calcu-
lated in Ref. 1; both gave very similar results
which were only partially in agreement with experi-
ment. We therefore consider here an even more
elaborate nonresonant continuum function:

The motivation of (2.4) is as follows: T is a
modified pseudostate wave function' which is
explicitly orthogonal to the 2s and 2P states of He+.
These are the states mainly responsible for the
resonance; thus the function can be considered
nonresonant in character and this is consistent
with phase shifts in this approximation which are
completely nonresonant in the energy range of
the coefficient functions (P„&0,&,) and therefore
it is much more capable of describing short-range
correlations than T,„or T~. In fact, the latter
also suffers from the fact that it contains contribu-
tions from the 2P state, even though it too gives
rise to a nonresonant phase-shift behavior.
Specifically,

po( &(r,r, ) u„~(r,) cos&
4s

Thus even in the limit r, ~, ((I)-'qr») e0. [e(r„r,)
is a step function. ]

If we define a modified projection operator in the
spirit of Miller, "Q' = y. ')( y. ', where

r,r,g' = R»(1}R»(2)Y,o(Q, ) + R»(2)R»(1) Y»(Q,},

'(i», (r"P,) = g(1lm -m
~ 10)Y,„(Q,)Y,„(Q,) .

(2.5)

The function P» is the orthogonal part of the func-
tion u„~ which accounts for the full polarizability
of the He+ target.

Letting

~ (r) = (v"~;)e '" (r'+r') (2.6)

(2 4)

where g», ( I = 0, 2) are the two linearly indepen-
dent vector couplings of odd parity that can form
a total I' state:

it can be easily verified that Q'T~„= 0. This
means that our nonresonant function is in I"
(= 1 —Q') space, which is a close approximation
to the full P space of (1.5). In point of fact,
operation with I' yields

+I@, (r,)Y, (Q,))y„(r,)+ (1«2), (2.11)

where

(2.11b)

Thus all matrix elements that are evaluated
depend explicitly on only two of the three coeffi-
cient functions in T~ . (The third function, how-
ever, implicitly affects the other two by virtue
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p 2

(Ry) Exch~pe

g (rad)

Polarized
orbital pss (1s —2P)

2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90

-0.0574
-0.0564
-0.0555
-0.0545
-0.0538
-0.0527
-0.0520
-0.0503
-0.0496
-0.0488
-0.0480

-0.0233
-0.0224
-0.0215
-0.0206
-0.0197
-0.0187
-0.0178
-0.0169
-0.0160
-0.0151
-0.0141

-0.0312
-0.0298
-0.0284
-0.0270
-0.0257
-0.0243
-0.0229
-0.0215
-0.0200
-0.0185
-0.0169

TABLE I. ~P nonresonant phase shifts in the reso-
nance region.

describe all of the long-range polarizability asso-
ciated with e -He scattering with only two unde-
termined functions. By contrast, the pseudostate
(2.4) requires three undetermined functions, but
by the same token it gives rigorously larger phase
shifts. Thus its use in the present ease cannot
diminish the cogency of our results.

III. CALCULATION AND RESULTS

%.e integrodifferential equations resulting from
T~„were solved by an appropriate modification of
the pseudostate program. ' Numerical functions
F,(r) are generated for 0&r &15. For larger
values of r the functions F,(r) were generated
from the asymptotic expansions

of the dynamic coupling from the variational
equations whose solution determined the F's.)

It is interesting to observe that had we started
with an alternative form of the nonresonant func-
tion,

F,(r) = sins 1+~+~+ "
)

( a a
r r'=

b b
+ cosa ~ + eem21 + ~ ~ ~

r r2

and (for i = 0, 2)

(3.la)

' ' Y„(OA(„(r,)G,(r,)
CCPo

Gn(r. )+ ' '
YM(Q, )(It),~(r, ) cos8~, ,r) (2.12)

& (r) sinS ~r ~=+ ~ ")a a
s

b
+ cos~ ~+ ' '' (3.1b)

then operating with I' mould have yielded an
expression identical to (2.11a), with the F's re-
placed by 6's. T~ is a special case of a closely
coupled polarized-orbital wave function. " That
apprmdmation represents a somewhat different
alternative to the merging of close coupling to
polarized-orbital approximations from the pseudo-
state expansion. In fact, T~ is in accord with
the prescription of Damburg and Karule. ~ Specif-
ically, as Damburg~ has recently brought out,
T (with g~ replaced by r 'a„~) is able to

where 6} is the usual Coulomb argument

8= kr —(1/k)ln2kr —2vl + o, + q, ;

o, is the Coulomb phase factor argI'(1-i/k) and

g, is the residual phase shift.
The nonresonant phase shifts g, in the resonance

region are given in Table I, where they are com-
pared with polarized-orbital and exchange-approx-
imate phase shifts. We see that the 1s-2p pseudo-
state phase shifts are nicely between the exchange-
approximate phase shifts and the full polarized-

TABLE II. I', 4, q in different approximations.

Nonreso~t
continuum

No. of terms
56

Exchange

84

Pseudostate

84

Polarized
orbital

56

I' (eV)

(eV)

Lhg (eV)

qo

6q~

Age

0.0365

-0.007 37

5.45x10 ~

-2.5235

0.2413

-0.0245

0.0363

-0.007 33

5.46x 10

-2.4513

0.2370

-0.0244

0.0370

-0.007 44

-2.5181

0.2385

0.0369

-0.007 34

-2.4734

0.2317

0.0374

-0.007 00

-2.6566

0.382

Bound-state contributions were only calculated in exchange approximations (see text). Exchange and polarized-
orbital results from Ref. 1.
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TABLE III. Comparison of ~P(2s2P) results with experiment.

Previous results Present caIculation

Nonre sonant
continuum

6, (eV)

E~ (eV)

I' (eV)

Exchange

-0.007 28

60.1449

0.0363

-2.239

Polarized orbital

-0 ..006 95

60.1452

0.0374

-2.274

Pseudostate

-0.007 29

60.1449

0.0369

-2.266

Experiment '

60.130+ 0.015

0.038 + 0.004

-2.80 +0.25

Experimental results derived from Madden and Cod-
ling (Ref. 19) using E =E (max absorption) —I'/2q.

Results derived from E=8+6, with 8 = 60.15215.
This result is based on a newer value of the rydberg,
R„=13.605826 eV, from B.N. Taylor, W.H. Parker,

D.N. Langenberg, Rev. Mod. Phys. 41, 375 (1969). This
value differs in the fifth significant figure from the older
value used in Ref. 1, and accounts for the apparent dif-
ferences with those results.

orbital values. ' This is expected, since the
(unincluded) 2P state alone accounts for 65% of the
dipole polarizability.

The a~, in Eq. (3.1) can be readily worked out
from the asymptotic form of the differential equa-
tions satisfied by the &&. For purposes of evalu-
ating all the integrals involved, the range 0& M 40
mas found to be sufficient.

All integrals for the resonant quantities I', &,
and q are seen to involve the resonant energy E,
which is initially unknown. Since, however, & is
small, it is an excellent approximation to let E
equal 8 in these integrals; the error in &, for
example, is of order &', which is negligible for
our purposes. One can, nevertheless, do better
by using this as the first stage of an iteration
procedure which quickly converges. Such an
iteration procedure was carried out for & in the
exchange approximation for I'T, and & was found
to change by one unit in the fourth place after the
decimal point. The results in Tables II and III,
however, always refer to the first iteration.

'Ihe major contribution to all principal-value
integrals comes from the energy range surround-
ing the resonance energy. Furthermore, differ-
ences between the different nonresonant continuum
functions are small; thus in all calculations we
used the exchange approximation for regions of E'
outside 2.4 &E' &2.9 (Ry}. The various approx-
imations, therefore, reflect differences in that
energy region only. Specifically, this means that
the bound-state components of I'T were evaluated
in the exchange approximation. '4 Here the squared
matrix elements for large principal v can easily
be shown to go like v ' and it is precisely this
behavior which makes the sums in (1.3') and
(1.11b) converge. It also enables the inclusion of
the infinite sum, once the constant of proportion-
ality has been determined. We found that it re-
quired v=-5, 6 for the v ' behavior to set in, and

that whatever the discrete contributions mere,
they came only from the first couple of discrete
terms. A resume of results is given in Table II,
both for 56- and 84-term resonant-state approx-
imations' of Q4. The points to notice are that the
changes in going from one to another nonresonant
continuum are very small and that the discrete
contributions (&s) to A are negligible and just
barely significant (5, ) to q. In the q calculations
at 50-term Hylleraas function was used for the
ground ('S} state of He. Final results are com-
pared to experiment in Table IG. As far as com-
parison with experiment is concerned, neither
56- not 84-term Hylleraas Q4, nor any of the
three nonresonant continua, including the very
elaborate pseudostate wave function, make any
difference within the experimental error. That
means that although I' agrees very well with ex-
periment, E remains on the edge, and q remains
outside of, the experimental error.

We believe that the present calculation repre-
sents the most accurate theoretical result thus far
evaluated for the 'P(2s2P) state. Burke and
Taylor" have performed a full scattering calcu-
lation using a (1s, 2s, 2P) close -coupling expansion
plus Hylleraas correlation; however, they could
include only 20 such terms. If one lowers their
resonance energy (60.149 eV) by the same amount
as 8 in going from 20 to 84 terms, ' one estimates
that the converged value of the resonance position
would be approximately 60.145 eV, in good agree-
ment with the present calculated result.

Dalgarno and co-workers'6'" have performed
a series of alternative bound-state-type calcu-
lations. One" of their original values, 60.133 eV,
seemed to agree very well with the central value-
of the experiment; however, an alternative
result, ' plus later calculations, "gave results
much closer to our omn. Very recently, Dalgarno
informed us that he expects his best result to
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ag~ee essentially exactly with our value.
The only remaining nonrelativistic correction,

the mass polarization, was examined in Ref. 1
and found to be utterly negligible for the accuracy
in question. This leaves only relativistic correc-
tions to be considered. Such corrections are no
easy matter to calculate, even for true bound
states. The most analogous state is the 'P(ls2P)
state of parahelium, for which the relativistic
corrections mere calculated" to be -0.0015 eV.
A simple argument leads to the conclusion that
the absolute magnitude of this correction should
be smaller for the present 'P(2s2P) state. Specif-
ically, this state being spatially larger and hav-
ing a total energy closer to zero, the kinetic
energy of the electrons must be smaller than in
the corresponding 'P(ls2p) bound state. Since
the relativistic corrections are proportional to
(v/c)' of the electrons, they too should be smaller.
(This argument assumes there are no accidental

cancellations of different contributions in the
relativistic corrections. We are not aware of any
such cancellations. ) The present conclusion,
therefore, is that our energy value (in eV) should
be correct to about two units in the fifth place. We
believe, therefore, that a new andmore accurate
experimental measurement is warranted. A reduc-
tion by a factor of 10 in the experimental error
would be desirable, but a factor of 5 would suffice.
It will be interesting to see if such an experiment
might also assign an altered value of q consistent
with our calculation.
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