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The ground state of an electron gas in an intense magnetic field is studied using a wave function of
the product form g4. The correlation factor gs is taken to be the ground-state solution of a charged
Bose gas and C 8 determinant of single-particle Landau states. In the quantum strong-field limit so
that only the lowest Landau state is populated, the correlation energy is computed using the
cluster-expansion technique and a variational determination of the boson energy. Numeri«results
obtained are lower than those derived under the random-phase approximation.

I. 1NIODUCTION

The correlation energy of a quantum-mechanical
electron gas has been a subject under intensive
study for many years. ' The major effort in the
past has been the calculation of the correlation
energy in zero magnetic field, which depends
only on the density of the system. Quite recently,
attention has been focused on the effect of a
magnetic field, in particular, that of a strong
field under which only the lowest Landau state
is populated, known as the quantum strong-field
limit (QSFL).' ' This problem is of astrophysical
interest for gravitationally collapsed bodies, such
as white dwarfs and pulsars, which are charac-
terized by high densities (-10"cm ') and intense
magnetic fields ("10"G).' The QSFL can also
be realized in semiconductors such as indium
antimonide, with mobile carriers of effective
mass -10 "G and densities -10"cm ', at
relatively low fields (-10' 6).' The inclusion
of the additional parameter of a magnetic field
makes the problem of considering the electron-
electron interactions more complicated. The
evaluation of the exchange energy E,„has been
considered by a number of authors, ' and was
treated correctly only recently. ' Kaplan and
Glasser' argued that in extreme magnetic fields
a high-density electron gas undergoes a transi-
tion to an ordered structure of charged rods,
and they estimated the energy on this basis using
the Hartree-Fock approximation. More recently
Horing et al. ' computed the correlation energy
in the QSFL under the random-phase approximation
(RPA). An expansion of the ground-state energy
for high fields has also been derived by Isihara
and Tsai' under the ring-diagram approximation.
The extent to which these approximations are
valid is not known. In this paper we carry out
what we believe to be a more realistic calcula-
tion of the correlation energy in the QSFL. Our
approach is based upon the %'u-Feenberg theory
of fermion liquids and is along the lines of the

method of correlated basis functions. " This
method has recently been used to study the
ground state of an electron gas in zero field. '"
Here, as we shall see, the method leads to
improved values of the correlation energy in the
QSFL.

ll. FORMULATION

Consider a system of N electrons of mass m
each confined in a uniform neutralizing back-
ground of cubic volume I.'. A constant magnetic
field II is applied in the z direction. Vfe adopt
the atomic units in which all distances are
measured in units of the Bohr radius a, = Ks/me',
energies in di„= e'/2a, = me'/2)fs, and magnetic
fields in H, =6i„/p. s =e'm'c/h'=2. 350405 x10' G,
where p, a = eh/2mc is the Bohr magneton. Use-
ful dimensionless parameters in these units
include the size of the box, 1 = L/a„ the field
strength h =H/H„and the inverse density
s, = (3ls/4wN)'~'. We shall eventually take the
limit of N- ~, I; while holding y, constant.
Typical values of physical interest range from
It -1,000, r, -0.1 for astronomical systems
to h, -1, y, -1 for semiconductors.

%e shall also assume the validity of non-
relativistic quantum mechanics. " Using the
Landau gauge X= (O, Hacx, 0), the Hamiltonian
takes the form

8 8 . 8X
q

——,+ -tItx~ +
8gg 8$y 88'

Here the potential energy P includes the Coulomb
energy between the electrons and that between
the electrons and the background, and g',. is the
Pauli spin operator.

For the ground-state wave function of 3C we
take the trial form
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where, follovzing Ref. 1, the correlation factor
]I)sB is taken to be the ground-state wave function
of a charged Bose gas, namely,

yB —EByB {4)

XB=—Q Vq'+V.
j=1

C =(N!) '/sdet~q) (r,)s (o,) ~,

where q) (r,.) is the single-particle Landau state

satisfying

(V)&;q (r, ) = E q (r, )

and B (c&) is the spin function. Using (4)-(V),
it can be easily shown that the expectation value
of X in |t)o~ leads to the expression

&@BB = Es + Q E~

The model function@ in (3) takes the determinan-
tal form

x ...s.=X ...s/X Xs,

X„(P)= gs e' '
q *(r,)q (r, ) =I (P),

X.„(P)=I (P) X-.(P)X„(P),

X.„,(P) =I ,(P) -X„(P)X„,(P) -X„(P)X.,{P)

X,-(P)X.„(P) X-(P)X„(P)X,(P),

|I'0 dry+1' ' 'drg ]i)s (14}

Thus we find

«.(o) =-,
) j";f;„«; —,

) („-'}'*,

and I,I,I s, . . . , are given by (9) with
orbitals m; m, n; m, n, p; . . . , in@.

The cluster integrals X,X „,. . . , can be
evaluated in terms of the n-particle distribution
functions defined by g

~

N. I, "
ttt( t t ' t }

(N )(Ntt

+h(N, N) - --,
' —lnI(p} (8)

X' (0) =0,

where the summation+ extends over the N
orbitals contained in 4, N, and N are, respec-
tively, the numbers of spins parallel and anti-
parallel to the applied field, and

I(p) = q.' em(p p V, ')(~*4),

with the integrations extending over all N sets
of spatial and spin coordinates.

The last term in (8) can be evaluated by the
cluster-expansion technique. " ln the QSFL
only the lowest Landau state is populated with
all spins aligned antiparallel to the applied field.
Thus me have

«' (0)= t) J[«t(t„)-)]

etc. ,

where

" +2&~+2qm ass -e s f)Q)„fs„fs+1 X2

&&&ffyt&12+ ~'Win&12& dr (15)1

= ~~by-&~/aP/2
~)m

In the following we shall use the normalized
variational form of g~2:

gB(& ) 1 s&-{ss tt/)s)~s{«/~~)s
2 12

q) (r) =exp[i(]{) y +~q) — it( sxp /h)'],

S =q +h, N -N =-¹
(10) where g is the variational parameter. %'ith this

expression for g~2 the y and z integrations in

(15) can be performed using, e.g. ,

The ranges of the momenta p and q in (10) are
(p[ sist and ~q ~ q =sw/2)ss'„where the Fermi
momentum q~ is determined from the normaliza-
tion N=Q 1 =Q Q, l in the QSFL. Using (9) we
first obtain9 "

lnI(p) = g lnX +g x

+ Q (x „s—8x„„x„,)+. ~,
m&a&P

III)&g =EB+g q' +EB+EB+~ ~ ~ (18)

~ f/2 ~ 1/2 2 2 -2
dy B-])s~s+&Ptt)ns)s I(B/b))/se &tt)tt/4().

3 1 2
1/2

{1V)

ln both (15) and (1V) the arrow denotes the leading
result expected in the bulk limit. It must be
emphasized here that these integrals are rather
complicated for finite I, because the range of

p is also i dependent. Combining (8), (11),
and (12}, we find
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where

E,'= =,' g x.'„(0),

E2~= =,' Q [x'„~(0)—6x'„(0)x„~(0)],

Er2 = N-2 (3+2t) erf(22(w t/a)
2ath

1+2t '

——(1+t)(1 E-),2a
7rt J

with

(20)

etc. ,

m&n&P
3a '~'

t= E = e-4&t la
hg 4n

are the successive cluster contributions. The
summations Q may be replaced by integrations:

Using (15) and (17), Ef is thus given by a six-
fold integral which, after some steps, can be
evaluated in a closed form to yield

2 "'
perf(x) =— e "dt.

&~n J,
The term E~3 can be similarly evaluated in a
closed form if the three-particle distribution
function g, arising therein is approximated by
the convolution form. "'" The algebra is straight-
forward, although quite tedious. The resulting
expression is"

z a'lt 3 —t —84t' —176t —64t' 2tJ 4(1+t} 8t'E
2 (1+2t)'(1+4t)' 3+6t+4t' v(1+2t)' a'(1+2t)

a(1 —4t)(1 —4) 2&at at2 (11+22t+2 6)16t )'2t(26)t)
(((1+4t)(1+2t) a 4v (1+4t)(1+2t)'(3+6t+4t') a

a E ~' 3 —4t 2E(1 6vt2/a-') v'(2n)t
v 2 (1+2t)'(1+4t) 3+6t+4t a

(21)

where

erf + erf ~ dx,

6-&
)
f' ""6"*'

att(~2)

2v (2v)t x+erf
a &2

dx.

Fock energy E„„=gq' +E,„, is finally given
by

where

hr, 2)O

E,„=N 2 lnQ+y+e~ e "
3r' gq dx

x

(22)

In the above we have assumed a knowledge of the
solution of the boson problem (4). To find Eoe we
follow the procedures of Ref. 1 by using the
Jastrow wave function and the variational form
(16}for g2e. Numerical results have been given
in Ref. 1 for 1 &r, &20. Further results for 0.5
&r, &0.6 are included here in Table I. It is known'

that in the density range 1 &r, &6 this procedure
yields E, about 0.015 Ry higher than the Monte
Carlo values. In the high-density limit the value
of Eeo so obtained is about 6% (-0.25 Ry at r,
=0.1) below the exact value. " Anticipating these
uncertainties to be less than 10% of the computed
correlation energy, the variational form (16)
appears to Pe reasonably adequate for our pur-
poses of evaluating E, .

III. CORRELATiON ENERGY

The correlation energy, which is defined to
be the difference between (X)&r and the Hartree-

—4Q e " tan ' — dx, (23)
~i Q x

q = 922'/2I)(2r()

y =0.5772. . . = Euler const.

+s
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50
0.60

0.0527
0.0603
0.0676
0.0745
0.0813
0.0877
0.1456
0.1949
0.2385
0.2785
0.3158

E~og~ ~R»
-7.448
-6.494
-5.783
-5.230
-4.786
-4.422
-2.621
-1.928
-1.550
-1.308
-1.138

TABLE I. Optimum values of a and the boson ground-
state energy. Results for higher values of r~ can be
found in Ref. 1.
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TABLE II. Numerical results for some representative values of r, and h. All energies are
in rydbergs.

rs HF+ E+p/N ERPA~ Ecorz/N

0.06

0.08

0.10

1.0

800
1000
600
800

1000
300
500

1000
1
3
5

229.40
140.34
64.80
31.19
16.10
71.15
19.20
-0.66

6.599
-0.2873
-0.7446

-18.50
-18.32
-13.64
-12.93
-12.14
-11.10
-10.41
-8.16
-0.8036
-1.1098
-1.0407

-12.19
-11.87
-8.93
-8.10
-7.19
-7.48
-6.55
-4.09
-0.3997
-0.5757
-0.4813

-1.81
-2.29
-2.05
-2.60
—2.83
-1.35
-2.19
-2.01

0.0118
-0.1599
-0.2173

-0.078
-0.147
-0.167
-0.375
-0.699
-0.080
-0.335
-2.284
—0.002
-0.043
-0.162

-1.99
2 y33

-2.57
-3.00
-3.11
-2.15
-2.75
-2.36
-0.3534
-0.3949
-0.4270

is the exchange energy obtained by Danz and
Glasser. ' Numerical results of (22) are exhibited
in Table II for some typical values of y, and h of
physical interest. We note that the cluster ex-
pansion converges reasonably well. Our results
on the correlation energy are also compared
in Table II with those obtained under the RPA."
It is seen that our values are lower. " Based
on the variational nature of our approach, this
then indicates improvements over the RPA. This
is in contrast to the case of zero magnetic field,
where the RPA energies are lower. ' It appears
from Table II that for high fields our results and
those of the RPA approach each other. This
conclusion is somewhat deceptive, for neither
of these treatments are valid in the extreme high-
field limit, which corresponds to the relativistic
region. " On the other hand, the present formula-
tion is restricted only to the QSFL limit. It is

therefore extremely important to bear in mind
the region of validity in comparing the results.

To summarize, we have made a realistic
calculation of the ground-state energy of an
electron gas in the QSFL using the product wave
function (3). The variational determination of
the boson energy and the convergence of the
successive clusters in the expansion of the
energy appear to be reasonably adequate. Our
calculation leads to lower, and presumably
better, values of the correlation energy as com-
pared to those obtained under the random-phase
approximation. The formulation can also be
extended to study the magnetic properties such
as the de Haas-van Alphen effect in the case of
an intermediate magnetic field. Investigation in
this direction is underway and the results will
be reported in the future.
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