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Mow the critical point the liquid-vapor interface of a simple Quid is characterized by a thin

transition layer across which the values of density vary between the two phases. This transition layer

can be described by a density profile characterized by an efFective interface thickness L. As the

temperature T approaches the critical temperature T„L diverges as e ", where c = 1 —T/T, . From
the measurement of optical reflectivity of the liquid-vapor interface of sulfur hexafluoride, we have

deduced the interface thickness and the critical index P for the coexistence curve. In the temperature

range 9.73 X 10 g 4 & 5.33 &( 10 we find v' = 0.620+0.01 if an error-fmction profile is assumed

as proposed by Buff, Lovett, and StiOinger, or v' = 0.663 + 0.02 if the density profile proposed by Fisk
and odom is used. For both profiles P is found equal to 0.333 + 0.008. These indices, when

combined with the critical index y' for the isothermal compressiblity and p, for the surface tension, are
used to test various scahng relations.

I. INTRODUCTION

Far below the critical point, the liquid and vapor
phases of a simple Quid in a weak gravitational
field are separated by a sharp interface. As the
critical point is approached, this interface thickens
and becomes diffuse, spreading into the bulk
phases until, at the critical point, it fills the whole
volume of the system. At this point two phases
have merged into onehomogeneousphase. van der
Waals first gave a detailed theory of this diffuse
interface in 1894.' Based on his famous equation
of state, he showed that the interface thickness'
I becomes infinite at the critical point. Cahn and
Hilliard' extended the same idea to critical mix-
tures. According to their theories the density
distribution across the simple Quid interface ean
be described by the function (henceforth designated
TANH)

p(x) = 2(pi+ P. )+ 2(pi P.}tanh(»!—L),

where p(x} is density at height x, and p, and p„
are densities of the liquid and vapor phase, re-
spectively. Fisk and Widom' generalized Cahn
and Hilliard's approach by replacing the classical
analytic behavior of the extended thermodynamic
function near the critical point by a sealing hypoth-
esis corresponding to extension of scaling laws for
the one-phase region into intermediate densities.
Assuming a simple equation of state, they obtained
a density profile (henceforth designated as FWF);

( Wtanh(A «/I, )P(x) 2(pl Pv ) 2(pg Py )~ [3 t ~2(~ /L)] 1/2 Ia x j
(2)

A different approach was suggested by Buff,
Lovett, and Stillinger (BLS).' Based on excitations
having the potential energy of capillary waves like
those introduced by Mandelstam' as normal modes,
they arrived at an error-function density profile
(henceforth designated as ERF}

p(x) =-2(P2+ p„)+2'(pg —p„)erf(vw x/L) .
This profile is remarkably similar to the profile
provided by Fisk and Widom except at large x,
where the FWF profile approaches an asymptotic
exponential form e "~~ .' Here L, ' is the decay
length. Relations between I, and L' for various
density profiles are given in Ref. 8.

Knowing the density profile, it is possible to
compute the optical reQectivity as a function of
interface thickness L and the square of the density
difference (hp)2. Gilmer, Gilmore, Huang, and
Webb' made the first measurements of the effective
thickness of the interface by observing the reflee-
tivity of the interface in binary mixtures of eyclo-
hexane and methanol near the critical temperature.
Assuming the hyperbolic tangent concentration
distribution suggested by Cahn and Hilliard, and
the critical divergence of I. in the usual form
L=I.,(l- T/T, ) ", where T, is the critical tem-
perature, they found that v' =O.V6 gave a best fit
of their data, instead of p' = 0.50, as predicted by
van der Waals and by mean-field theory. Later
on, Huang and webb' performed more accurate
measurements on the same system, and included
the FWF and ERF concentration distributions of
the critical interface in their data fitting. They
clearly excluded the hyperbolic tangent concentra-
tion profile and found that both the error-function
profile of BLS and the Fisk-Widom profile fitted
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their results satisfactorily within the experimental
exrox. They also found that near the critical
point, I. diverges with a temperature e~ment
p' equal to 0.6V +0.02.

The interface thickness has been related to the
correlation lengths of the bulk phases by Fisk and
Widom. ~"" Based on the scaling and homogeneity
arguments, Widom made the conjecture that, in
whatever guise it might appear, there is only one
length of fundamental significance in the critical
phenomena. This would lead one to identify the
interiace thickness with the correlation length g'
in either of the bulk phases. This conjecture has
been tested in mixtures by the direct interface-
thickness measurements of Huang and Webb.
Their results on p'= 0.6V + 0.02 are in good agree-
ment with the values calculated for &

' from the
data of Balta and Gravett. " Numerical analysis of
the three-dimensional lattice- gas models yields
v= 0.643 '~ and v = 0.638" for the correlation length
index above T„below T, no direct calculation of
v' has been made, but Fishex" has estimated
v' = 0.6V5 for the three-dimensiona1 lattice gas in
agreement with Huang and 'Webb's results. The
theory of Fisk and Widom also yields a relation
amongst the critical exponents v', p. for the sur-
face tension 0, P for the coexisting density dif-
ference hp, and y' for the isothermal compress-
ibility K~ or its analog. Gilmer, Gilmore, Huang,
and Webb also determined P and Vfarren and %webb'4

determined p. . However, the exponerk y' was mis-
sing and had to be guessed. The results suggested,
but did not demonstrate, that two-parameter scal-
ing should be adequate. A more detailed dis-
cussion of these ideas is given in Huang and %ebb, '
Warren and Webb ~ and in Huang's thesis. 5

Measurements of L, along with o, hp, and K~
with their critical exponents, p, , P, and y' for a
simple Quid offer a complete picture of the critical
interface in a simple fluid and a better test of the
Fisk-Widom theory. One might also hope to test
the relation g'= L, ', especiaQy noting that this
equation, if confirmed, would establish the rela-
tively easy refleetivity measurement as a means
to study the critical behavior of t', a quantity that
has pxoven to be rather elusive.

Using straightforward laser-opbcal techniques,
we have studied the diffuse interface in a eritieal
simple fluid, sulfurhexaQuoride. Critical bulk
properties of this particular Quid have previously
been studied in detail, "but some of the results
have been subject to controversy The pres.ent
wark is aimed to he1p to resolve some of this
controversy. We measured the optical reflectivity
of the liquid-vapor interface of SF6 with extreme
precision at six light wavelengths chosen from
those provided by Ar-Kr and He-Ne lasers. Our

measurements covered the temperature range
9.73 x 10 ' ~ 1- T/T, ~ 5.33 x 10 '. By fitting the
temperature dependence of the results, we ob-
tained the effective thickness I. and its critical
exponent' v' in the range 9.73x10 'cl- T/T,
~ 5.88 x 10 ' and as a byproduct the representative
exponent P of the coexistence curve over a wide
temperature range.

Since the determination of interface thickness L,

from the reflectivity is strongly dependent on the
assumed density profile, one might expect that
analysis of reflectivity data for a range of light
wavelengths would reveal the precise nature of the
density profiles. Unfortunately, this is not quite
true because the measured reQeetivities are sensi-
tive to the central part of the density profile only
and because the convenient xange of light wave-
lengths is rather small. In order to maximize the
discrimination of various profiles, we have re-
sorted to a meticulous analysis of the wavelength
dependence of the reflectivity. In Sec. II the ex-
perimental setup and sample controls are de-
scribed. In Sec, III we present the measured data
and the de&iled statistical analysis. Conclusions
and discussions are given in See. IV, where we
discuss various scaling relations and test the
postulate that L,' is identical to the long-range
correlation length ir the bulk phases.

Paper II describes our quasielastic light-scatter-
ing studies of the dynamics of thermal excitations
of this interface in SF,. Data on the static critical
behavior found in this paper are combined there
with the data on the dynamics of thermal excita-
tions to show additional features of the critical
interface and to test particular features of critica1
phenomena in SF,.

II. EXPERIMENTAL SETUP AND PROCEDURES

The sample, instrumental grade SF, with purity
99.99% obtained from Air Products and Chemicals,
Inc. , is compressed into a carefully cleaned sam-
ple cell whose volume ean be changed by moving an
attached Qexible metal bellows. The whole assem-
bly is thermally controlled with an accuracy of
better than 0.001 'C. When the sample is heated up
toward T, the interface will disappear at the top or
the bottom of the cell, depending on whether the
average density is greater or less than p„ the
critical density. The sample volume is adjusted
by moving the metal bellows in or out to obtain
the right filling density with which the meniscus
disappears at the center of the sample cell when
the critica1 temperature is reached. The recorded
T, in our cell of 45.530 C is referred via a Beek-
mann thermometer calibrated against our National
Bureau of Standards calibrated platinum thermo-
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meter to the standard temperature scale. This
value of T, agrees with the values reported in
various earlier experiments. ' '" We have made
periodic checks of T, ; no deviation from 45.530 e
has been found in a period of two years.

The sealed sample cell is constructed of a mas-
sive block of beryllium copper chosen for its high
thermal conductivity and reasonable strength.
This cylindrical cell is 4.375 in. high and 4.5 in.
outer diameter. Two fused-quartz windows are
sealed on both Qat ends by indium 0-rings. Be-
tween the two windows is the sample holder with a
volume of about 45 cm'. The sample is thermally
controlled within better than 0.001 'e throughout
the experiments, with the aid of a double thermo-
stat with a proportional response temperature con-
trol. Details are given in the thesis of Wu."

Owing to the sample's high surface tension and
low viscosity, the slightest floor vibration excites
waves on the interface that may cause the reflected
laser beam to flutter out of alignment with a
spatial filter that is used to eliminate the back-
ground scattered light. To reduce the vibration to
a minimum, the whole sample assembly and op-
tical components are located on a flat 3700-lb
granite table supported by three air cylinders. An
air servo system is attached to these cylinders to
keep the table top within 0.001 in. of the preset
position. The low natural frequency (1.4 Hz) of the
system, plus the heavy weight of the table top,
provides adequate insulation from external distur-
bances.

The sample is always held at a constant tempera-
ture long enough to ensure that thermal-equilibrium
conditions are reached before performing the re-
flectivity measurements. We have compared the
measured reQectivity after the sample has waited
at a constant temperature for various times up to
80 h and found that after 4 h they agreed. Ordi-
narily 4 h easily sufficed, but near T, waits of up
to 12 h were used for safety. We compared mea-
surements at a fixed temperature approached both
from above and below, and we found that the data
agreed over our entire range of measurement,
leaving little doubt that the system is in an equi-
librium state. To detect the possibility of local
heating by the incident laser beam, we also com-
pared the measurements made with the laser light
shining on the sample for a few seconds up to a
few hours; no disagreement was found. In our
measurement of reflectivity as a function of tem-
perature, the temperature settings were chosen
in random order to avoid the possibility of intro-
ducing error due to the time-dependent changes
becoming proportional to change of temperature.

In a period of two years, we made two complete
independent sets of measurements on the same
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FIG. 1. Schematic diagram of the apparatus for re-
Qectivity measurements. Lasers are Coherent Radia-
tion 52B Ar-Kr mixed-gas laser and Spectra Physics
120 He-Ne laser, PM's are RCA IP21 photomultiplier;
S.F. is spatial filter; M is mirrox, L is achromatic
lens; S is beam splitter; N. F. is neutral density filter;
O. is opal diffuse glass; Diff. is diNxse glass plate; D
is Iris diaphragm; AMP. is amplifier; and REC. is
strip-chart recorder.

system with fully compatible results. In the first
measurements, we worked over a temperature
range 0.031 & T, —T & 17 'e using the red light
with wavelength 6328 A from a He-Ne laser as
light source. In the second set of measurements
the optical setup is almost identical to that of the
first one, except that the light sources are five
spectral lines (6471, 5145, 4880, 4727, and 4579A)
from a Coherent Radiation model No. 52-B Ar-Kr
mixed gas laser, and the measurements are per-
formed in the temperature range 0.051 ~ T,
—T &17'C.

A schematic diagram of the optical system is
shown in Fig. 1. The laser light is first attenuated
to ensure the linearity of PM (photomultiplier)
response; the attenuated light, after passing
through a spatial filter, is split into two beams.
One of the beams falls on the phototube monitoring
the laser intensity. The other beam shines onto
the liquid-vapor interface at nearly perpendicular
incidence. Specularly reflected light is picked up
by a mirror above the sample; it then goes through
another spatial filter to eliminate the background
and stray light and is finally detected by the second
phototube. The amplified signals from the PM's
are recorded, and the ratio of these two signals
gives the desired relative reQectivity. A digital
voltmeter takes the ratio of the output from the
two PM's to provide a direct readout of the reflec-
tivity.

The light beam passes through several windows
and the upper phase of the sample, all contributing
to background scattering that is superimposed on
the reflection from the interface. At low temper-
ature (large aT) the reflected light is always
strong enough to neglect the contribution of back-
ground scattering and dark current associated with
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the PM, but as the temperature rises toward T,
the reflected intensity decreases sharply; there-
fore appropriate background corrections are
necessary. For instance at d T=1.0'C the back-
ground intensity is less than 1/1000 of the spec-
ular reflected intensity, but at b, T=0.1'e the back-
ground makes up 3.5% of the reflected intensity
for violet light (A, =45VSA), and at the highest
temperature AT = 0.051 'e the background scatter-
ing makes up V5% of the detected light. This limits
the accuracy of measurements close to T, . For
each wavelength the background intensity is nearly
independent of temperature, suggesting that its
source is residual scattering in the optical system
rather than critical opalescence.

III. DATA ANALYSIS AND EXPERIMENTAL
RESULTS

The interface separating the liquid and vapor
phases consists of a thin transition layer across
which densities vary from the value of liquid
pllRse to tllRt of VRpoI' phase. T111s 'tl'RI1slt1011 1Ryel'

is characterized by a thickness I.. If kl. is much
less than 2n, where k is the effective wave vector
of the incident light, the optical reflectivity of a
light shining normally onto this transition layer
is"

(I' [" ( ).. .d'i'R=
J

„'»f
where n(x) is the index of refraction at height x,
and e, and n„are indices of refraction correspon-
ding to 1iquid and vapor phases, respectively. The
calculated reflectivities for TANH, FWF, and
ERF density profiles are plotted in Fig. 2 as func-
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FIG. 2. Rayleigh-Gans approximation of the reflec-
tivitJJ ratio in normal incidence for the various distribu-
tion functions plotted as a function of kI, where the
solid curve represents classical TANH function profile,
short dashed curve represents F%F profile, and long
dashed curve represents ERF profile.
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tion of kL. Assuming the validity of the Lorentz-
Lorenz equation near the critical point, 'o Eq. (4)
can be rewritten as

R(kL) = C(aT) I
' 'e ' dxi (5)

where f(x} is the x-dependent part of the density
profile p(x}, C is a proportional constant, and we
have replaced b p by ap, (b, T)s. As we can see from
Eq. (5}, a Fourier inversion wceld allow us to
determine the quantity (df/dx), and if the density
profile is antisymmetric with respect to origin,
then the density profile can be determined. How-
ever this cannot be accomplished in practice be-
cause of the restricted range of available wave-
lengths. Therefore, instead of determining den-
sity profiles directly, we compute R for various
hypothetical density profiles and compare with
measured data. Table I defines the theoretical
density profiles and their corresponding reflec-
tivities.

We have made two independent sequences of
ref lectivity measurements. Only 6328A light from
a He-Ne laser was used in the first sequence over
the temperature range 0.031 'C & d T & 17 'C (or
9.73 x 10 ' & e & 5.33 x 10 ') where 121 evenly dis-
tributed data were taken. In our second sequence
five different light wavelengths (4579, 4727, 4880,
5145, and 6471A) from an Ar-Kr mixed gas laser
were used as light sources. In Fig. 3 all of these
reflectivities and the best-fit curves are plotted.
The data from the two sequences are entirely con-
sistent with each other. For convenience the
second sequence is analyzed as a set and the first,
which supplied only one intermediate wavelength,
is treated as a consistency check.

Next the rather complex statistical analysis of
the data is discussed. If interface thickness di-
verges with a single index v', "i.e., L
= L,(sT/T, ) ",a numerical nonlinear least-
squares fit will yield P, L„and v' directly. Since
the data points are evenly distributed in In(R) to
In(AT) scale, the best fitting variables are ln(R)
instead of R. We are able to assume that the un-
certainty in n.T is negligible in our data range,
so all the errors are associated with the measure-
ment of R.

In our least-squares-fit procedure we minimize
the quantity v2 defined in the following equation by
varying the four parameters A, P, L„and v'.

a' =N 'g [InR, —A —2P inc,

-InF'(kL, e, " )]', (6)

where R, is the measured optical reflectivity at
temperature, e, = 1 —T, /T„A is a constant, and
F(kL} is the quantity in the large parentheses of
Eq (5). .There are five sets of these parameters
corresponding to the values of five different wave-
lengths. These best fitted parameters are listed
in Table II. We have tested the response of this
fitting process to the change of each of the four
parameters for all five wavelengths. The general
features of the results of the fitting process are
the same for each of the five wavelengths. There-
fore the analyzed results for one arbitrarily chosen
wavelength (k, = 4880 A) are presented, although we
have carried out the same analysis for all the
wavelengths. The response of o to the variation of
one parameter from its best-fitted value, with all
three other parameters assuming their best fitted
values, is presented in Fig. 4. These curves indi-
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TABLE II. Best-fit critical parameters. Critical pa-
rameters determined by the least-squares fit of reflec-
tivity data to Eq. (6). P is the critical index for the co-
existence curve. Parameters v' and L 0 determine the
interface thickness through the relation L =L 0(T -T/
T,) " A, Effective wave vector k =ssv/X is used in the
fitting routine, where n is the index of refraction.
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0.332
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0.6474
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0.6259
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0.352
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FIG. 3. Experimental reQectivity data for the normal
incidence at six wavelengths. The reflectivity in arbi-
trary units is plotted against ET on a log-log scale.
Solid lines are the best-fitted curve to the ERF. Note
that the scales for KT are shifted for clarity.
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cate that the least-squares fit is mut;h more. syym-
tive to the parapet;ters L, and u' thaq. to the pa-
rameters A and P, or in other words, our data
are rebore suitably used to determine L, an/ v'

than to determine A and P.
From Eq. (6) we can make a rough estimation. of

the standard deviations of parameters A and P. At
large 4T the quantity In[Fe(kL)j in Eq. (6) can be
neglected. Therefore in the large aT region it is
reasoriable to assume a linear relation between
ln R, and inc, . Then the standard deviations 0„'
and 08 are given as

N'

o'=c"P (Inc, )' (7)
)=1

and

4' =N'g (Inc, )'-~ g Inc»
~

&=1 & )=1

Here N' represents the number of high 4T data
used in this rough estimate. Letting A and P as-
sume their best fitted values and using the data in
the temperature range 4T ~ 2 'C (N' =17), we find
o„/A = 1.3% and oe/P =2.7%. If we use the data in
a different temperature range, we will find slight-
ly different values for o„/A and o&/p, but these
differences are small as compared to the error of
this rough estimate. For instance, using the data
in the temperature range 4T ~ 1.0 'e (N' = 22), the
percentage errors of A and P are 1.27% and 3.04%,
respectively. This further demonstrates that our
data are not very sensitive to the variations of A
and P.

Knowing the uncertainties of A and P, we can
estimate the uncertainties of L and v' due to the
uncertainties in A and P. If we let A assume its
best-fitted value and vary the values of P, then at
each P a least-squares fit routinely yields a set
of L, and v'. Figure 5 shows the values of p' and

L, as a function of p for data of )i. =4880 k and FWF
density profile with A assuming its best-fitted
value given in Table II. A similar plot of Lp and
v' as a function of A, with P assuming its best-
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FIG. 4. Percentage change of standard deviation as
each fitting parameter A, p, Lo, and v' is varied indi-
vidually around its best-fit value with all three other
parameters fixed at their best-fit values. Data for 4880
A with FWF profile; Ao =1.8998, (Lo)0 =7.94 A, po
=-0.332, vo =0.6654. The standard deviation o =
[N P(inR —InÃ) ] ' = [N g(R E/ff )]-
Data of other wavelengths show the same feature as
this one.

FIG. 5. Solid curves are the variations of v' and Lo as
A deviates from its best-fitted value Ao =ln6. 6849 and
with p assuming its best-fitted value po =0.332. Vertical
bars are the uncertainties in v' and L& due to the un-
certainty in A(o~). Curves with dots are the variations
of v' and Lo as p deviates from po with A =A(). Vertical
bars with dots are the uncertainties in v' and Lo due to
the uncertainty in p(o8). Data fit for 4880 A, with FWF
density profile.
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other wavelengths and for the ERF density profile.
In Fig. 8 we have shown the parameters p, L„and
v' for all five wavelengths and the corresponding
uncertainties estimated by the same approach that
we used to obtain the uncertainties for the param-
eters of the X =4880A data. In Fig. 6 the horizon-
tal lines are the weighted average values of five
wavelengths with weighting factors equal to I/o'.
T'he vertical double bars are the estimated uncer-
tainties. The uncertainty for v' is the sum of the
following two uncertainties: (i}the standard devf-
ation from their mean value
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where v'(X, } is the v' of wavelength X, and p' is
the mean value defined as

0.345 )-
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O. 530
o.325)-

P s O. 333+O.OOe
I
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+I ~1 pl g e

(ii) the standard deviations associated with each
v'())., )FIG. 6. Final values for parameters Lo, 1 ', and p at

five wavelengths and two density profiles. Horizontal
lines show the weighted average values, Double vertical
b;trs show the uncertainties of averaged values. A, ,
= s4vi A; x, =sa4s A; x, =4sso A'; z, =4v2v A; x, =4sve A.

s t 1

where o„&q, &
is the standard deviation of v'(X, ).

For the FWF density profOe we find e, = 0.0135
and c~=0,0072, so e„~0.020. For ERF we have
og 0 0067' e, = 0.0046, and (r„s = 0.011. The un-
certainty for Lo is estimated in the same way, and
the results are listed in Table IH.

Finally we want to know whether both Lo and v'

can vary substantially together in such a way as
to seem to yieM a fairly small standard deviation.
The answer to this question is no. We have fixed
A and p at their best-fitted values and calculated
the standard deviations o as a function of both L,o
and v'. Equal-e contours show that the joint

fitted value, is also shown in Fig. 5. In this figure
the uncertainties in v' and I., due to the uncertain-
ties in A and p are shown as vertical bars. Since
the statistical standard deviations for v' and L,
determined in the four- parameters-least-squares-
fit process jEq. (0}]are much smaller than the
uncertainties due to the uncertainty in P, we chose
the latter as the uncertainties for p' and L,o. In
this particular case, as shown in Fig. 5, the un-
certainty in v' is about 0.014 and the uncertainty
ia L, is about 0.9 A.

We have performed the same analysis for the

I, (g) (,i&i&~ &&c,&
'-

&&e&
1/0

I e i+Density profile

3.21%Error function 0.332+ 0.008 0.620~ 0,011 10,4 + 0.62

Fisk-Widom
function 0.333~0.008 0,683+0,02 7.43~0.80 1.M~0.18 3.87%

Classicai
function 0.352 + 0.015 0.799 a 0,05 2,48 + 0.92 0,82 + 0,22 9.11%

TABM IH. Contribution of density-profile choice to estimated error. P is the critical
index of the coexistence curve. Lo and I e are the effective thickness and corresponding de-
cay length at (l —T/T~) =1, (cr&~} ~~ is the standard error of estimate of L as calculated for
each density profile without the assumption of a particular temperature dependence for L .
(co) -3% is the estimated random error of measurement ofL. 7he last column gives the ex-
cess error introduced by the assumption of each density profile.
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Reduced Temperature e = I
—T/Tc

FIG. 7. Best effective thicknesses L(1) obtained by
fitting the second set of measurements for five wave-
lengths to EHF, FWF, and TANH density profiles. Solid
lines represent the best-fitted power law L =Lac
Each point represents the mean value over five wave-
lengths.

variations of Lp and v' from their best assumed
values cause little more deviation than the single-
parameter variations.

From the first row of Table II, we can clearly
see that the index p is only weakly dependent' on
the choice of density profiles. This can be under-
stood because the quantity (b,T}2~ in Eq. (5} is di-
rectly proportional to the Fresnel reQectivity Rz
which represents the reflectivity in the asymptotic
region where the data are insensitive to the. choice
of density profiles.

On the other hand, the values of v' and Lp are
strongly dependent on the choice of density pro-
files. Therefore, we can not find a single set of
v' and L, that will satisfy both ERF and FWF pro-
files simultaneously. However, we noticed that by
choosing the ERF profile the variations of the
values of v' and L, over five wavelengths are sub-
stantially less than those obtained by choosing the
FWF profile. These have been shown in Fig. 7.
From the last row of Table II we find that for each
wavelength the analysis based on the ERF profile
has consistently smaller standard deviations than
the other two profiles. The difference between the
values of standard deviations of ERF and FWF is
small, but the hyperbolic tangent function has a
50% larger standard deviation than the other two.
Within the temperature range we covered, the
ERF profile yields the better fit to our measure-
ments. To support this conclusion, we go further
to analyze the wavelength dependence of interface

thickness.
The interface thickness L for each measured R

can be calculated with the parameters of Table II.
At each temperature aT, the average interface
thickness L, and the variance (o', ) can be defined,
respectively, as

and

( 2) &g (Lu Lg}-~

L]

where L,&
=L(hT„X&}is the interface thickness s't

temperature aT, and wavelength A~. In the absence
of error, the values of L, at fixed temperature
AT, should be independent of X~ for the correct
density profiles. Therefore the quantity

N

(oz) = g Q&o'g)

which is the average standard fractional deviation
of thickness L determined without the assumption
of any particular temperature dependence for L,
can be used to choose the best density profiles. In
column 6 of Table III, we have listed calculated
values of (og) for various density profiles. A com-
parison of these values with the estimated random-
measurement error (3%}for L shows that the ERF
profile agrees with our data very well, while AVF
and hyperbolic tangent-function profiles have ex-
cess deviations of 29% and 204%, respectively, as
shown in the last column of Table III. These
analyses further support the result we obtained in
the last paragraph, that the ERF profile seems to
fit our data best. However, we again recall- that
most of our data are sensitive to the central part of
the density profiles only, while it is in the tails of
those profiles that* ERF and FWF differ most.

To determine the temperature dependence of the
interface thickness, we have chosen L, as the
most likely va1ue of L at AT, and performed the
least-squares fit of X, and b,T, against the relation
L =La(b, T/T~} " . The variance (o2) increases as
does hT, . This is because L is determined by
(Rj-R}/R& instead of R; here Rz is the relative
Fresnel reQectivity, which differs from R~ by the
same proportional factor as R differs from abso-
lute reQectivity. To avoid this inessential varia-
tion we have chosen only the data below ~T=l.7'C
for the determination of the temperature depen-
dence of L. Instead of giving the same weight to
every L„we assign a weighting factor &u, = I/(o', )
for each L,. Furthermore, a fractional uncertain-
ty, rather than a constant uncertainty in L, repre-
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sents the measurement errors -best. We therefore
deduce the values of p' and L, by performing the
leait-squ~a fit =on a log-log scale rather than-on
a linear scale. We have performed the analysis at
different temperature ranges, and values of v'

and Lo for various density profiles are listed in
Table IV. In ERF and FWF density profiles no
systematic change in the values of v' and L, are
found. Their average values are in good agree-
ment with the values listed in Table II. The final
values for v' and L, together with their estimated
uncertainties are given in Table IH. In Fig. 7 we
have plotted the measured interface thickness of
various density profiies, and Fig. 6 shows the
combination of our two sets of independently mea-
sured L.

In the temperature range 0,051 &AT &1V 'e
(9.73 x 10 ' ~ e ~ 5.33 x 10 '), our best estimated
value for P is 0.333+0.008. This value is in good
agreement with the values reported previously, '~24

but there mould be no reason to doubt, and much
reason to believe, that P may assume slightly dif-
ferent values other than 0.333 as the measurement
is getting closer to T„or eventually it may even
approach a universal value, as is always being
argued. With sufficient accuracy one might expect
P to converge toward a value between 0.34 and 0.35
as T- T„since P=0.35 for-CO, "and P=0.35 for
Xe." Therefore we chose a set of values ranging
from 0.33 to 0.35 for P, instead of leaving it as a
free adjustable parameter in the data-fitting pro-
cess [Eq. (6)]. The least-squares fit results show
that the fitting gets worse as P increases, just as
we expect. In the extreme case when P =0.35, the
standard deviation increases as much as 5Ã~ over
the best-fitted value. This is beyond the range
that can be tolerated by our experimental errors.

In our data analysis we have assumed that P has
a constant value throughout the whole temperature
range. This assumption has previously been es-
tablished by the coexistence-curve measurement

TABLE IV. Temperature-range dependence of critical
exponent v'. Results of the least-squares fit of I

&

against the relation L =L OQT/T~) " at different tem-
perature ranges. A weightin'g factor ~& =1/02& is as-
signed to L&.

IV. DISCUSSION

In order to extract the maximum information
from our reflectivity measurements, we have car-
ried out an elaborate five-parameter fit of the net

5,OOO
1 i t I I l I

I,OOO

4)
O
O

VI

IOO

of Benedek, Lastovka, Giglio, and Cannell" and of
Tison and Hunt. " Recently, Balzarini and Ohrn'4

determined the coexistence curve of SF, by inter-
ferometric measuremerits. They found P =0.346
a 0.001 in the range 10 ' ~ & ~ 10 ', and P = 0.339
+ 0.003 in the range e ~3 && 10 '. Our value of p is
determined by the least-squares-fit routine of Eq.
(6). The single value of P thus obtained proved to
be insensitive to the selected temperature range
of the fitting process. Therefore from our data
we would not expect to find the small change in P
reported by Balzarini and Ohrn. '4 Our values of
v' and L, are determined by the data in the tem-
perature range 9.73 x 10 ' c e ~ 5.33 x 10 ', and
within the range 3x10 ' «& «5.33x10 ' there are
only a few lightly weighted data points, while all
heavily weighted data points are in the tempera-
ture range e «3 & 10 '; therefore we are confident
that the extremely weak temperatux e dependence
of p has little effect on our values of v' and L,. If
we set P =0.339, as determined in Ref. 24, we find
L-9 Oar A for ERF and L=6.55r ' A for
FWF in comparison with our best values, 10.4c
and 7.43~ "",resyectively.

Data Temperature
point range

TANH

Lo Q)

FWF

L, o (~) v' I.o (A) v'

I 1 i I

lo
1 i i I

6xjo
I I I I III

IO

Reduced Temperature e = j —T/T,

33 0.051~h,T ~ 1.7
32 0.051~ET~1.5
31 0.051&d,T ~ 1.35
30 0,051~AT & 1.15
29 0.051«5,T ~ 0.995
28 .O.Q51 «LhT ~ Q.897
27 0.051~AT ~ 0.799

Linear average

2.74
2.74
2.75
2.77
2.77
2.V8

2.84

0.7801
0.7798
0.7795
0.7785
O.VV83

O.V 781
0.7751

10.55
10.48
10.46
10,34
10.35
10.37
10.45

0,6181
0.8189
0,6191
0.6205
0.6204
0.6202
0.6193

7.68
V.80
7.38
7.32
7.33'
7.34
7.35

0.6590
0.6602
0.6638
0.6648
0.8846
0.6645
0.6643

2,77 0.7785 10.43 0.6196 7.43 0.6630

FIG. 8. Effective thickness L for the ERF and decay
length L' for the F%F are plotted against reduced tem-
perature on, log-log scale with all of our data (first and
second sets of measurements). Note that differently de-
fined characteristic lengths are used. L' is the decay
length that can be identifi;ed as the correlation length in
the Fisk-%idom theory. Best-fitted power laws are dis-
played along respective curves.
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and &thin the estimated uncertainty, this result
is just barely consistent with the value of L, ob-
tained by using FWF,

L ~ (7.43 + Q.60)e ~ "' ' '~ A, (io)

where L=2&L' and the decay length I.' is
L' = (1 52 ~ 0 16)a '~' ' '~ A

Our data analysis showed that the ERF density
profile fits our measurements slightly better than
FNF. Since the error-function profile does not
have an exponential-decay tail, no exponential-
decay length is defined for ERF. However in the
range of our data, we can conjecture that the in-
terface thickness determined by the error-function
profile has the same sort of singular behavior as
does the range of correlation ]. Therefore the
interface-thickness divergence (as ~ " ) may re-
quire I ™0.82 ~0.01, as determined with ERF, in-
stead of as v'=0. 6B~ 0.02, as determined with
FNF. Somewhere between is probably the best
choice.

Fisk and Nidom indicate that J.' can be identi-
fied as the correlation length $' below T,. ln order
to test the relation I.'= g' we must know the corre-
lation length below T, Unfortunately. , the oaly
available data are measured along the critical iso-
chore. From the measurement of total scattering
power above T„Puglfelli and FomP' found

g =1.5 a 0.23(- e) (11)

A recent study of Rayleigh linewidth*' has yielded
the singular part of thermal diffusivity. After

of temperature- and wavelength-dependent refiec-
tivities. Temperature dependence of each critical
yarameter is at first heuristically taken in the
form x =x,c", where x, and X are taken to be con-
stants in a selected temperature range. Based on
relevant theories, we have selected three trial
functions for the interface-density profiles and
have fitted our reflectivity data using each inde-
pendently. The same routine can be applied to
Other profiles that may be proposed. However,
ee have not found it practical to fit the data with-
out a trial profile.

%e find that both an error function and the Fisk-
%idom function provide good representations of
the interface-density profile in the temperature
range 9.'73 x10 ' &1- T/T, c5.33x 10 ', while
the classical hyperbolic-tangent function does not.
For both ERF and FNF, p is found Oo be 0.333
~0.008 in the temperature range 9.93 x 10"5

~1- T/T, 4'5.33 x 10 '; this value is in good agree-
ment &th ya eviously reported values. The iaber-
face fhickness determined using the ERF profile is

L = (10 4 a 0 82)e o'~o ' o"A (~)

inserting in Kawasaki's relation for thermal dif-
fusivity in the hydrodynamic region our recently
obtained" correct value of viscosity, the correla-
tion length can be expressed as

0+Q3( ~)M$14004$ (i2)

Both ( have fairly large uncertainties; reverthe-
less, if we let $, '= L,', as suggested by Widom's
theory, neither of them satisfies the condition
fJ g -2, suggested by the two-dimensional lattice-
gas model. " No independent estimation of the
ratio $0/$,' in three-dimensional Ising models has
yet been made, but it is reasonable to guess that
its value lies between the mean-field value W and
the two-dimensional Ising-model value of R. There-
fore, a likely value is g,/(,' -1.8,~ as for the
three-dimensional Ising models. This value barely
agrees with 4/g =1.32 m 0.24, obtair»d by using
the revised Rayleigh-linewidth value ],=2.0*0.3
of Eq. (12) above T, and by assuming @=I.,'
below T, . The Rayleigh-linewidth data are dis-
cussed further in Payer O." Fisher' has deduced
a universal rule for estimation of the scale of the
correlation-length variation near the critical point
from the behavior of the Ising mode1. With the
correlation length given by (' =4m ", the scale
is determined by t", , which he supposed to be
closely related to the lattice spacing in the Ising
model. Extending his idea to a critical simple
fluid, he suggested that, below T... g,'~0.3(p, )-'l3,

p, being the particle density at T, . For SF, this
implies (,'-2.05 A.

With @=1.235~0.015,28 and assuming v= v'
= 0.663, we find that the value of index q= 2- y/v
introduced by Fisher" to account for the deviation
of ]' (or L' here) from the Ornstein-Zernike
theory as T- T, is g=2-y/v=0 13'7+0..08. On the
other hand, with the ERF value of v we have the
opposite extreme, q=0.01. The first value is a
little bit larger than the three-dimensional lattice-
gas prediction that q = 0.056 ~0.008" and q =0.0V4
~0.035~ for Co» and that g=0.065" for Xe, but
is not unreasonable. The second value is con-
sistent with two-parameter scaling. Clearly, our
determination of g is lost in the small uncertainty
in determination of v' (0.82 vs 0.68) that arises
from the Choice of interface.

Finally, we must discuss the FNF and EHF
density profiles that have been used in our data
analysis. We have determined the optical reflec-
tivity with better accuracy than has been achieved
in previous experiments, ' and we are able to see
the small difference between these two functions
in the k dependence of R/RI. We find that ERF
provides consistently better Bt to our measure-
ments than does FNF, and in fact must be very
close to the exact function, at least in the central
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portion of the interface. The ERF density pro-
file assumes the form exp(-wz'/l, 2) in the asymp-
totic region, while it 'is usually expected that the
functional form of the density profile has exponen-
tial tails. ' The reflectivity is, however, insensi-
tive to the shape, of the tails.

The BLS theory describes the interface in terms
of the second moment (L~m~) of the normalized
density gradient; our L = {2v(LI~Ls))'I' for the ERF
profile. BLS theory gives I.~~ in terms of the
surface tension v and density difference as

I.',„=(n, T/2oo) In[I+ {o'/aug)(v2/I, ,'„,)], (is)
where c'.=cr+ (Sks T/16) w /Le2~. Using our surfsce-
tension values from Paper II and published values
of d@,"we have estimated the interface thickness
L,~„, predicted. by the BLS theory. The results are
shown as a dashed line in Fig. 8. In the tempera-
ture range we covered, a straight-line fit to this
curve is reasonably satisfactory and yields the
relation L,~~s 12 Vc-o.ses A which can be compeer
with the best fit to the data X=10.4e ' ~ A. Al-
though the BLS result is in qualitative agreement
with our experiments, the systematic deviations
are obvious and clearly exceed the experimental
uncertainties.

Huang had shown that the intensity and angular
distribution of the light scattering by the interface
are inconsistent with the model used by Buff,
Lovett, and Stillinger to deduce the error-function
profile. Their capillary-wave model allows a
spectrum of only smaQ k sharp-boundary wave-like
modes along the plane of the interface. They are
supposed to superimpose to form the diffuse bound-
ary. However, the light scattering by these modes
appears at such small angles around the specular
reQection that the scattered light would be included
in Huang's measurements of the specular reQec-
tion. Therefore no decrease of the measured re-
flectivity would be expected in the BLS model.
Huang has, on the other hand, measured the angu-
lar distribution of the scattered intensify from the
interface in critical mixtures, which he finds to
be in excellent. agreement with that calculated for
wavelike collective thermal excitations of the en-

tire diffuse iikerface.
Consequeritly, it seems preferable to,yisualize

the diffuse interface as a superyosition of fluctua-
tions on the scale of -(' -I.' in sll directions, as
in the bulk Quid, that superi. mpose in the interface
to form a transition region of. thickness L'. The
important thermal excitations of this interface are
collective excitatjons of the entire interface that
produce small surface wavelike elevations and
depressions of the interface height that vary on a
horizontal scale that is much larger than the thick-
ness of the diffuse layer. This contradiction of
the BLS theory weakened the basis for our choice
of ERF as a trial function. However Buff has
recently informed us that Lovett, DeHaven, Vie-
celi, and Buff" have developed a new generalized
theory of the interface that yields an ex ror-func-
tion-like profile without involving the wave model.

Vfe have used the FWF profile in spite of its less-
perfect fit to our data in order to compare the ef-
fective interface thickness with the bulk correla-
tion length. The FWF density profile is obtained
by assuming ad hoc a simple equation of state for
the fluid system. Hence there is the possibility
that the correct equation of state will yield a
density profile that correctly represents the inter-
face and provides a better fit to our data. On the
other hand, the theory of Fisk and Widom ex-
plicitly assumes that the equation of state of the
uniform fluids can be continued into densities
within the two-phase region, and it may be possible
that difficulties arise due to failure of that as-
sumption. Further discussion of FWF and the
Fisk-%'idom theory follow in Paper II, where our
measurements of the interfacial energy permit a
more stringent analysis.
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