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The energy dependence of the charge-exchange cross section in proton-hydrogen-atom collisions at
very high energies, within the framework of the Schrodinger equation, has long been a subject of
controversy. We attempt to determine the energy dependence of the forward-scattering cross section at
very high energies in an arbitrary rearrangement collision involving two heavy particles of masses M,
and M, and a light particle of mass m, with m initially bound to M, and finally bound to M,. In
the limits m /M,, m /M,— 0 the scattering is entirely in the forward direction and the cross section o
for forward capture is given exactly by the impact-parameter treatment. A Born-type expansion is
developed in the impact-parameter treatment for the forward-capture amplitude 4. Thus, 4 is written
as a sum of a finite number of Born terms plus a remainder R. The Schwarz inequality can be used
to bound R since there are no non-normalizable plane-wave functions—the motion of M, and M, is
treated classically. We can thereby show that for a certain class of nonsingular interactions the second
Born term provides the dominant contribution to o at high energies, whether or not the Born series
converges. (This may be the first example for which it has been shown that the second Born term
dominates.) This result makes plausible the dominance of the second Born term in p-H forward charge

exchange.

I. INTRODUCTION

Within the framework of the Schrodinger equa-
tion, the determination of the energy dependence
of the ground state to ground-state charge-trans-
fer cross section in proton-hydrogen-atom colli-
sions, as the relative kinetic energy E goes to
infinity, is a vintage problem which continues to
attract interest.! Capture into the backward di-
rection is thought to dominate® for E sufficiently
large, the main contribution coming from the first
Born approximation® and being proportional to
(m,/M,)?E™*, with m, and M, the electron and
proton masses, respectively. However, back
scattering is unobservably small due to the

(m,/M,)? factor, and we will concern ourselves
with the result obtained by first letting m,/M, »—~0
and lzer considering arbitrarily large E. Capture
into the forward direction then dominates, and it
is the energy dependence of the forward-capture
cross section which is of greatest interest and
which is the subject of this paper.

The first quantum-mechanical calculation of
the proton-hydrogen charge-transfer cross sec-
tion was performed in 1930 by Brinkmann and
Kramers.* Neglecting the proton-proton inter-
action and using the first Born approximation,
they found that the forward-capture cross section
behaved as C/E°® for sufficiently high energy. (The
rapid decrease with E is a consequence of the
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difficulty of having the electron undergo the neces-
sary great change in its velocity.) The 1/E® de-
pendence disagreed with the 1/E''/2 dependence
obtained earlier by Thomas® in a classical calcu-
lation, and was viewed with consternation by
Bohr® and others. Much later, still using the first
Born approximation, Jackson and Schiff’ showed
that the inclusion of the proton-proton interaction
did not affect the energy dependence of forward
capture; its only effect was to reduce the constant
C. In 1955, however, Drisko® investigated the
second Born term, and obtained, in agreement
with the classical energy dependence, a limiting
behavior C’/E'/? for forward capture. Drisko’s
result was a very strong indication that forward
capture did not converge to the result obtained in
the first Born approximation.

Dettmann and Leibfried® recently investigated
each term in the Born series for a three-body
rearrangement collision involving arbitrary mass-
es m, M, and M,, and a wide range of potentials,
including Coulomb potentials. (It must be possible
to express the Fourier transform of the potential
as a power series in 1/k for large k.) Forground-
state to ground-state capture, with m initially
bound to M, and finally to M,, we introduce the
notation o¥ for the cross section obtained by trun-
cating the Born series after a large but finite
number N of terms. (The superscript W indicates
that the cross section is calculated in the correct
wave treatment rather than the approximate im-
pact-parameter treatment to be discussed later.)
Dettmann and Leibfried proved that for any N> 2,
the dominant contribution at high energies to o}
comes from the first Born term if M, equals M,,
and the second Born term if M, differs from M,.
They also showed that the main contributions at
high energies from the first and second Born terms
come from the scattering of M, and M, into “criti-
cal” angles, angles which have a simple classical
interpretation.® When M, equals M, equals M,
say, as in proton-hydrogen charge transfer, there
is a critical angle of 180° (in the center-of-mass
frame) and back scattering then provides the main
contribution at high energies from the first Born
term. However, if the captured particle is light,
critical back scattering is unobservably small
and vanishes in the limit m /M~ 0.'° In fact, when
m /M, and m /M, are small there is always a small
critical angle, of the order of (V3 )[(m/M,)+(m/M,)]
in the center -of-mass frame, which at high ener-
gies gives rise to a forward-capture peak in the
second Born term, and in the limits m/M,, m/M,
- 0 forward capture dominates over critical scat-
tering into other directions. In other words, after
the limits m/M,, m/M,~0 are taken, the high-
energy dependence of o} originates in the second

Born term through forward capture, whether or
not M, equals M,.

The proof that a given Born term determines the
high-energy dependence of gy does not prove that
this term determines the high-energy dependence
of the actual cross section since the Born series
may not converge for rearrangement collisions
or even for direct collisions. The Born series for
the Green’s function diverges in the three-body
problem, for rearrangement and direct collisions,"!
and therefore the Born series for the scattering
amplitude may well diverge also in some cases.

The essence of the present approach is to avoid
convergence questions. In the limits m /M,
m/M,~0 the scattering is entirely in the forward
direction,'? as suggested above. Now the impact
parameter method treats forward scattering and
in the limits m/M,, m/M,~0 the wave and impact
parameter treatments yield identical cross sec-
tions.'?*!* But one can easily bound the cross
section ¢ obtained in the impact-parameter treat-
ment'4; the heavy particles M, and M, are treated
classically and there are no associated non-nor-
malizable plane -wave functions. The light particle
m is described by a normalizable wave function
and is subject to a time-dependent potential, and
matrix elements involving the unknown but normal-
izable wave function can be bounded by using the
Schwarz inequality.

It might be noted that the bound on ¢ obtained
in the impact-parameter method is a particular
example of the existence of bounds'® (indeed, of
variational bounds'*) on transition amplitudes in
time -dependent problems. The essential point'*
is that the only unknown in a transition-amplitude
matrix element is the unitary time-translation
operator, and this operator can be eliminated by
the use of the Schwarz inequality. The impact-
parameter approximation reduces the original
scattering problem to that of the determination
of a transition amplitude.

Returning to the problem at hand, a Born-type
expansion is developed in the impact-parameter
method for the forward-capture amplitude A. Thus
A is written as the sum S, of a finite number N
of Born terms plus a remainder R,. The Born
terms are, of course, given explicitly, and their
velocity dependences can often be extracted even
when the velocity-independent coefficients cannot
be obtained. Let the contribution to ¢ from the
dominant Born term be D/7°, with ¢ known; D
may or may not be known. One then obtains a
bound on the contribution to ¢ directly from R,
and from the cross term involving R, and Sy,
of the form D’/v? with p known; D’ may or may
not be known. If p>¢ it follows that the cross
section behaves as 1/v° whether or not the Born
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series diverges.

We have successfully applied the above approach
only to a certain class of nonsingular potentials,
and found that the second Born term dominates
at high energies. To our knowledge this is the
first example of a reasonably rigorous proof of
the dominance of the second Born term in any
scattering process for which the first Born term
does not vanish by some selection rule, and it
makes even more plausible the dominance of the
second Born term in p-H forward charge exchange.
The result is physically reasonable when one con-
siders that classically forward capture is pictured
as a two-step process'®: m is first scattered by
the incident particle towards the target particle,
from which it is scattered a second time to emerge
with the same velocity as the almost undeflected
incident particle.®

In Sec. II we discuss the impact-parameter meth-
od for an arbitrary rearrangement collision in-
volving two heavy particles M, and M, and a light
particle m. We discuss the existence of the tran-
sition amplitude A and then upper and lower bounds
on A are derived. Various expansions of A are
considered; for most expansions the bounds are
very poor. In Sec. III for interactions which are
nonsingular and which fall off sufficiently rapidly
with increasing distance, a particular expansion
provides the high-energy dependence of the ground
state to ground-state forward-capture cross sec-
tion and shows it to originate in the second Born
term.

II. IMPACT-PARAMETER METHOD
A. Preliminaries

In the eikonal or impact-parameter method the
light particle of mass m is treated quantum me-
chanically but the heavy particles of masses M,
and M, are treated classically and it is further
assumed that they move with constant velocity.
Thus, M, and M, become moving centers of force
which subject m to a time-dependent potential. The
state vector |¥(t)) of m at any time ¢ is determined
by

im0 =H(0) [ ¥(0) 2.1)

and appropriate boundary conditions.

We work in the laboratory system with M, ini-
tially and therefore permanently at rest. Let the
vectors T and R(#) locate m and M, with respect
to M,, the origin of coordinates. The interaction
operator V, between m and M, is time independent
but the interaction operators V,(t) and Vv, (¢) be-
tween m and M, and between M, and M, depend on
the time through

R@)=p +vt, (2.2)

8
where p is the impact parameter and ¥ is the
(constant) velocity of M,. The Hamiltonian H(¢)
has the form

H(t)=H, +V, +V,(t) + V,(t), (2.3)
where
H,= -(r%/2m)vs? (2.4)

is the kinetic energy operator of m. Note that

the interaction between M, and M, is included in
the Hamiltonian; a discussion of this point will be
given later. All interactions are assumed to be
Hermitian and local. In coordinate space we have,
with »=|T| and R(t) = |R(?)|,

(Y| V,I8) =V, )8 - 8), (2.52)
(F|V,)I8) =V, (T -R(@)|)o(x -3), (2.5b)
(FIV 40 |8) =V, (R(1)B(E -5). (2.5¢)

Note that we use the same symbol for the inter-
action operators as we do for their coordinate
representations, although of course the arguments
differ. No confusion should arise in distinguishing
between operators and their coordinate represen-
tations.

With the state vector of m specified at some time
t,, the formal solution of Eq. (2.1) is

[ () =U(t,2,) [ ¥(£)) . (2.6)

The unitary time-translation operator U(t,))
governs the time development of the state vector
and satisfies

.. 9
(H(t) - ’”'5{) Ult,t,)=0, @.7)
with the boundary condition
Uty t)=1. (2.8)

The definition of the transition amplitude depends
on the existence of unperturbed ingoing and out-
going states. For later use we first define opera-
tors H,, H,(t), Vit), V;(t), and V(¢):

H,=H,+V,, (2.92)
Hy()=H +V,(t), (2.9b)
V) SH() —H, = Vi(t) + V,,(8), (2.9¢)
Vi) =H(E) =H, () =V, + V() (2.9d)
V)=H(E) —H =V, + V() + V,(2) . (2.9¢)

We shall also need the unitary time-translation
operators U,(t,t,) and U,(¢,t,) defined by

(Ha-ih':—t) Ut,t)=0, Utnt)=1;  (2.10a)
and

<Hb(t)—ih’:—t>Ub(t,to)=0, Uytpt)=1. (2.10b)
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It is simple to write formal solutions for U, and
U,. We have

U,(t,t) =e - tHat (2.11a)
since H, is time independent, but
U,(t,to)= Texp[ —i L: H,(t") dt'/i], (2.11b)

where 7 is Dyson’s time-ordering operator.

Now if at large negative times m is bound to
M, the unperturbed ingoing state |¥ (¢)) is defined
by

[, ()= lim U, (t,2)|¥(t,)), (2.12)

to—>—
provided the limit exists. Thus, |¥,(t)) represents
the unperturbed propagation in time of the bound
system (m +M,) and therefore

(Fl¥,0) =@ e %", (2.13)

where & (T) is the initial stationary bound-state
wave function of m and E, is the corresponding
bound-state energy. In Appendix A we prove that
the limit in (2.12) will exist if

lim¢]| vi@le,) Il =0, (2.14)
where the norm || |®) || of the vector |®) is
defined by

[1®) | =@l®)'/2=([I(F|®) |*dE)*/2. (2.15)

Going into the coordinate representation and

noting that the presence of <I>,,(1") restricts the

range of », Eq. (2.14) leads to the requirement
lim R(V,(R) +V,(R))=0; (2.16)
R—w

thus, if the interactions satisfy (2.14) or, equiv-

alently, (2.16), the unperturbed ingoing state

exists.

Similarly, if at large positive times m is bound
to M,, the unperturbed outgoing state |¥,(t)) is
defined by

| ¥,(2)) = lim U,,(t,to)l ¥(t,)), (2.17)
to—

provided the limit exists, and

; N7 (t» =@ (;_ﬁ(t))eiMV' ?/”e‘((3b+mvz/2)!/"
( I b b ’
(2.18)

where &, is the final stationary bound-state wave
function of m and E, is the corresponding bound-
state energy. Note that through the translational
motion of M,, m acquires the additional energy
$my? and the additional momentum mvV. The un-
perturbed outgoing state exists if

lim¢| v;0)|@,0) | =0, (2.19)
>

which amounts to the requirement
limR(V,(R) +V,,(R))=0. (2.20)

R

Note that the difference in form between (2.13)
and (2.18) plays no significant role in the condi-
tions for the existence of the unperturbed ingoing
and outgoing states: Eqs. (2.16) and (2.20) differ
only in the interchange of a and b.

With the boundary condition that m is initially
bound to M,, the amplitude for forward capture is

A=lim (¥,(T,)|¥(T,))

T~

(2.21)

or, using (2.6) and recognizing that (2.12) implies
that ¥(T,) approaches ¥ ,(T,) for T, in the remote
past,

A= lim (¥,(T)|U(T,,T)| ¥ (T,) ,

T1—> e
Ty =

(2.22)

where the unperturbed ingoing and outgoing states
are defined by (2.13) and (2.18). The cross sec-
tion for forward capture is

0=A°|A|221rp dp. (2.23)

We suppress the p and » dependence of A and the
v dependence of ¢.

We note that if we add a term f(¢)1 to the Hamil -
tonian (2.3), where f(¢) is a real function rather
than an operator and 1 is the unit operator in
coordinate space, then

[¥(t)) - exp[—i [*f(t") dt'/ B |¥(2)) ; (2.24)

by (2.21) A is merely altered by a phase factor

so that ¢ is unchanged. If we choose f(¢) to be
-V (R(2)) then V() disappears from H(#) showing
that, as is well known, this interaction cannot
affect the cross section for forward capture in

the impact-parameter treatment. Moreover, if
the conditions (2.14) and (2.19) do not hold, we
can, since & ,(f) and &,(r - R(¢)) restrict the range
of » and |T -R(t)|, respectively, always choose
f(t) so that with the modified forms of V’(t) and

V; these conditions do hold, and hence we can
always define unperturbed ingoing and outgoing
states. This is just a reflection of the fact that
the perturbing potential, whatever its form is,
provided it vanishes asympotically, has a vanish-
ingly small probability for inducing transitions at
long range. In this paper we always work specifi-
cally with the Hamiltonian given by (2.3), and with
interactions which satisfy conditions (2.14) and
(2.19). This is because although ¢ is unaffected by
the addition of a term f(#)1 to the Hamiltonian, any
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trial (e.g., Born) estimate of 0, calculated with
some trial U, will in general be affected by this
term. Later we wish to develop a Born series in
the impact-parameter treatment which in the limits
m /M, m/M,~0 corresponds term by term to the
Born series obtained in the wave treatment, and
this is possible only if the Hamiltonian includes
those, and only those, interactions which occur in
the real three-body problem. In particular, the
Hamiltonian must include V ,(?).

B. Upper and Lower Bounds on A

Following the procedure of Ref. 14 we introduce
the integral equation

U(Tu To) =ﬁ(T03 T1)*

= @/7) [ L5060 (b, T)]TU (t2, )
(2.25)
for U(T,,T,), and the adjoint integral equation
UltyyTo) = Uty To) = /) [ dt, Uty 1,)56(6,)0 1, T)

(2.26)
for U(¢,,T,). Here

5e(t)=H(t) - ik £ (2.27)

and U and U are any two trial operators, not
necessarily unitary, which satisfy the conditions
T(t,t)=1, Ut,)=1. (2.28)

If we use (2.26) in the right-hand side of (2.25)
and use the resulting expression for U(T,,T,) in
(2.22), we obtain

A=A,+A +R,, (2.29)
where, in the limits Ty~ -~ and T, - =,
Ao =0T )| U(To, T, | ¥,(T)) , (2.30)
A, ==(i/n) fT :1 dt (w,(T,) | {5e()T(t,T )}
XU(t,To) | ¥ o(To)) (2.31)

Ry = =i/ [ dty fo? it (3, (T,) {oe(t,) T8, T}

X U(tyyt,)'30(t, VU (£, To) | ¥ (Ty)) - (2.32)

We can use the Schwarz inequality to eliminate
U from (2.32) since U is unitary. We then obtain
a bound on the remainder R, of the form

IR, <RM= lim (VAP [ dt, J2at,
Ty~ o
To—>=e

X [[3e(£,)T (22, T1) [ ¥, (T )

X 136t )T (), To) [¥ (TN, (2.33)

8
We therefore have the upper and lower bounds
|A,+A,| -RP < |A| < |A,+A,| +RP (2.34)
on A.*
C. Examples
If we choose
Ultssto) = exp{ =i [ "[H, + Vo (0))dt/ 7}
=U (t,,t,) exp[—i ft:’Va,,(t)dt/h'] (2.35)

and
Ult,,t,) =T exp{—i f‘:‘[Hb(t) +V(t)]dt /7y
=U,(t,,¢ o) exp[ —i f‘ :‘Va,,(t)dt/ﬁ] ,  (2.36)
we obtain

Ay=a lim (¥,(T)|¥,(T,) =0,

To= ==

(2.37)

since ¥, and ¥, do not overlap in the remote past;
we also have

A,=(=ia/R) [ dt(e, )|V, | ¥,0) (2.38)
and
IR, | <RB=(1/n2 [ dt,|| V,1¥,(t,) |
x [Zat, || V) e, . (2.39)

The coefficient a appearing in (2.37) and (2.38)
is simply a phase factor defined as

a=exp[-i [V, (t)dt/n]. (2.40)

A, is just the Brinkmann-Kramers-type amplitude
which, in the case of proton-hydrogen ground
state to ground-state charge transfer, leads to

a cross section which behaves as »~'? at very
high energies, as noted earlier. Note that even if
a, and therefore A;, does not exist, the relevant
quantity, i.e., |4,|, does exist. We can easily
determine the velocity dependence of R®? [for Egs.
(2.5), (2.13), and (2.18)],

I v, 1,0 || = ([dE| v,(IT -p -Vt|)&,F)[?) /2
(2.41)

and

| v, 1%,@) || =(fdF|V,0)8,F -p -)|>)7>. (2.42)

Hence V, t,, and {, appear only in the combina-
tions V¢, and V¢, in the integrand in (2.39), and the
v dependence can be extracted by changing the
variables of integration to u, = v¢, and u, = vt,.
Defining functions f,(x,) and £, (u,) by

filw,)= (fd;lVb(I-l.‘ —B-ulzl)@.a(f)[zylz
and
fz(u2)=(fd;l Va(r)Qb(; -p _uzg)IZ)l/z’

(2.43)

(2.44)
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where the unit vector 2 is simply ¥/v, it follows
that

R¥=F(p)/v*, (2.45)
where the integral
Rp)= (/B2 [ foler) duy [ flu) e, (2.46)

is independent of v. This result, if the integral
(2.46) converges, is independent of the nature of
the interactions and the initial and final states but
it gives an extremely poor estimate of the velocity
dependence of the remainder term R,. The source
of the trouble can be seen by comparing Egs. (2.18)
and (2.42). In applying the Schwarz inequality to
the remainder we lose the translation factor
exp(imv - ¥/K). This factor accounts for the change
in momentum which » must undergo in being
captured, and at high energies this change in
momentum is very important in reducing the prob-
ability of capture. '

We consider very briefly two further examples.
The Jackson-Schiff approximation is obtained by
choosing U equal to U, and U equal to U,, that is,
we drop the term V,(¢) from (2.35) and (2.36). As
before A, equals zero, but now we have

Ay =(=i/0) [ dt(E, ()| Vi) | ¥,0),

which is the Jackson-Schiff term. However, R3¢
has the same velocity dependence as in the Brink-
mann-Kramers approximation and again leads to
an extremely poor result. A better bound on the
remainder could probably be obtained by the use
of the continuum distorted wave approximation of
Cheshire.'” In the continuum distorted wave ap-
proximation A, is zero and A, yields a cross sec-
tion for forward capture in agreement with the
second Born approximation at high energies. We
have, however, been unable to determine the ve-
locity dependence of R?®? in this case. In any
event, we can be fairly sure that although the
bound may be improved it will still be far from
reasonable since the same trouble occurs—the
rapidly oscillating phase factor which accounts
for the change in momentum of m disappears
from the integrand of R, when we apply the Schwarz
inequality. We note that this difficulty does not
occur in direct collisions where the change in
momentum of m is small.

(2.47)

III. BORN SERIES IN POWERS OF V(¢)
FOR GROUND-STATE CAPTURE

In Sec. II we did not specify ¢, and ¢,. In this
section we require that both ¢, and ¢, be ground
states. The restriction to ground states is con-
venient because we will depend on the work of
Dettmann and Liebfried® who themselves have

only considered ground-state capture.

The Jackson-Schiff term (2.47) is the first term
of the usual Born series and this series is obtained
by expanding the Jackson-Schiff remainder [ob-
tained from (2.32) by choosing U =U, and U = U,l,

Ry=(-i/np [ at, [*? dt,
X (VT () | Uty t,) | VEUL)T (2,)) 3.1)
in powers of
V() =V, +V, () +V (0 . (3.2)
We use the integral equation [cf. Eq. (2.26)]
U(tZ!tl) = UO(tZ’tl)
-G@/m 2 Aty Ulty ) VU (Enty) , (3.3)
1

where

Uo(tsst,) = exp[—i(t; —t,)H, /7] . (3.4)

We have, on iterating (3.3) (N -2) times, inserting
it in (3.1), and using (2.29),

N
A=A +R, =} A, +Ry, (3.5)
n=1

where A, is given by (2.47), where A4, for n>2 is
given by

~i
A,= (7{} ey Hn® * * ALV E)E () | Uo(tystmy)

x:ﬁl{v(ti)Uo(ti’ti-l)H Vit (4)),  (3.6)

and where the remainder R, differs from A,
only in the replacement of the single term
Uo(tys1sty) bY Ulty,1,ty) in the integrand of A,,,.
Here it is understood that

n 1 ifn<m
,E,In{“*} _{a,,a,,_l- ~a, ifn=m 3.7

and that D(¢) is the infinite domain of integration

with the variables of integration ¢; ordered so that

fD(t)dtn Gty eedty = I.: at, f_‘: Aty f_‘: dat, .
(3.8)

The Born terms in the expansion (3.5) of A cor-
respond to the Born terms in the expansion of the
three-body scattering amplitude in the time-inde-
pendent wave treatment, where the Green’s func-
tion is there too expanded in powers of the sum of
three interactions. In the limits m/M,, m/M,~0
the wave and impact-parameter treatments yield
identical cross sections to all orders in the Born
expansion.'® Hence if ¢, denotes the cross sec-
tion obtained from the first N Born terms in the
impact-parameter treatment, i.e.,

- N
°1v=,£ [Sy|*2mp dp, Sy=2 A, (3.9)
n=1
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then
oy= lim o}, (3.10)
m/Mg,~0
m/ My—>0

where o% was defined in the Introduction. There-
fore, the energy dependence of o, at very high
energies can be determined from the results of
Dettmann and Liebfried.®

To bound the velocity dependence of R, we apply
the Schwarz inequality to eliminate U and obtain

1 N+1
a1
IRNl <Ry _<h—) fp(,)dt,“,l"'dtl

x| V;(tnu) | ¥, (tys) I

x "‘I:'IZ{V(t,)UO(t,,t‘-I)}I VIt t,))" .

(3.11)

Suppose that all interactions are nonsingular.
Then | V(t)| is finite for all ¢, where the norm
|w|l of the operator W is defined by

Il wig)
Wi = 3.12
for any choice of normalizable |¢). Since

I Uo(tsta-) 1l =1 (3.13)

and since, by (3.12), || W|¢) | < Wl x|l |} I,
it then follows that

|Ryl<RY < (l/ﬁ"“Lm by, oo dt,
N RACNIE XCAROR
N
X TLUVEIID ) vate) egn) Il (3.19)

Now ¥ and t,, for all n, appear only in the com-
binations V¢, in the integrand of (3.14), and we
can proceed as before, by changing the variables
of integration to u, =vt,, to show that

|Ry| < Fy(p)/o"**, (3.15)
where
1 N+1
Fy(p)= (%) A(-)wx+ 10t Uy
gyt ) T {0 b ) (3.16)
and where
&) ={[dF|[V,+V,]e,® I}, (3.17)

&) ={[ dE|[V,+V,]8,(F -5 —u) |}/,
(3.18)
and where, ranging over all & normalized to unity,
h(u)=sup{ [ dF|[V,+V,+ V)@@ |}/%; (3.19)

in Egs. (3.17)-(3.19), we have V,= V,(|T -p —uZ]),
Vo= Va(lp+uzl), and V,= V(). We have sup-
pressed.the p dependence of &), &, and k. The integral
Fy(p) is independent of v. Whether or not it con-
verges depends on how fast g,(«) and g,(u) fall

off with increasing  since h(u) contains a constant
part with respect to u due to the term V,(r) which
is independent of ¢t. A sufficient condition for the
integral to converge is that

lim u¥g,(x)=0, lim u¥g,(u)=0, (3.20)
¥~ feo ¥—>te0
and this implies that as R—- »
RY[V(R)+V,(R)]-0, R¥[V,(R) +V,(R)]-0,
dv,(R) v AV,(R)

In the same way that we proved (3.15) we can
show that |A,| < O(1/v") and hence'® that |S,|
< O(1/v). We then arrive at the result, which is
proved in Appendix B,

lo =0y | SO@1/07*2). (3.22)

Now from the results of Dettmann and Liebfried®
it follows that for nonsingular interactions having
appropriate Fourier transforms

oy~0(1/v), N>2 (3.23)

and therefore by choosing N to be 18 we have that
the high-energy dependence of ¢ is given by o0,
and hence by ¢,. Thus, the second Born term
provides the dominant contribution to o, provided
(3.21) holds with N equal to 18. This is the main
result of the paper.

We have attempted, so far unsuccessfully, to
generalize this result to singular interactions by
expanding U in powers of V’(¢) rather than V(¢).
Using the integral equation (2.26) with U equal to
U, we expand the remainder term (3.1) to obtain

N
A=3 A, +Ry, (3.24)
n=1
where A, is the Jackson-Schiff term (2.47), but
where now, forz=>2, A, is given by

A= (F) Sogtar - (VDD 10,0110

x ﬁ{v;(t,)U,(t,,t,-,)} [Vi(6)9,(8)) . (3.25)

The remainder R, differs from A,,, only in the
replacement of the single term U,(ty,,,ly) by

Uty 1sty) in the integrand of A,,,. Applying the
Schwarz inequality to Ry and changing the vari-
ables of integration to u, =vt, it follows that Ry is
bounded by R3¢, where



|

AL ad__l.N“ ooe iy, Z,(Uysy)
Ry = 7 (u)d%vu 182WUN 41

X

{40t/ D0 4/}

x Vilu,/0) | (u, /o)) ||, (3.26)

where g,(«) is defined by Eq. (3.18). Suppose that
" *'RB? is continuous in v in the neighborhood of
infinity, an assumption we have not attempted to
justify since no conclusion can be reached with
this approach yet anyway. Then in the limit v -«
we can replace U,(«,/v,u,-,/v) by 1 in the inte-
grand in (3.26) and therefore

lim ¥ RE = (1/7; NHLM Ay oy * Ay &y 1)

v~

(3.27)

where the function
et e | B 8] )
(3.28)

is independent of v, as can easily be checked.

Let us consider interactions not more singular
than 1/ at the origin. Then g,(u) is defined for
all » and k(uy, ***,%,) is an analytic function
except for possible singularities at points u, =u,,
i+#j. However, these singularities will be
smoothed out by the integration over the «’s and,
for interactions not more singular than 1/ at
the origin, the integral (3.27) will converge pro-
vided (3.21) holds with N equal to 1. Hence for
p-H charge transfer

|Ry| sO@/07*Y) (3.29)
and it can be shown that
|o—oy| s 0O(1/07*%), (3.30)

where R, and o, are now defined with the series
expansion (3.24).

The Born terms in (3.24) correspond to the Born
terms in the time-independent wave treatment
in which the Green’s function is expanded in powers
of the perturbation in the entrance channel. It
can be shown that in the limits m/M,, m/M,~0
the two treatments yield identical cross sections
to all orders in this Born-type expansion and
hence o, can e determined from the wave treat-
ment. Unfortunately only the first and second
Born cross sections have, so far, been calculated
in the wave tr :atment with this expansion,? it
being very difticult to proceed to higher orders.
Since for protcn-hydrogen charge transfer o,
~0(1/v'') we have been unable to draw any con-
clusione abcut the high-energy limit.
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We remarked earlier that, whatever the nature
of the interactions, the incident particle is not
likely to induce transitions in the target when it
is very far from the target. Hence we expect the
capture cross section at very high energies to
depend on the short-range rather than the long-
range parts of the interactions, and if the inter-
actions are singular at the origin these singular-
ities will greatly influence the high-energy limit.?!
It would not, therefore, be wise to conclude imme -
diately that the result we have obtained for a
certain class of nonsingular interactions, namely,
that in ground-state rearrangement the second
Born term dominates at high energies in the
forward direction, applies to singular interactions.
Nevertheless, the result does make plausible
the dominance of the second Born term when the
interactions are singular as, for example, in p-H

- forward charge exchange.

Some of the techniques used in this paper can
easily be applied to show that the first Born term
dominates at high energies in direct inelastic
collisions.

ACKNOWLEDGMENTS

We wish to thank E. Gerjuoy, J. Macek, and L.
Rosenberg, and particularly, Y. Hahn and R. F.
Snider for many interesting conversations and
suggestions.

APPENDIX A:
EXISTENCE OF UNPERTURBED STATES

In this Appendix we prove that (2.14) is a suf-
ficient condition for the unperturbed ingoing state
to exist. A similar proof will establish that (2.19)
is a sufficient condition for the unperturbed out-

_going state to exist.

First we note that if |¥ (¢)) exists at one finite
time it exists at all finite times. Thus, if we set
t equal to zero in (2.12) and use (2.13) we are only
required to prove that

[®)= lim U,(0,t)|¥(t,)) , (A1)

ty =

subject to the boundary condition on ¥ that in the
remote past m was bound to M, in the state speci-
fied by @,.

We begin the proof with the integral equation
[cf. Eq. (2.26)]

U(0,t,) = U (0,t,) - (/%) j: AtUODVLU (k)5
(A2)

post multiplication of both sides of this equation
by U,(¢,,0)|®,) leads to the equation
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U(0,4,)U,(t,,0) [@ )
=12)) - @/n) [ #UOHVLOUL02,) . (43)

A sufficient condition for the last integral to con-
verge as {,—- -« is
lim ¢ U,0)V.(t)U,(t,0)]|®,) || =0. (A4)

t—>—w
Since U is unitary and since U, simply produces a
phase factor, (A4) reduces to (2.14).

Assuming then that (2.14) is satisfied, the limit
as f,—~ —o of the left-hand side of (A3) exists and
can be used to specify the value of ¥(0), that is,

|¥(0)) = lim U(0,£)U,(4,0)|®,) . (A5)

ty~ -

(This corresponds to the physical boundary condi-
tion that » is bound to M, in the remote past.)
Then, by definition, given any € >0 there is some
(large negative) T such that if {,<T,

| U(0,8)U (t,,0) | @) - |¥(0)) [|<€. (A8)

Since |U|®) || = || |®) || for any unitary 7, and
since U,(0,£,)U(t,,0) is unitary, (A6) is equivalent
to

" l‘ba) - Ua(osto)l‘l'(to)) "<€, (A7)
which implies (Al).
It is well known that when the Hamiltonian is
time independent, U(0,-«) is isometric. We should
like to add that in the impact-parameter approx-

imation it is sometimes possible to choose a
representation in which U(0, —«) is unitary.?

APPENDIX B

In this Appendix we prove Eq. (3.22). From
Egs. (2.23), (3.5), and (3.9) we have

o -0y = [ [2 Re(SyRy) + | Ry|*|27p dp (B1)
and therefore
lo —oy| < (27/0%*Y)
x ["oFy(0)[2Gy(p) + Fy(0)/v¥]dp.  (B2)

using Eq. (3.15) in the second line. The p and v

dependence of S, has been suppressed. However,
just as we obtained the bound (3.15) on R,,, we
can show that

Isnl < GN(P)/U, (B3)

where G,(p) is some function which is independent
of v. Hence

o —oyl < (27/07*2)
X JyoFy(0)[21Sy| +Fy(p)/"* )dp.  (B4)
We have to show that the integral in Eq. (B4) is

convergent. From Egs. (3.17)-(3.19) and (3.21)
we have, that for large p,

c

8.0) < oy » (B5)
&) < 3 +u§;)v W5 ) (B6)

where € and 6 are positive, and
h(u) <c,g, (B7)

where c,, c,, and ¢; are independent of » and p.
Hence, by Eq. (3.16), for very large p, with
ca=c,Cy(e) /(B L

Fy(p) < C4_£(u)d“1v+1' . du,

1 1
X
O g2 DY (o 1 2T 2e (B8)

= Cq
"pN-1+ze+23 (@Sy41°°* ds,

1 1
X (1 +SN+ l2)()1/2)+5 (1 +slz)(1v/2)+e ’ (B9)

where we have made the change of variables s,
=u,/p. The integral in (B9) is convergent and is
independent of p and v. Hence

FN(p) < O(l/pN-1+2e+26) . (BIO)
Similarly, we can show that
GN(p)SO(l/pN+2‘+26) (Bll)

and therefore the integral in (B4) is certainly con-
vergent if N > 2 and Eq. (3.22) then follows.
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A variational treatment of the R matrix method for multichannel scattering is given, in which basis
functions used for expanding the wave function within a boundary radius 7, need not satisfy specific
boundary conditions at 7,. As an illustration, a simple basis set of monomial functions (» ", n = 1,..,N) is
used in a two-channel-model problem with long-range potentials. Excellent results are obtained with ten

such functions in each channel.

I. INTRODUCTION

Burke ef al.! have recently formulated a com-
putational procedure for electron-atom scattering
problems, based on the R matrix theory of nuclear
reactions.? In this formalism, the logarithmic
derivative of the wave function at a boundary radi-
us 7, is determined by expanding the wave function
within 7, in terms of a basis set of functions. The
reactance matrix K is then computed from knowl-
edge of the numerical wave function for » >7,, ob-
tained by inward integration, starting from an as-

ymptotic position. The boundary radius is chosen
so that exchange can be neglected outside 7,, re-
ducing the problem there to the solution of coupled
ordinary differential equations. Matese and Henry®
have proposed use of the variable-phase theory
beyond 7, to determine the K matrix.

In both of these approaches, the basis functions
are constrained to have a fixed but arbitrary loga-
rithmic derivative at 7,. Slow convergence with
such a basis set has been observed in each of these
two approaches.®* A correction suggested by
Buttle® has been used to approximate the effects of



