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Pormally exact equations of motion satisfied by the gross variables of a macroscopic system valid far
from thermal equilibrium are obtained with the aid of the new projection operator in nonequilibrium

statistical mechanics. These equations are used to study nonlinear shear viscosity and normal stress

effects of a model incompressible fluid in the presence of a shear flow which is not necessarily small.

We find that the mode~upling mech'»sm responsible for the long-time tails in timeeorrelation
functions becomes very important here also and that a simple power-series expansion in the rate of
shear D therefore fails. The part of shear viscosity dependent upon the rate of shear and the normal

stress effect are found to vary as IO~
'" and p~"', respectively.

I. INTRODUCTION

During the past two decades or so we have wit-
nessed tremendous advances in the statistical-
mechanical theory of transport processes owing
to the introduction of time-correlation functions
of fluctuations, for situations for which the devia-
tions from thermal equilibrium are small. The
correctness of this new approach has been tested
on a great number of examples, and this develop-
ment is now' well documented. ' Recently, various
ambitious attempts have been made to extend this
new approach to the states not near thermal equi-
librium. " In particular, Robertson' put forward
rather general equations of motion of macroscopic
variables employing the powerful projection-
operator techniques originated by Zwanzig. ~ How-
ever, much (not all) of these attempts stop at a
formal stage and their status in nonequilibrium
statistical mechanics remains obscure.

In this paper, as well as in its sequel, we also
derive first formally exact equations of change
introducing a new projection operator which are
valid arbitrarily far from thermal equilibrium,
but furthermore apply the formalism to various
model systems to obtain specific macroscopic
equations of change.

%'e believe that the works along this line are
also relevant for transport theory in general.
Criticisms are still being raised against the cor-
relation function approach to transport coefficients
mentioned at the beginning, which we must take
seriously. ' However, in the linear regime, the
results of the correlation function theory have
been checked with the predictions of the Boltzmann
equation for which these criticisms do not apply. '
It is then conceivable that the difficulty, if any,
may surface in the nonlinear regime.

As specific applications of the general formalism

to be described in Sec. II we consider the non-
11IISRr sheR1' viscosity RIld the Itormal st1'ess
effects of a model incompressible fluid in Sec. III
and Sec. IV. The motivation for our choice of this
problem comes from the discovery in 1967 by
Yamada and one of the authors' that in fact the
so-called long-time tails of time-correlation
functions" become very important in nonlinear
regimes and are hence amenable to analysis by
the mode-coupling theory. Vfe shall find that in-
deed the nonlinear shear viscosity and normal
stress effects can no longer be expressed as pow-
er-series expansions in the rate of shear, but
contain fractional powers.

II. GENERAL THEORY OF
NONLINEAR TRANSPORT

A. Local Equihbrium States

It is a common fact that a system of macroscopic
size composed of a great number of microscopic
constituents exhibits rather simple macroscopic
behavior described in terms of a very small num-
ber of variables. Thus it is natural to expect that
any theoretical attempts at a macroscopic descrip-
tion of such a system should start with identifying
such variables which we shall call the gross vari-
ables. A generally accepted criterion is that if a
system possesses a set of constants of the motion,
the densities of these conserved quantities form
the gross variables. ' However, the choice is not
free from arbitrariness. For instance, in the
presence of a slow chemical reaction, concentra-
tions of reacting components should be included
in the gross variables although they are not con-
served quantities. If the chosen set of the gross
variables is inadequate, this fact manifests itself
as a memory effect in the macroscopic equation of
motion. In this section dealing with a general
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p (t) eo, (~&

with

(7, (t}=-4((b(t—)})+X b(t),

(2.1)

(2.2)

where A is a vector whose ith component A, is the
phase-space function for the gross variable a,
and b(t} is another vector whose i th component

b, (t) is the conjugate "field" of a, and is deter-
mined so that the averages of A are identical for
p(t) and p, (t). 4p takes care of the normalization
of p, (t). We borrow the notation of quantum me-
chanics and write Tr for phase-space integration,
such that

theory we henceforth assume the existence of such
a set of gross variables to be denoted as (a}, whose
ith member is a, , and allow memory effects. For
definiteness we consider an isolated system obey-
ing classical mechanics which may be subjected
to external forces. A state of the system is de-
scribed by the nonequilibrium phase-space distri-
bution function p(t). Given a judicious choice of
gross variables, a nonequilibrium state at time
t can be specified to a good approximation by the
values of the gross variables (a(t}}at the same
time N.amely, p(t) can be approximated by the
local equilibrium distribution function p, (t) whose
time dependence comes solely from fa(t}}and is
given by"

d', (t) d', (t') =d', (t),

d', (t) p(t) = p, (t),

d'(t) p'(t)=p (t),

(2.6a)

(2.6b)

(2.6c}

where a dot stands for time derivative. Note that
d', (t) p, (t) = p, (t) and d', (t)1x1. Note also that
(2.6c) is a consequence of the fact that a small
change in d', (t) has no effect when operated upon

p(t), and hence if bp, bp, denote small variations,
we have

d'(t)bp(t) =bp (t) (2.6c')

The property (2.6b} readily follows from the defi-
nition (2.5). The properties (2.6a) and (2.6c) can
be also easily demonstrated (see Appendix A).
The projection operator d', (t) is similar to the one
introduced by Robertson' except that he only re-
tains the last term of (2.5), and hence the property
(2.6b} is not satisfied. The property (2.6a) for
t =t' expresses the idempotent character of the
projection operator. The properties (2.6b) and

(2.6c) imply that d', (t) picks up the part of the ex-
tremely complicated motion of p(t) which varies
very slowly through the succession of local equi-
librium states. To see the connection with the
more familiar de5nition of a projection operator, "
we introduce another projection operator (P, (t}
given by'~

d'(t) = p-, '(t) d', (t) p, (t). (2.7}

(A), =—TrAp(t) = TrAp, (t),

Trp(t) = Trp, (t) =1.
(2.3)

(2.4)
Then, for an arbitrary phase-space function X
we readily find,

The difference between p(t) and p, (t) is then re-
sponsible for irreversible and memory effects. '
Near thermal equilibrium the problem has been
studied a great deal. ' In particular, use of the
projection operator that extracts only the relevant
part of p(t) needed for macroscopic description
has allowed rather concise treatments of the prob-
lem. ' Here we extend this projection-operator
formalism to the region far from equilibrium.

d'(t)X=(X)„+ ', ~ (5,A b,x)„, (2.8)

dp((b}) =in TreA' b (2.9)

together with (2.3) which relate b(t) and (X), one
finds

where ( )„denotes a local equilibrium average
at time t and 5,X=-X —(X)„, etc. Now, from the
relation

B. Projection Operators

We first introduce the following time-dependent
projection operator (P((t} acting upon an arbitrary
phase-space function X:

5', (p)x-=(p, (t — ' ( (A),) Trx
& A,

sp, (t)+ (' }
~ TrAX. (2.5)

The time dependence of d', (t) arises only through

(A), . Then (P, (t) can be shown to have the following
properties:

and

s(X),
sb t

' =(5,A5, A}„

so((t)
sb(t)

Therefore, using matrix notation, we obtain

sa,(t) sa, (t) s5(t)
&(A}g sb(t) s(X}g

=5, X (b, Xb, X)„'.
Finally (2.8) reduces to

(2.10)

(2.11)

(2.12}
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ty(t)X Q&„+5,X (5,X5,X&;,
' (~t], X5,X&„

(2.13)

If p, (t) in (2.13) is replaced by the equilibrium
distribution function, F(t) indeed reduces to the
classical-mechanical version of the projection
oyertox' introduced by Mori." Therefore, our
projection operator can be viewed as a rather
natural extension of Mor Vs pro&ection operator
4o the region fr from equilibrium. In yarticular,
IP, (t) picks up the slowly varying part of the dis-
tribution function P(t) whereas 4'(t) picks up the
lo1y varying yarti of dynamical variables.

C. Equations of Motion

Having introduced the pro&ection operator, we
make use of it to derive the exact equations of
motion for (X&, which involve only the values of
(g&, of the recent past and which reduce to the
closed equations of motion for (X&, in the absence
of ~emory e5eotl.

Ne ao Ibkrt from the Liouvtlle equation for
p(t&,

D(t& -iL(t) p(t), (2.14}

where the I ieuvtlle operator L f t) may depend
exyliOitly upon the time when time-dependent
enternal forces are present. We transform (2.14)
following a procedure similar to that employed by
Iwansig' and by Robertson. ' First, using the
property (2.0c}we have

t&l(t) -I+ (t&L(t)P (t) - i4' (t)L(t) [1-4' (t&]p(t)

(2.15}

The last term can be transformed by using

a, [I -+[(t)]p(t) -i[I -+(t)]L(t}p,(t)

(2.1V)

where ee define

-i [1 -4', (t)]L(t) [1 -4', (t)]p(t),
(2.18)

where we have made use of (A2). This can be
integrated to yield

[( ([(&]]p(0 -fssU (&s)-i[(-(',(s)]r (s]p, (s)
0.U, (to) [1 -4', (o)]p(o),

—{X&,=TrX/(t}=TrX p, (t) = {Xd, {t)&„.(2.20)

Therefore, we consider e((t} instead of p, (t) which

by (2.19}obeys the following equation:

t
d, (t) = -N(t) L(t) c,(t) - &s 6'(t) L(t) p-, '(t) U, (ts)

0

] p, (s}[1-4'(s}]L(s)c((s},
(2.21)

L t)=p , '(t)L(t) p,-(t}. (2.22)

and we have used the fact that L(t) is in fact a
first-order d&&erential operator. By differentia-
ting and then integrating p, '(t) U, (ts) p, (s) with
respect to t we readily find

p] '(t) U, (ts) P, (s)

=exp, — ds' i, s' +i 1-6' s' l. s'

Here exy, and exy denote time-ordered exyonen-
Ha]s in which operators are ordered from right to
left and from left to right, respectively, as time
increases. The last term of (2.1V) represents the
effect of the initia1 deviation from the local equi-
librium state vrhich is normally expected to disap-
pear quickly. Thus me henceforth drop the last
term of (2.1V). The result is then substituted
back into the last term of (2.15) to obtain

t

S,(t) - y[,-( )tL(t) p, (t) -d 4', (t) L(t) U, (t )
~o

x [1 -6i(s)]L(s)p, (s).

(2.19}
Here the first term represents the slow change
of state through a succession of local equilibrium
states whereas the second term contains irrevers-
ible processes arising from more random time
variation. If we multiply (2.19) by A. and integrate
over the phase space, me obtain the equation of
motion for {X&,which consists of two terms cor-
responding to the two terms of (2.19). We would
like to have the second term of a{X),/at which
contains irreversible processes expressed in the
form of a time-correlation function of the random
forces [1-5'(s)]iL(s)X. For this purpose we
further transform (2.19). First we note the fol-
lowing:

=exy, — g ts' ds' U ts, (2.23)

(2.18)

tt(ts)= U(ts)[[l -4'(s)][iI.(-s)X] b(s)

+5, A b(s)&U(st), (2.24)
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t
exp, i-deft-d(s)IP(s)I, t-t

U(tt') =

exp i [ de[1 —Ip(s)]i (s)I, t 1'. -
(2.26}

In deriving the last expression of (2.23) we made
use of the fact that

formed by noting that

(P, (t) U, (ts) [1 -6', (s)] =0 (2.28)

which is a consequence of (2.6a). This allows us
to insert [1 -6', (t)] in front of U, (ts) or [1 —6'(t)]
just after L(t) in (2.21). "In this way we obtain

it, (t) tp(t=)X-(t)e, (t) —J dsi(t)i('t)[1 —tp(t)]
0

o, (t)=6, X b(t)

and the formula

(2.26)
xexp, — R(ts')ds'

S

exp, ds'[d(s')+B(s')[I
S

t
=exp, ds' exp, ds" A(s") B(s')

S -~ s'

t t t
xexp — ds "A(s"} exp, ds'A(s')

~s t S

xU(ts) [1-6'(s)]L(s)o, (s).
(2.29)

In this equation all the unknowns are expressed in
terms of o, if L(t) is given. Thus this is a closed
equation for o, (t) which depends only on the past
history of o, . From this the equation for (A), is
readily obtained by substituting 0, (t} into (2.20).
Here we use the following properties:

(2.2'7}

which is valid for arbitrary operators A(t) and

R(t).
The second term of (2.21}can be further trans-

(x(p(t) r)„=(z(p(t)x)„,
(XL(t) I")„= (FL(t-)X)(p .

Then we finally obtain

(2.30)

(2.31)

t t—(A), =(iL(t)A}„— ds ([1-(P(t)]iL(t)A) exP, — R(ts')ds' U(ts) [1-(P(s}]iL(s)A b(s).
BE 0 S lt

(2.32)

One can also proceed directly from (2.19) in which the second term of (2.19) can be written using (2.28) as

J ds(P(t) L(t) [1 —(P(t)]U (ts) [1 -(P (s)]L(s) p, (s).
0

(2.33)

After some algebra which we omit, we find

t—(X), = ( iL(t) X)„— ds (([I -6'(t)] [iL(t) X]jp, '(t) U (ts) p, (s) [1 -6'(s)][iL(s)X]}«~ b(s)
BE 0

(2.34)

which leads to (2.32}with the use of (2.23}. In
this manner we find that s(A},/st consists of two
terms, one which arises from a reversible change
through a succession of local equilibrium states
and another which arises from the random force
[1 -6'(s)] [iL(s)X] and which is expressed as a
time-correlation function of random force. Here
p, '(t) U(ts) p, (t) given by (2.23) describes the time
development of random forces where the presence
of the projection operator [1 -6'(s)] effectively
eliminates long memory effects." If we linearize
with respect to d viations from thermal equilib-
rium, (2.32) is seen to reduce to the familiar ex-
pression of the linear response theory. ' The
equation similar to (2.32) with a somewhat dif-
ferent projection operator was obtained by Robert-

son. '
We now give an alternative expression of (2.32)

which is suited to discuss steady states. First
rewrite the integrand of the second term of (2.32)
as

t
[[1 P(t)[tp(t)X]( -exp, — [ tt(ts')ds'

t
—exp, — R(ts'}ds'

S

x U( ts) 5, X b(s), (2 36}
lt

where we understand that (X)„=Trp, (t)(X 1) for
any operator X, and where we have made use of
the fact that U(ts) ~ 1 =1. Integrating this with
respect to s we obtain
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—„(X),-(iL(i)X)„

T(i) =[1-6'(i)]iL(&)X (2.37)

is the phase-space function for the irreversible
current associated with X (which is in fact identi-
cal to the random force referred to above).

In a steady state where O', L, and b no longer
depend upon time, we have

R(is) =e '" ""~' (1 6})(-iLA)e'" "" e'

R( t —s)— (2.38)

which has a short correlation time. Thus the
time integral of R(ts) in (2.36) can be extended
to t-~, and we obtain for the average irrevers-
ible current (I) the following:

(I}= I exp — R(t}dt —1 ),0
(2.39}

where the right-hand side is the average over the
local equilibrium state corresponding to the steady
state.

A special case of (2.39) has been obtained earlier
for studying the nonlinear shear viscosity of flu-
ids. ' (See also Sec. III.) It would be of some
interest to discuss the connection of the present
approach to that given in Appendix A of Ref. 6.
For this purpose we write

p(t) = exp(7(t). (2.40)

Then (2.6c) can be written using (2.7) as

(Y'(i) ('7(i) = -4'(i) iL(i) (7(t) =(7,(i)
with

(2.41)

and

4'(i) = p '(i)4' (i)p(i) =6'(i) e' "'

o(t) =o7(t)+(7'(i)

(2.42)

(2.43)

Here (7'(t) represents the deviation from local
equilibrium. Then, withe (f)=-iL(t)(7(t) we
obtain

(7'(i) = - i [I -4'(i)] L(i)[o'(i) + o, (i)] .

This is solved to yield

(2.44)

1-6' t iL t exp, — R ts ds —1
0

t t
+ ds exp, — R(ts')ds' U(ts) 5,X ~ b(s)(

0 S )

(2.36)

The left-hand side is also written as Trp(t)T(t),
where

III. MICROSCOPIC EXPRESSIONS FOR THE
STEADY-STATE AVERAGE OF THE STRESS

TENSOR IN FLUIDS

In Secs. III and IV we illustrate the use of the
general theory of the preceding discussion by
studying nonlinear shear viscosity and normal
stress effects in one component fluids. To derive
formal expressions for these effects we consider
a fluid in a steady state in the presence of a uni-
form and constant rate of shear

Bvy

Bx
(3.1)

where v, is the y component of the average fluid
velocity. We suppose that all other macroscopic
variables such as v„, v„ temperature, and pres-
sure assume their equilibrium values. The pres-
ence of the rate of shear then causes the average
stress tensor in fluids, P =P8, to deviate from
its equilibrium value p5„8, where p is the equi-
librium pressure. For isotropic fluids, considera-
tions of reflection symmetries dictate the depen-
dence of P s upon D up to some function of ~(D~ .
Namely, P'" and P'" must vanish whereas P"'
is an odd function of D, and P" ((}.=x, y, z) are
even functions of D. The nonlinear shear vis-
cosity 71(D) can then be defined as

P*V(D) = 71(D)D- (3.2}

and 71(0) is then the ordinary shear viscosity.
normal stress effects describe anisotropy in the
diagonal components of the stress tensor which
are typical nonlinear effects and are described by
the differences P"(D) P"(D), etc."-

Let us now derive microscopic expressions for
P" (D) where (2.39) and (2.38) can be used. We

t t
(7'(i) = — ds exp+ i-J ds' [1 —(P (s')] L(s')

0 S

x i[1 —(P(s)]L(s) (7, (s)
t

+exp, -i ds 1-t s L s o'0.
0

(2.45)

This expression for o'(t) is only implicit because
the right-hand side contains (7'(t) through 4'(t),
(2.42). If this o'(t) on the right-hand side of (2.42)
is dropped, the result essentially reduces to that
of Appendix A of Ref. 6 if (7'(0) is also dropped and
the stationarity condition is imposed. In general
o'(i) can be ignored only if the system is close to
the thermal equilibrium and, therefore, the ap-
proach adopted in this paper is more precise in
the nonlinear domain. Strictly speaking (P(t) c(t)
is not equal to (77(t) as was assumed in Ref. 6.
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j"8')

&p(r)

-P

Pv~(r)

Pp (r)

first construct the local equilibrium distribution
function p, which in this case can be readily ob-
tained from the equilibrium distribution function

po merely by replacing all p,. by p,. —mv(r, .), m

being the molecular mass. Therefore, we have

TABLE I. Gross variables and their conjugate fields
for one component fluid.

iLj "(r)=-g J 8(r),
8 ~+8

(3.6)

where 4"~(r) is the molecular expression for the
stress tensor given by

~"'(r) = —Z p,"p,' &(r —r;)

defining (P(t), (2.13).
Next we turn to the irreversible current I. Since

ff is a constant of the motion and mn(r) = -V j (r)
is again a gross variable, the only irreversible
current in the steady state under consideration is
contained in i Lj "(r) whose molecular expression
is

p, =poexp p j r vrdr+pm' p r 5nrdr
(3.3)

with P =1/ksT and

p (r) = -a I U(r)1', (3.4)

j (r) —=p p,. 6(r —r,.) (mass current density),

(3.6}

where r,. and p,. are the coordinate and momentum
of the ith molecule, and 6n(r} is the molecular
expression for the number density minus its equi-
librium average value. Equation (3.3) has the
form of (2.1) and (2.2), where the gross variables
A and their conjugate fields that enter p, are given
in the Table I, where H is the system Hamil-
tonian, and j "(r}and 6n(r) form continuous den-
sity variables. The quantity p, (r) can be regarded
also as a nonuniform chemical potential needed to
keep the average chemical potential equal to its
equilibrium value in the presence of the nonuni-

form velocity field. We note here that the com-
plete set of the gross variables should include the
Hamiltonian density instead of the total Hamil-
tonian, and this complete set must be used in

(3 '7)

Here P, , is the intermolecular potential which is
assumed to be centrally symmetric.

Although (PJ"8 (r) can be directly obtained from
(2.13), in this case there is an alternative easier
way. For this purpose note that the local equi-
librium distribution function (3.3) is obtained from

p, simply by replacing all p,. by p, —mv(r, .). Hence
we introduce the following pseudocanonical trans-
formation':

Sp,. =p,. —mv(r, .),

Sr, =r, ,

and then we have

p) =Spa.

(3.8)

(3.9)

(3.10)

The local equilibrium average of any phase space
function X can now be written as

(X&, = TrXp, = TrXSp, =TrpoS 'X =(S 'X)0,

(3.11)

where( &0 is the equilibrium average. The
definition of the projection operator (P, (2.13), for
steady states then becomes

6'x =(s-'x&, +s6(s-'A) ~ (6(s-'A) 6(s-'A)&-, ' ~ (6(s-'A) 6(s-'x)&„ (3.12}

where 6X—= X —(X&0, etc. , and we have used (3.11)
together with the following:

equivalent sets of the gross variables, we can
replace S 'A in (3.12) by A, and (3.12) finally
reduces to

6,X = X —(X&, = X —(S-'X&, =S6(s-'X) (3.13)
(Px =S[(s 'X&, +6A (6A6A&, ' ~ (6A6(s 'X}&,]

for any phase-space function X, since the result
of S operating upon a constant number is 1. On
the other hand, S 'A,. can be written as a linear
combination of the A' s; for instance, S 'j (r)
= j (r) —mn(r) v(r). Then, since the definition
of a projection operator does not depend upon a
particular choice of the A's as long as they are

=S6'OS X, (3.14)

where 6'0 is the projection operator originally
introduced by Mori";

(P~X =(X&0+6A ' (6A6A&0' (6AGX&0 . (3.15)

With these preparations we obtain with (3.6)
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—p+ 5Hr+ 5nr 1,

(3.1V}

where e is the average energy density, t)II(r) is
the local Hamiltonian density minus e, and 1 is
the unit dyadic. Again using the fact that SJ(r)
—J(r) is the linear combination of the 6A's and
S&A is a linear combination of the 5A. 's, we find

(1 -d')iL j =-V J*+(the linear

combination of the 6A's) (3.18)

(1 -d'}iI j =S(1-d'0)s 'iL, j
=-v S(l -d')S 'J=-V S(1-d')J,

(3.16)

where we have noted that the difference S 'J —J
is a linear combination of the A's and disappears
by applying (1 —d'0) . The expression (1 -d'0)I(r)
was evaluated by Mori" with the result,

(1 -d', )J(r) =J(r)

P = J exp — R(t)dt -1
0

apart from an arbitrary contribution to P* whose
divergence disappears, which can be ignored since
it does not affect the hydrodynamic equations of
motion of isotropic fluids. The expression for
R(t) is obtained after integration by parts as

( R) (r)f d=r(vv):e ""e' (( —(')ie"e

It is now possible to express (3.25) as the aver-
age over the equilibrium state. For this purpose
note the following:

J*=s(J -PT), (3.26)

re(r) () f er=(err): cere[ ere(( -e,)i S']-
& S(l -d', )S 'Jexp[itS(1-d'0}I, S ']

=SP J( dr (Vv): exp[-it(1 -d', )I,]

J =-J —vj —jv+mnvv —Pl. (3.19) where

x(1-d', )J'exp[it(1 d'0)L]s-', (8.2V)

It is also easy to show that I.=-S 'L, S J'-=S 'JS (3.28)

cA, exp — g t dt -1 =0.
0 j

(8.20) Hence using (3.11)we finally find the following
exact expression for P*:

This follows from the fact that by (2.88) this takes
the form(A. (1 -d') ), and

(A(1 —d') ~ ~ ~ } =(AS(1 —d', }S ' ~ ~ ~}
P~= J-pl exp — R t dt -1 3 29

0 0

=(s-'As(1 -d', )s-' "),
=((S 'A)(1-d')S-' ") =0

(3.21}

R( ) ref dr(vv): =e "" r 'e

x (1,(p }Jr e(to- (Pa)L
0

+mn(r) v(r) v(r}
and aiso (J(r))0 =pl, we find the left-hand side
is simply

(3.22)

(I)=-V [P —mnovv —pl} =-p" P* (3.23}

where nQ is the equilibrium number density and

where we have used (3.11) and the fact that S '6A
is a linear combination of the 5A's. The left-
hand side of (2.39) can be written as -V ~ (P —(J),).
Then using (3.11) and

S ' J(r) =J(r) + j (r) v(r) +v(r) j (r)

PD d~r ~- it(1- ttt'0)I

)( (1 d) )JrxP&ft(l (Po)I- (3.30)

(3.31)

where

(3.32)

The expression for I is also readily obtained as
(see Appendix B of Ref. 6)"

I.=1.+uL, ',

P*=P -mnovv-Pl =(J ) (3.24)
In view of (3.2) we find the following exact ex-
pressions for the nonlinear shear viscosity:

is precisely that part of the stres~ tensor due to
irreversible processes. In this way we are led to
the following expression for P*: q(D) = —J""

q 1 —exp — R(t)dt i . (3.33)e
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The normal stress effects are likewise expressed
as

used the continuity equation. Choosing g(r) =x x
we have

(3.34)
x x mn(rt) dr.

dt
(3.36)

Before leaving ~his section we would like to make
three remarks. First, in the thermodynamic
limit p, as well as JZ'dr are invariant under spa-
tial translation [see (3.39) below]; so is t. oper-
ated upon a trans'. ation invariant quantity. This
allows us to limit the gross variables X appearing
in the definition cf the projection operator (3.15) to
those having a sero wave vector in (3.30). Fur-
thermore, we can replace 4" (r}appearing in
(3.33}and (3.34) by their spatial averages;

& '(r)- —I ' =—It Z"'(r)dF
V V

The second point comes from the fact that

p 00

sxp — )((()dt ) =( (3.35)

which is a consequence of the presence of (1 -(P,)
in R(t). Equatior (3.33) is then written as

(I*"exp [ J,"R(t-)dt]t,
D (exp [-j,"R(t}dt]), (3.36)

Then it is mell kr~own that the formal perturbation
expansion in powers of R of this expression is
obtained by replacing ( ), in the numerator by
the cumulant average ( ~ ~ ~ }„where in each term
of the expansion in R of the form
(&"'R(t,)R(t,) R(t„)&„ail the factors Z*',
h(t, ), . . . , and R {t„)are simultaneously corre-
lated among themselves, and then dropping the
denominator of (8.36). This allows us to replace
( ~ ~ ), in (3.38}by ( ~ )„. This is also true for
(3.34). This result follows from the fact that the
average in which some of the factors are uncor-
related necessarily contains at least a factor like
(p(t, )R(t, ) ~ ~ ~ R(t )), which vanishes, As a final
remark we show that for incompressible fluids
2'*" in (3.30) can be replaced by J"". To see this
we note the following which results fram the fact
that at the boundary Z the mass current j has
zero normal component":

On the other hand, we find

S' =J + v j + j v + mnvv or 4'"' = J*"+Dxj * .
(3.39)

Hence, we have

where the second term is equal to -'. mDJx'i~dr
which vanishes for an incompressible fluid which
is the model fluid to be considered in Sec. IV.

IV. CALCULATION OF
NONLINEAR SH'EAR VISCOSITY

In this section we px esent approximate evalua-
tions of (3.33}and (3.34). Since they involve com-
plicated time-correlation functions, full micro-
scopic evaluations of them are beyond our ability.
We are here primarily concerned with contribu-
tions of long-wavelength fIuctuations evaluated via
the mode-coupling approximation. " For the shear
dependence of rt(D) and for normal stress effects
we shall see that indeed these long-wavelength
fluctuations yield dominant contributions for the
simple fluid under consideration. To simplify the
calculations, we consider the fluid to be incom-
pressible and consider only the fluctuations in
transverse velocity, as these give the most im-
portant contributions to rt(D) —q(0) and to normal
stress effects. We also suppose that the fluid is
not near a phase transition. In the mode-coupling
approximation, the averages are performed in
the two steps: (i) Fix values of the gross variables
(here the transverse velocity field) and average
over all other microscopic degrees of freedom,
and (ii) average over possible values of the gross
variables. Vfe noe imagine that the first step was
performed. Then J (r} is replaced by its local
equilibrium average with given transverse veloc-
ity field v-=j (r)/m. In the two-mode-coupling
approximation, we then find

0= dS j rig r = drV ~ g r')j r 8 8(r)-p5„8-mn, v"(r)v (r), (4.1)

dr r ~ Vg r — g rmnrtdr,
(3.3V)

where t, (r) is an arbitrary function and we have

where the transverse nature of the local velocity
field has been used to omit the term (2Tc(,) '
x mn, v'(r} 5" on the right-hand side of (4.1),
where e, is the adiabatic thermal expansion co-
eNicient, This term, even if present, does not
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affect (3.33) and (3.34).
Let us now return to R (t}, (3.30}, where J'*"

can be replaced by J'" for the present incompress-
ible fluid as pointed out at the end of Sec. III.
As we shall show later, (1 -6',) in front of J'*' can
be replaced by 1 in the approximation used in this
section. Here the problem is that 6', does not
operate just on J'"' but on J""mujtiplied by. every-
thing that comes after. By (4.11) then R (t} involves
the time development of v"(r). The standard
interpretation of the role of t~ in the time develop-
ment operator e"" ~0'~ for the problems near
equilibrium is that it removes any secular behav-
ior that remains in the limit t-~. We will assume
that this is also true for the problems far from
equilibrium, although this of course will need to
be justified by future investigations. Then we may
replace the effects of the time displacement upon
v by the hydrodynamic time evolution in the spirit
of the mode-coupling theory in such a way that any
secular behavior disappears. This can be done
as follows: Take a Fourier component v„
=V "'Jv"(r)e '"' 'dr rather than v "(r) and con-
sider vf(-t) =e 42~v-„e42~, 4). =x or y. The initial
rate of change of &g is

~

~ ~v-„( t}) =--4 [ v-„]L-D [ '64616. (4.2}
t=o

The. first term on the right-hand side represents
microscopic processes which after a certain time
7, which is long compared to the microscopic time
scale of molecular collisions but short on a mac-
roscopic scale give rise to viscous damping. Thus
after the step (i) the first. term will reduce to
-k'(q/mn) v- where we note that in fact we are

k
going backward in time, and we have dropped
possible nonlinearities in the hydrodynamic equa-
tions. The second term of (4.2) can be directly
evaluated to yield

VTe then extrapolate this to t &0 and etite
d 0{ k'q g

dt k mn
v- (-t) = — v- (-t)

, [k v„(-t)]= 2k„v'„(-t)

which does not vanish in general (where k ~ v, =0
was used in evaluating the right-hand side}. This
can be remedied by adding to the right-hand side
of (4.4} the term -2Dk ' k, k v-„(-t). This result
can be also obtained by deriving from (4.4) the
equation of motion for the explicitly transverse
velocity v--k 'k~k v . Defining the dimen-

k ~ k
sionless velocity u- by

k

u" = (mn, /ks T)"'v-„", (4.5)

the equation of motion is finally obtained as

g f}f C

dt k mno
u (-t) =-k' u-(-t)-D k u (-t)" Bk,

Now, since by (4.1) we have after step (i)

a8 a 8 W a 8I -Vp5 8-mn, Z v- v -=k~T~ u- u
k -k B ~ k k

k

(4.V)

-D k v-"(-t}-5 v-'(-t) ." Bk, CC34

(4.4)

This, however, is not yet fully satisfactory, since
the equation of motion (4.4) destroys the transverse
character of v-„as one obtains from (4.4)

-D k„v Q~y v
k +" k

(4.3) and R(t) contains only I*", we consider u-* u"-,
and then (4.4}gives

dt k " mno
u-'(-t) u"-(-t}= -2k' u* (-t)u"-(-t)-D k

8 kk„gk„k'+2 'I' 14 (-t)Q (-t)

-2," u" (-t)u' (-t) (4.8}

Likewise, we obtain

dt k -k mn
—u" (-t)u' (-t) =-2k' u'(-t)u* (-t)

0

-D k„+4
x u*„-(-t)u'-„(-t). (4.9)

(4.10)

I

Here and in what follows sums over k are limited
by a certain cutoff which is much smaller than a
microscopic wave number.

Introducing the two-component spinor g(kt) by

fy, (k, t))
p(k, t) =

([t},(k, t) /
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with (4.6} is written as

(4.11) (4.16)

(4.8} and (4.9}can be written as a single equation;

P(kt) = -(I'-„+DA-„)P(kt), (4.12)

where

I'-„=-2k'q/mn„

8 k k„k2„1
" Bk,

(4.13)

(4.14)

(4.16)

o„,a„,a, being the Pauli spin matrices.
Now, the expressions (3.33) and (3.34) contain

the time integral of R(t}which in the present
approximation can be obtained from the time in-
tegral of )1),(kt). Such a time integral exists only
if the real parts of the eigenvalues of the operator
I'k +DAk are positive definite. This problem is
closely related to the problem of stability of lami-
nar flow with the rate of shear D against small
local velocity fluctuations whose temporal develop-
ment is governed by (4.6). Introducing the two-
component spinor $(kt) given by

where

T = »
I' +D(A» —2k, k„/k')

The ratio of the two terms in r-„ is roughly

D Bv,/Bx vl 1 R
—,'I; k (q/mn) q/mn (kl}' (kl)' '

where v is the average velocity and l is the mac-
roscopic length over which the local velocity
changes appreciably, and R = vt/(q/mn) is the
Reynolds number. If the laminar flow is stable,
the real parts of all the eigenvalues of T-„should
be positive. If the instability is to occur, this
will start at the velocity fluctuations with the
smallest wave number where viscous damping is
the smallest. The smallest wave number here is
roughly equal to m/l. Since we are concerned with
a stable laminar flow, we can conclude that all
the fluctuations u- and u-. decay in time. Hence

k
(1)(k, t) should also decay in time, that is, the real
parts of all the eigenvalues of I'- +DA should

k k
also be positive definite. This fact gives addi-
tional support for the validity of the replacement
of the time displacement operator e '" ~Q'~' by
the linearized hydrodynamic equations where no
secular term remains.

We substitute these results into the expression
of q(D) which is now written as

(4.19)
OO

)i(D) = — ' p v-*„v'-„1-exp -pmnoD g v-"„( t}U'-„( t)dt--
k Q

k Qc

where the cumulant average is taken regarding the pair v-" v" as a single unit. %'e then find the following
k -k

expression for q(D) written in the matrix notation:

1 k~T
q(D) = — g g, (k) 1 —exp -D v ~ (I'-+DA-) ' ~ P(k)D V k k

k k Qc

where v is a row matrix defined by

v =—(1,0).

In the same manner we also obtain for the normal stress effects,

P (D) —P ""(D)= *'(I It (k)-k, (k)I eec Dg (D-+Dtt-„) ' k(»)--1, etc.
k k

(4.20)

(4.21)

(4.22)

where

P,(k}-=u"-„u'-„. (4.23)

In our model incompressible fluid where density
fluctuations are ignored, the probability distribu-
tion of fluctuation of u takes the Gaussian form

k

with

(u"„u„,), =6-„-„, (6„8 —k k8/k'}. (4.24)

This fact can be used profitably to evaluate (4.20)
and (4.22) where each term in the expansions of
(4.20) and (4.22) in powers of Pmn, D contains
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»p» e U {4.25)

Here 6X =X —(X)~ and the sum on the right-hand

side is over all the ways in which products of the
U's are faetorized into pairs in such a way that
al'1 the 5(Uu}'s on the left-hand sides are con-
nected,

Ne now discgss the effects of 6', in front of 4""
in (3.30) which we have temporarily ignored.
will then produce a term like

(5( -„'-„)5( -„' '-„) ~ "5( -„-„)6'.5( -„, -„,)" &( -„".

= Q(5(ij U -„)5(u-„" i -„) ~ 5(i-'„U'-,) 6A,"')„(j5AJ') '(6A', 6{U-"„,U"-„,) ~ 5(~-„', U'-„,))„, (4.28)

where the A, 's are ke spatial integrals of the
densities of gross v+riables, Then, we have

=--5.1X10 'k T(mn /q)"'D' ', (4.29)

P" (D) -P"~(D)=--8.V&&10-'k T(mn D/q}~'

(4.30)

P"'(D) —P"(D)= -2.9&10 'ksT(-mn, D/q)~'

(4.31}

The fractional powerH of D appearing in these
results can be understood also as fol.lows: First,
let us formally expand (4.26) and (4.22) in powers
of D. Invarianee under rotation by iso' about the
x axis and the simultaneous change of sign of D
tells us that hq(D) as well as P"(D) are even
functions of D. Thus the series contains only the

(&A'. &(U-"„U"-„) "),.= »& (5(~-"„~"-„)").. (42'7)

and

(4.28)

where h is the fielc conjugate to A, . Comparing
these results with (4.25), we note that a projec-
tion operator 6', in front of 2'""of (3.38) produces
terms having -an extra factor V '. Mowever, the
sum over k' produces another factor V. Hence
6', produces additional finite contributions, On
the other hand, as we shall soon see, the terms
we have retained earlier involve a single sum-
mation over k, and g, ive dominant divergent con-
tributions when one tries to expand the final re-
sults in powers of D. In comparison the new terms
produced by 6', give only finite or less divergent
contributions and hence we shall drop these terms,
since their magnitude will be smaller by the factor
of the order k,/n, -(Dmn,' '/q)"'«1.

The actual evaluation of (4.20} and (4.22) requires
rather lengthy algebra and is carried out in Ap-
pendix 8; the final mmerical results ar-e sum-
marized here;

~q(D) =- q(D) - q(f )

terms with even powers in D. Then a term in the
expansion of (4.29) takes the following general
form;

g(y, (k)v 1='Dz„r-'

"» 1"-„'' 'D~e 1'- 0(k))... (4 32)

where the matrices A.„with + =i or 2 are given
by

(y, (k) 0)

($2(k) 0
(4.33}

Equation (4.32) can be estimated by noting that

$, , (Ij, , v, and X„are quantities of order unity.
Hence {4.32) has the magnitude

[ ,kTDm*n,'/ 'kq'][ mD/nkvd]~~ -~», n=l, 2, 3, . . . ,

{4.34)

where k is the sma11 wave number cutoff in the
summation over k which is necessary to prevent
the divergences in each term of the expansion at
small k, These divergences arise because the
transverse ve1oclty fluctuation with wave number
k is allowed to decay with the decay rate —,'X'-„. On
the other hand, the discussion made in connection
with {4.18) indicates that the velocity gradient
8 starts to interfere with the decay of the trans-
verse velocity at the wave number where the ratio
(4.18) becomes of the order unity. Precisely the
same ratio with A. = k, now appears hs the expan-
sion parameter in our series. Hence the appro-
priate cutoff wave number is

k, = (const}(Dmn, /q}"* (4.35)

Then each ter m in the expansion has the order of
magnitude value ksT(mn, /q)"'D'" which is pre-
cisely what is found in Appendix B. Practically
the same arguments go through for I "-I'""and
P I' as well

In Ref. 6 as well as in Ref, 18 the nonlinear shear
viscosity in the critical mixture was studied where
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only the mode coupling to the concentration fluc-
tuations was taken into account, on the ground
that the concentration fluctuations exhibit critical
enhancement. The subsequent study has shown
that the contributions from concentration fluctua-
tions are much smaller than those considered in
these works. " The critical anomalies considex'ed
in these works now appear to be practically
masked by the transverse velocity fluctuations
considered in the present work.

V. CONCLUDING REMARKS

In the preceding sections we first derived for-
mally exact equations of motion for gross vari-
ables-vapid. arbitrarily far from equilibrium which
are extensions of the time-correlation approach
in transyort theory. On the other hand, in the
case of a gas one can study the same problems on
the basis of the Boltzmann equation and its ex-
tensions to higher densities. This allows us to
compare these two approaches in transport theory
on a larger scale than has been done in the past,
where such comyax isons have been limited to
linear transport phenomena. "P For such a com-
parison one needs to develop a systematic density
exyansion technique for the general expression
for the average steady-state flux (2.39) which is
similar to the one employed for the linear trans-
port coefficients. '

We have applied the general formalism to non-
linear shear viscosity and normal stress effects
in fluids where the long-time tails in time-cor-
relation functions produce new nonanalytic terms
in the rate of shear. Simple numerical estimates
show that unfortunately these nonanalytic terms
are too small to be directly observable under
ordinary experimental conditions, but may have .
some observable effects under extreme conditions
such as correspond to shock waves.

The mode-couyli. ng approximation used here
does not assume a low-density situation. On the
other hand, the question of the long-time tails in
the low-density gas is an interesting one."" The
same kind of long-time-tail effects which were
taken into account in the present work have been
recovered in the context of ordinary time corxela-
tion functions for low-density gases by considering
the so-called ring processes. " On the other hand
the same long-time effects can be derived by re-
gax'ding the nonlinear Boltzmann equation as a
sort of kinetic equation of the mode coupling
theory. '~'2 However, the contribution of these
long-time tails to transpox't coefficients are of
higher orders in the density than those predicted
by the Chapman-Enskog theory. Clearly, the
analogous, more elaborate consideration is needed

p(t) p(t) Iax=p, ,
—jf a(ts)ds

tp

I' t
+ (fs exp, — R(ts')ds'

tp 48

e

x U(ts) 6, A b(s) ~ 1

where t, is an arbitrary initial time which we can
take to be -~. For a steady state this simplifies
to

p
oo

p =p, exp — R ( t) dt ~ 1.
p

(6.2)

Using this one can study not only the average be-
havior but also the fluctuations which occur in a
steady state or a slowly varying state of the sys-
tem. Vfe hope to discuss these and related prob-
lems in the near future.

The property (2.6a) is demonstrated for an arbi-
trary phase-space function as follows:

to compare our nonlinear transport theory with

the predictions of the Boltzmann equation and its
extensions to higher densities.

Also, it would be of considerable interest to
study the cases where at least two kinds of ther-
modynamic driving forces like a velocity gradient
and a temperature gradient. are yx esent, to see
how the interference of different transport pro-
cesses are affected by the long-time-tail contribu-
tions.

Recently the problem of nonanalytic corrections
to the linearized hydrodynamic equations has
received a great deal of attention, in an attempt
to study the range of validity of classical hydro-
dynarnics. In this case transport coefficients
exhibit nonanalytic dependpnces upon the frequency
and the wave number of an external disturbance. "
Such attempts are incomplete as long as nonlinear
effects are omitted. The present paper demon-
strates that there is also a nonanalyticity asso-
ciated with the amplitude of an external distux-
bance, and the method developed here provides.
a way to investigate this important problem.

Finally, we would like to note that the general
formalism presented in See. II also applies for the
phase-space distribution function itself. In par-
ticular one can derive the following identity for
p(t) which corresponds to (2.36):
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(Al)

9 t' s t)
6', (t)[P, (t')X =(P,(t) p, (t') — ' ~ {A), TrX+ ' ~ Tr AX

s X~

sp, (t) sp, (t) - s{X},, s(X},,
p, t — ' A, TrX+ ~ A, i-- ' A, TrX+ ' TrAX

p, t — ' A, TrX+ ' TrAX=t, t X.ep, (t) sp, (t)
s Xk s Ak

In order to demonstrate (2.6c) we differentiate (2.6b) with respect to t. Then we only have to show that
6', (t) p(t) vanishes, which follows:

8 sp, (t) s sp, (t) - . sp, (t) s
6', (t) p(t) = p, (t) -— '

)
~ (A), + —{')

~ (A), =p, (t) — (' )
~ —(A},=0.

The last step is the consequence of the fact that p, (t) depends upon time only through (A), .

(A2)

APPENDIX B

Here we shall evaluate (4.20) and (4.22). First
introduce a two-component function $(k) of k by

where

+4 ~ +2g
k 5, (&)=

Dk
(t'2(~) (B4)

(Bl)

which satisfies the following equation:

(r-„+DA ) ~(E)=y(k), (B2)

or explicitly,

(
8 k k k 1

ak„k' k,
+2 —)(-+2g—$ (k)+ 2~ ——$ (k)

y, (l ), (B3)

g =- q/(mn, D}.

exp Dr (,(k))-.
k

(B5)

Equations {B3}and (B4}are solved to yield

Then the exponentials in (4.20) and (4.22) become
simply

g2 (k) = dk,' —exp —[k„' (k'2 ——',k„")—k, (km ——', km)]
-XDk

+ lim [L exp —k,„(k', ——',k'„}——k, (k' —-', k,')$, (k,)
k ---XDk-

Ox y

where ko, =k,'=k, and k„=k,'=k, , and

k~ k'
(, (k) = dk' —exp —[k'(k" ——'k") —k (k' ——'k )])- 'o& Dky

x '
k +(—— „")k, (k') + )im (e) exp( k„(k'

(B6)

——',k',,) —„k,(k' ——',k,') (,(k,)
y

(BV}

The lower limits of integrations in (B6) and (BV) are so chosen to make the integrals convergent. We ob-
serve that unless (,'(k, ) increases exponentially as k~- -~ XDk, , the second terms of (B6}and (BV}van-
ish, which we assume to be the case here. We can then write the exponential (B5}, after some algebra,
as

exP — F k
k

u'k — F„k u"„u
k

k k

where

xDky k 2

x(k)-=k dk,' k, exk [Il,(k' — Id)-k,'(k" ——',ll—',,")])
y

and

(B6)

(BS)
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Equation (4.20} is now written as

k ——k„}—k„'(k' ——k
g s

(810)

n(D)= Dv
k~T

k~T
2DV

k~T
2DV

1-exp — F k uk u'k — F„k uk u
k

k k Oc

(exp — F k uku-k F k uku'-
k k . Oc

ln exp — F k
k k 0

(811)

where we have made use of the fact that F(k) is an even function of k and have also used a general rela-
tionship

(e"),=1+in(er) . (812)

Here (e"), is the connected average where each factor X in the power-series expansion of e" is correlated.
Similarly we find

P""(D)-P~'(D) =6"(D)—6"(D), P'"(D) —P '(D) =n."(D)—6'(D))

where

(812)

t "(D)—= s u" u" exp — E(k}u' u'„-g F„(k)u" u* —1
k -k k -k " k -k

k k k

V - k 2 sE(k)1 — " + — ln exp -~ E(k)u" u" — &E8 (k)u u ( =ox, y, )e
k tX k

k -k k -k
8 k 0

(814)

evaluated at F„(k)=F,(k}=0. Here we have made
use of the fact that E„(k) is also an even function
of k, and have supposed that E,(k) and F,(k) are
some even functions of k to be set equal to zero
afterwards.

The averages are taken with respect to the equi-
librium distribution function for transverse veloc-
ities, P,(/u] }, which we slightly modify by in-
cluding small longitudinal components of velocity
as follows:

[t,(k)]" =g„8 —(1 —e') k„ke (816)

with k —= k /k, Z the normalization factor, and
e a small positive number. We then find

(u-„" u -„,), = 5-„-„[t,(k)] (817)

I',((u))=xexp (
—2 E u„- [t, '(k)j ' -),

k n8

(815)

where t,(k) is the nonsingular 2 x 3 matrix de-
fined by

which reduces to (4.20) as e-O'. The inverse of
t, (k) is readily obtained as

[ t, '(k)]" = y„8 + (e ' —1)k„ks . (818)

M" (k) =—5„8 + (e 2 —1)k„k8

+E(k)(5~ 58 ~ + 5„„58 „}+ 25„SF~(k).

(820)

We may now interpret (819) as the probability
distribution function of velocity apart from the
normalization in the presence of a constant rate
of shear. The stability of such a laminar flow
requires the probability distribution to be maxi-
mum at u„=0 (k o0), which in turn requires the
matrix M (k} to be positive definite, which seems
to be supported by the later numerical study.

The equilibrium average appearing in (814) now
becomes

'X g du exp ——+PM (k)u u-
k

k, & aB

(819)

where
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Therefore, we obtain

ln exp — F k uk u'-„— F k u-„u „
k

1 ~
= (const) ——~ ln det M(k), (B21)

2

where const is a constant independent of E(k) and
E„(k}and thus does not contribute to s "(D) and

q(D). For small e, the leading term of M(k) is
of the order of c ', that is,

detM(k) =e '(I +2E„(1—k'„)+2E„(1—k'„)

+ 2E,(1 —k', }—2Fk„k„E'k',-
+4F„F k~+4E E, k2+4F, F„k
—4EE, k„k„)+ ~ ~ ~, (B22)

where ~ ~ stands for higher-order terms in c
which need not be considered. (B21) and (B22) are
substituted into (B11)and (B14) to yield the fol-
lowing results:

( )
k~T 1 ' ~ k k„+E(k)k,
D (2}i) „~(k)

A*(D)=, dk (1 —k, ) —1, (B24)
2}i ' & k

~»(D) = ~
dL

" * —1+5'
(27i)'

(B25)

,
( )

k~T 1 —k+2Fk„-2Fk k»
(»)' &(k)

where

—1 ~ k',), (s26)

E(k, D) = F-(k, -, -k„,k, , D),

F,(k, -D) =F,(k, , -k, k, , D),

(B28)

(B29)

which implies that q(D) and 6 (D) are the even
functions of D as are expected. Hence without
loss of generality we can assume D to be posi-
tive. We then introduce the dimensionless wave
vector l by

l =g' ~k (B30)

and change the variable of integration from k„' to
s given by

k„'=k, +k„s

to obtain

(B31)

g)(k) —= 1 +2E„(k)(1—k») —E»(k) k, —2E(k) k, k„.

(B27}

In order to find out how q(D) and 6"(D) behave
we first need to know the properties of the func-
tions F(k) and E,(k). First we note that

E(g) =E(1)-=ds (1 +2l, l„s+I'„s') 'exp[-2Ps(1 +l, l„s+—', I'„s')],
0

(B32)

F(L)E(L)-=ds ' " ta -' "(
0 1 +2l„l„s + l ', s' (1 —I,}'i' 1+l„l,s

1 — ' ' '
) exp} kPs [1siis+ —', 1',-],},,s

1+2i, lys+lsyss 1- l s (B33)

(l»1 or P»il, i),

E(L}= ' „„—1+2I
1 ~2l& ly

(l»1 or P»[l„(),

E(1)= ,'l'-- (B34)

(B35)

where l is the unit vector. It is useful to investi-
gate the asymptotic behavior of these functions
for both l &+1 and l «1. For l»1 the integrals
over s are limited to small s less than O(1/P)
and we find

where we have noted that these asymptotic ex-
pressions also hold even if l is not large, provided
that ( l„~ is small enough so that the quantity

~ l, ~s

can be ignored.
Turning now to the region l «1 we only consider

the case where P « ~l, ) since another extreme
case P»

~ l, ~
was already considered. Then, the

cutoff in the integrals over s is provided by the
denominator I +21, l„s + f„'s' which limits s to be
less than O(~ l„~ '), and the exponential factors in
the integrands reduce to unity. We thus obtain

F(1)=-„„'—-tan ' *„(l«1and (l, ~»P),
(1 Lip)u» ( p

~

2 (1 L»)vip
(B36)
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E„(T ~F, 1
{I-~l

1+2l, l„s +I'„s' -(1-l„')"' I+&„l„s

{I«« I and I&, I» I').
I+25, l„s+lsss I-P, (BSV)

rim &
' - 1'.E(T)+1*4

)
D d 1

(f '.l,P ).2P P (838)

where p=mn and

j)(T)=-1+2E,(1)(1—I„*)-F'(1) l', -2E(1)l„ l„,
(839}

From these asymptotic behavior we find that
the integral for q(D} given by (823) contains a
divergence at large values of k. The source of
this is easy to identify. Namely, the mode-cou-
pling contributions coming from short-wavelength
fluctuations dominate q{D), which should be also
true for the linear shear viscosity q{0). There-
fore, from now on we shift our attention to the
difference

&n(D) =-n(D) n(0-)

I

and certain vanishing teg ma ar@ Sub@etd from
(838) to assure the convergence of the integral.
In this form the integral is manifestly convergent
and reduces' to a finite number indeygrglent of all
the variables D, n, etc. It is noteworthy that
Aq(D) does not gave a power-series expansion
in D' as one might naively expect from symmetry.
The reason for this is again not ffieult t ate.
if we formally expand q(D) given by, say, (4.20)
and examine the eoeffieients, the integrals over
k which enter them are shown to diverge at mall
wave numbers indicatini, the dominance of long
wavelength fluctuations @s wai djlcuwed |n See.
IV. This is another manifeitation of such long-
wavelengtb fluctuations which contributed to the
long-time tails of time-earrelition functjone, 'I

In the similar manner wo can ry+co the eg-
pressions for A~(D) to the manifest, ly convergent
forms as follows:

k~T
e,"(D}=

(2 )~

k~TA*(D) = (842)

5&= r sin8
&

r dyd8d
0 0 0

where j =O, x, y, z, with

31S j-xy z
(2s)' q

and

(843)

(844)

(845}

as given in Eqs. (838), (840), (841), and {842).

Again we observe that h" (D) cannot be expanded in
power series of D' for the same reason as we
discussed in the case of q(D}.

The evaluation of the nonlinear shear viscosity
effects thus involves the calculation of several
integrals which when expressed in terms of spher-
ical polar coordinates are of the form

s

Each of the integrands involve the functions E,
and E defined through the integrals ia I«is. (SSS)
and (BSV). As one is unable to evaluate I', and P
anaiyticaDy [except for certain special angles
(p =0, v or 2v)j one must evaluate both of these
functions and the 8's numerically, which was done
with the use of the CDC 6400, &he procedure used
is the following: The integral corresponding to
a given 5, was divided into several perte:

5~ =5~ o+5) q+5) s, (848)
where

o~ yiin~
p

~y~~" 3 &~
0 O

sin8, r Ad8d, 48
o o o

~e g Ig
5g g~ ~ yping

g 4y484, 49
o ~ 0
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= -1.26, g„,= -0.24,

g„,=+1.23, g, , = -1.0V.
(S50)

The evaluation of the remaining contribution 5, ,
was done analytically, making use of a Taylor-
series expansion for E„and P (and hence f~) in
powers of ~ ', about the point r ' =0. Although
one. could not prove that these Taylor-series ex-
pansions converged, comparison with the numeri-

where Rp and R, were chosen to be 10 ' and 2,
respectively.

The functions E„and E were evaluated numerical-
ly using Simpson's method. It was possible by a
combination of numerical and analytical methods
to then show that 5, ,=O(R,) and hence is negligibly
small. The integrals 5~, were evaluated on the
computer using Simpson's method, with the re-
sults

cal calculation of F„and F indicated that the first
term in such an expansion is a very good approxi-
mation to these functions. Hence 5, , was evalu-
ated analytically, keeping the first two leading
terms in the expansion for F and E„, with the
results

5p 2 1 2& 10
~ Q» 2 1 8X 10

(B51)
g„2 =+1.5 x10 ~, 5g, = -6.0&10~.

The resultant values for 6, are thus found to be

gq = -5.1 x10 ' k T(p/q)' 'D' '
z':--1.7x10 'k~T(pD/q)"',

a"-:+5.0x10 'ksT(pD/q)"',

g* =- -4.6x10 ' ksT(pD/q)"',

(B52)

with an estimated error of about 10+ for the above
numerical coefficients.
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