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Fluctuations in the Low-Temperature Phase of a Model Cholesteric Liquid Crystal
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The fluctuations in a generalized version of Lubensky's spin model for cholesterics are shown to sti11

diverge (for an infinite system). The generalization consists in allowing the skew term of the interaction
Hamiltonian to include a dependence on the directions of the "short" molecular axes. Some such

dependence is expected in molecules of real cholesterics.

INTRODUCTION

It has been found by Lubensky' ' that both the
usual Frank free energy4 and a simple spin model
for cholesteric liquid crystals imply the absence
of long-range helical order in an infinite sample.
Besides the purely theoretical interest of this
question it seems likely that this dephasing of a
"cholesteric" has a measurable effect on its optical
rotatory power. ' In this paper the low-tempera-
ture phase of a generalization of the spin model
introduced by Lubensky is considered. In our
model the part of the intermolecular interaction
responsible for the twisting of the cholesteric is
allowed to depend also on the directions of the
"short" molecular axes. It seems clear that some
dependence of the interaction potential on the di-
rections of the short molecular axes is to be ex-
pected in real cholesterics (e.g. , molecules of
cholesterics tend to be flatter than molecules of
nematics}. The question we ask is whether the
introduction of this new degree of freedom may
help to stabilize the helical structure. The an-
swer, judging from our result, is no. Thus, the
present calculation lends additional support to the
assumption that the Frank free energy correctly
describes fluctuations in a cholesteric. '

MODEL

We assume for simplicity that the molecules
are at fixed lattice points r. The directions of the
long and short molecular axes are given by unit
vectors n(r) and n, (r), respectively. Two angles
specify n and an additional angle v is required for
n, (n, is perpendicular to n). The way v is defined
is indicated in Fig. 1. Either +n, or -n, is above
the XY plane; v is the angle between an, and Oz

such that --,'n & v &-,'n. An index with two values
(one value for n, above and one for n, below the
XY plane) completes the specification of a mole-
cule's orientation. However, this index plays
no role here because we assume that the system
is unchanged under n, - -n, .

The Hamiltonian is taken to be

where

+n'x(r' —r) W(n) J,(~r -r'~)/a],
(1)

J'(q, ) —a 'J,"(q,}=0, (4)

with J(q, ) =Q„J(r)e '"o' and q, =q,e,. (No
confusion should arise from using the same nota-
tion for a function and its Fourier transform. )
For n, and n,' in the direction of nx n', W(n) =1.
It will be verified now that the ground state of
Eq. (1}is still given by Eq. (3}, combined with
v(r) =-0.

Small deviations of n(r) from n'(r) can be writ-
ten

6n(r) =n~(r) 5P, (r)+Z, eg, (r),

where no (r) = e, x n'(r). It is straightforward to
decompose m, along e, , n', n:

n, = cosv cos5f,e,
—(cosv sin5$, sin5$, +sinv cosgP, ) no

—(cosv sin5$, coscp, —sinv sinai, ) n'

(assuming for definiteness that +n, is above the
XY plane). Now the function W(n), Eq. (3), is
calculated to second order in 5Q, , 5Q, , and v:

W(n) =1-G(n)[(nxn')' ——,'(n, nxn')'

——,'(n,' nxn')']

and G(n) is any well-behaved non-negative function
of n&n', n n', n, n&n', n,' n&n', and n, n,',
symmetric under r —r'; for example, one can
have G(n) =[(nxn')'+h'] ', b)0. Of course,
n=n(r), n'=n(r'), etc. The functions J are posi-
tive and have range a. When G(n} =0, H is identi-
cal to the interaction Hamiltonian chosen by Luben-
sky and has the helically ordered ground state'2

n (r) = cosq, zZ, + sinq, ze„
where qo satisfies
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nxn'=[no(1- —25n')+5n]x[na'(I --,'5n"}+5n']

=e, [sinq, (z' -z)(1+@,) +cosqo(z' z—)L]

+e, (sinq, z, 5Q,') +e,(-cosqoz, 5Q,');
&0=54'i 54' —z(54i+50'i" +542+54z')

F(n) contains only quadratic terms in the devia-
tions 5P, , the minimum condition 5H =0 is equiva-
lent to 5H =0; therefore, the ground state has
n(r) given by (3) and v(r) =0.

It may be noted that the last term of (11) does
not contribute to the double sum of Eq. (13}.

—2 sinqo(z' -z)(Q, +Q,). (9)

Using Eq. (9) and

Q, +Q, = v5$,' —v5$, cosqo(z' —z) +5/', sinqo(z' —z},

we obtain, to second order,

W(n) = 1 —G(no) F(n),

where

(10)

F(n) = [-,'(v' +v") sin'x +-,'(5p,'-'5 pmz)(1 + cos'x)

—2 coxs$5, $5—2 stoic(v5$2 —5p, v'}

+ sinz cosz(v5$, —v'5Q,')];
x =q, (z' -z) and G(no) means G evaluated with
n=n', v=0, etc. Thus, G(no) is a function of
z' -z. Note that

F(n) =-,' [v sinx+ (5f, cosz —5Q,')] '

+-,' [v' sin(-x) + (5p,' cosa — p,5)]
' 0.~(12)

The Hamiltonian has the expansion, up to second
order in 5 P, , f = 1, 2, 3(5$,—= v),

H =H +H',

where

(f(r),g(r')) -=f(r)g(r') - f(r')g(r)

[We only need (nx n'), , up to first order because
(n,}»already are first order. ] Equations (6}
and (I}give

n, nxn' = cosvcos5$, [sinqo(z'-z)(1 +go)

+cosqo(z —z ) L] +Q ~ +Q2,'

Q, = (v sinq, z —5Q, cosq, z}(sinq, z, 5Q,'),
Q, = (-v cosq~z —5g, sinq, z)(-cosq, z, 5$,'} .

Combining Eqs. (7) and (8) we get

(nxn')' —(n, nxn')'

= (v'+5/', )csin'q, (z' —z)+5/,'+5/,"
—2cosq, (z' —z) 5Q, 5Q,

'

ENERGY OF LONG-WAVELENGTH

FLUCTUATIONS

The energy necessary to make a small deforma-
tion 5$, (r) away from the ground state can be
written

where

K(r, r'}=Ko(r, r')+K'(r —r').

The matrix Ko has Ka«. (r, r') =0, for ct or o."=3,
and carries the contribution from H . Its non-
vanishing elements are proportional to Eq. (30}
of Ref. 2. (Put p'(S}z =1 in Ref. 2 to get our Ko.)
The matrix K' carries the contribution from H'.
We do not bother to give its matrix elements ex-
plicitly but only note some properties which are
used below: (i) K' is translationally invariant,
i.e., K'=K'(r -r'); (ii) K„'„=0for a or a' =1;
(iii) K,', (r) = -K,', (r) =K,', (-r); K„'„(r)=K„'„(-r);
(iv) K,', (r) ~ 5, 0; (v) detK'(0, qo) = detK'(0, -qo) = 0.

To establish relation (v) for the Fourier trans-
form, K'(k„k,) =Q, K'(r) e '"&' '~ "&' (the sub-
script & denotes here the component perpendicular
to the pitch axis), observe, first of all, that H'
can be written in terms of the matrix K' for r

H' = — p G(no)F(n) J,((r r'~)(r -r') ~-n xn '.
2a

(i3)
H'&0 because (r-r') n'xno' =(z -z') situ and
qoa«1. H does not depend on v and is simply
the expansion of Lubensky's Hamiltonian. Because

FIG. 1. The plane xOz is perpendicular to n; n~ lies
in xOz. Ox is in the XY plane and Oz is in the plane POZ.
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6$,(r'}=Re Z e"o',
v(r') =Rei Z e"o',
Z = 60I0,(0) —i v(0).

Therefore, for deformation (16),

(16)

and r' summed over an arbitrary volume V, pro-
vided V» a' (neglecting surface contributions in
limit V-~). From Eq. (12) it follows that F(n) =0
for deformations satisfying

and (vii} one obtains immediately detK'(0, q, ) =0.
A similar argument, starting from Eq. (17b),
shows detK'(0, -q, ) =0. Relations (vi) and (vii)
can easily be checked using explicit expressions
for K'„.(r —r'}.

Thermal averages at low temperatures can be
evaluated with the help of the Hamiltonian ex-
pression (14). It can be shown that

P (6$„(r)5$„(r')}=K„'„(r,r') (P =1/kaT},

0 =Z 2 6~-K.'.6~.'
V

=g P 8„,e'"o'K„',(r —r') 8„, e" 'o'
V

where K ' is the inverse of the operator K and
has the expansion

K„'„.(r, r') =g fo(r; u)f„.(r'; u)/E„ (18)

8„,8„,K„'„(0,s'q, ) e"o""'*,
r in V

where s =+2, -1 and 8„=-,'Z, 8„=-,'iZ, 8 =0*,.
Because V is arbitrary the coefficients of the
three different exponentials e"qo', e "'o', and 1,
must vanish separately

in terms of the eigenfunctions f„(r;u) of K.
K (r, r') is translationally invariant in directions

perpendicular to the z-axis" and, therefore, so
is K(r, r). Accordingly, the substitution f(r)
= e'"~' '~f (z) reduces the problem of finding the
eigenfunctions and eigenvalues of K to solving the
eigenvalue equation

8„,8„.,K'„„(0,q, ) =0,

8~ e~z K'„~z(0, -qo) =0,

e„,e„, K„'„,(o, -q,)+e„e„„K„'„,(o, q,)=o.

(17a)

(171)
g K«(k~; z, z ')f„(z'; k~, u) = E(k~, u)f„(z; k~, u),

gt

(19)

where
(17c)

Equation (17a) [combined with (iii)] implies (vi),
K,', (0, q, ) =K,', (0, q,). Equation (17c) gives (vii),
K,', (0, qo)+K,', (0, q, )+2iK,', (0, q, ) =0. From (vi)

K(k„z,z')= K(r„z,z')e '"0-' '1.

The structure of K(k ) is

(20)

K„(k„z-z')
2i (k+e "11' +k e"o* ) p,(k, ; z —z')

-oi (k, e "11'+k e"o') p,(k; z —z')

K„(k„z-z')
K,', (k„z -z')

K,',(k„z —z')

zz,',(k; z -z'))

[cf. Eq. (35) of Ref. 2]. As in the Lubensky model
this matrix is "almost" translationally invariant.
The symmetry operator commuting with K(k~) is
in this case a,T„where T, is the translation by
v/qo and

(note that c,To is norm preserving so that all its
eigenvalues have modulus 1; k, is real).

Substitution of (21) in (19) yields the following
set of equations for the coefficients A, B, and C:

(1 0

03= i 0-1 0

l0 0-1
The required functions f„(z) may be chosen to
be eigenfunctions of o,T, , i.e. of the form

[E-K»(2m)]A +oik p,(2m —1}B
+o ik, y(2m+1)B =0,

-~ ik p(2m+1)A —oik+p(2m+1)A

-K,'0(2m+1)C

+[E -Koo(2m+1)]B =0,

-Kto(2m+1)B +[E -K,'o(2m+1)]C =0.

(22a)

(22b)

(22c)

f (Z) eia&z g B ei &am+1&ao&

C i (aft+1)q g~ ~It& 0

(21) The abbreviations K(2m) =K(k„2mq, +k,), etc. ,
have been used. From property (iv) above see
that K,',[k„(2m+1)qo+k,] is independent of k, m.



Also, as mB1 soon be seen, E-0 as k-0. There-
fore, E- K,',(2m+1)x Ofor small k, and (22c} can
be used to eliminate C from (22b). Eliminating
the coefficients 8 from the remaining two equa-
tions gives

[E-K»(2m)- «k~[W(2m - 1) +W(2m +1)]}A
—«k W(2m-1)A~ ~

—«k+W(2m+1)A~i~ =0,

W(2m+1) =[q(2m+1)]'/[(Z -K„(2m+1)],
(24)

K,', (0, q,}+[K,', (0, qa)]'/K,', (0, q )

=K,', (0, q,)detK(0, q, ) = 0,

and similarly for K~rn(0, -q, ) -K', (0, -q ). Hence
we see that, to O(k'), Eg. (26) has the same value
as in the case G(n) —= 0 of Refs. 1 and 2, i.e.,

E = (const) x k', +0 (k~i). (2'I }
[This is obtained immediately from Eqs. (24} and

(26}using Ko»(0, q,) =q, p(qo) and the expression
for Ko, (k) from Ref. 2.]

The eigenfunction corresponding to (27) is

K2r2{2m+1) =K»(2m+1)— [K,', (2m+ 1)]'
E-K3, 2m+I

f(z)=A, e'"3' «% n'(z)/q,
~

~-i« P, (z)/q. ) .

The recursion relation (23) has the same form as
Eg. (40) of Ref. 2 and can be handled by the tech
nique explained in Morse and Feshbach. ' One
finds that the series in Eg. (21}converge and that
A „/A =O(k', ), for m~0, andA, /A =O(k~)
for m &0. Taking m =0 in Eg. {23)and dividing

by Ao it fo11ows that

E~KD»(k~, k,) +—«'kn~[W(0, -qo) +W(0, q,)] (26)

to O(k'). From Ref. 2 we get K»(k) =const xk~s

+[p(qo)/2q~]kn~; therefore, Eg. (26} shows that
E-0 as k-0, as expected. The remaining thing
to observe is that K2rn(0, +qo) =Ko,(0, aq, ). This
holds because, owing to properties {iii}and (v),

[Use Eqs. (22) and +K»(0, aqa) = -iK»(0, q,).]
Thus, our result can be summarized as follows:
For QQ, (r) =0, a fluctuation v(r) costs an energy
ix:Q v(r); but, by keeping a definite relation be-
tween v(r) and 6$,(r) [cf. also Eq. (16)], the
system can have deformations v(r) which, to
O(k'), do not raise its energy.

In conclusion, it has been shown that the form
of the fluctuation spectrum in Lubensky's model
is maintained when the interaction includes a
model dependence on the short molecular axes.
The form of this spectrum implies that there is
no long-range order in p„although the corre-
sponding correlation length, for real cholesterics,
is of astronomical magnitude. '
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