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Bose-Einstein condensation and the atomic momentum distribution are investigated for a simplified

liquid He ground state obtained by antisymmetrization, with respect to the electron variables, of a
product of He-atom wave functions, each in its individual electronic and translational ground state.
The momentum distribution is defined and evaluated by the method of redundant modes and

generalized Tani transformation. Bose-Einstein condensation is found, with a condensate depletion of
6% owing to the purely kinematical repulsion arising from the Pauli exclusion principle. The
noncondeiised atoms are spread in momentum space by an amount of a few inverse Bohr radii.

Dynamical correlations would increase the depletion in a more realistic ground state.

I. INTRODUCTION

It was originally suggested by London, ' and is
now almost universally accepted, that the A. transi-
tion of liquid 'He, and its superfluidity and other
exotic properties below the A. -transition tempera-
ture, are associated with Bose-Einstein condensa-
tion of the helium atoms in momentum space. It
is also known that such Bose-Einstein condensa-
tion is in a certain sense equivalent to "off-diago-
nal long-range order" (ODLRO) of the appropriate
reduced density matrix. ' ' It is customary in
microscopic theories of liquid 4He to regard 4He

atoms as little Bose billiard balls. It is well known
that the mutual impenetrability of pairs of atoms
arises from the effects of the exclusion principle
together with the filled-shell electronic configura-
tions, and that the long-range attraction (van der
Waals force) which makes the system a liquid
arises from coupled virtual electromagnetic tran-
sitions of pairs of atoms. However, in conven-
tional treatments such effects are simulated by a
suitable phenomenological potential acting between
pairs of "elementary" bosons, without introducing
electronic degrees of freedom into the model ex-
plicitly. The X transition is then viewed as a
Bose-Einstein condensation in a system of inter-
acting but "elementary" bosons. In such a model,
the definition of atomic momentum distribution
and Bose-Einstein condensation is straightforward
and essentially unique, and the associated ODLRO
occurs in the single-boson reduced density ma-
trix. ~ '

In some cases it is, however, advantageous to
introduce the electronic degrees of freedom into
the description of liquid He. This is, in fact,
essential in a first-principles approach to the
theory of excitons, and more generally in theories
of various types of excitations of the liquid which
arise from or are related to electronic excitations
of its individual atoms. Furthermore, inclusion

of the electronic degrees of freedom offers some
advantages even in the description of the ground
state, since use of properly antisymmetrized wave
functions then incorporates the short-range inter-
atomic repulsion purely kinematically, without
the necessity of employing phenomenological hard-
core potentials, which are difficult to deal with
mathematically.

As soon as the electronic degrees of freedom
are introduced explicitly, one is faced with the
problem of defining the atomic momentum dis-
tribution; the standard definitions of momentum
distribution and Bose-Einstein condensation, e.g. ,
in terms of second quantization, apply only to
elementary bosons. Any definition of occupation
numbers of states of composite particles (e.g. ,
atoms) necessarily involves a generkliza@on,
and is therefore nonunique. Several definitions,
not all equivalent, have been proposed. ' ' The
one which seems to us to be conceptually simplest,
and also most closely related to the standard
definition for elementary particles, is based on
the familiar idea of the introduction of initially
redundant variables corresponding to the com-
posite particles, followed by a canonical transfor-
mation (here a "generalized Tani transformation"~)
which gives these extra modes physical content.
Such an approach, which will be employed here,
is similar to that of the Bohm-Pines theory of
plasma oscillations. ' We shall apply this method
to the evaluation of the atomic momentum distribu-
tion of a simplified liquid-4He ground state ob-
tained by antisymmetrization, with respect to the
electron variables, of a product of 4He-atom wave
functions, each in its individual electronic and
translational ground state. Some of the properties
of such a state were investigated previously. "
The atomic pair-distribution function was found
to vanish at zero interatomic separation, as a
purely kinematical result of the exclusion principle
together with the closed-shell structure of the
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helium atoms. Also, the single 4He-atom reduced-
density matrix (including electronic variables}
was found to exhibit ODLRO of a type shown by
Kohn and Sherrington' to imply nonclassical rota-
tional behavior expected in a superfluid. The mo-
mentum distribution was also investigated, but
using a different definition' of atomic occupation
numbers. The purpose of the present paper is to
reinvestigate the momentum distribution and Bose-
Einstein condensation of the same many-atom
state, using the definition' of atomic occupation
numbers which we now believe to be most appro-
priate.

II. FORMULATION

The representation which we shall employ has
been described previouslye for the slightly simpler
case of hydrogen atoms. In terms of the standard
quantized field operators P(R) for 'He nuclei (a
particles} and g(x) for electrons, one can write
the state vector of a single 4He atom with wave
function y„(Rx,x,) in the form

ly &=A 'Io& (I)
where 10& is the normalized vacuum state and'"

A„t =2 "'f d'R dx, dx, y„(Rx,x,)

xyt(R) y'(x, ) y'(x, ). (2)

Using the elementary Bose commutation relations
of the nucleus operators, the Fermi anticommuta-
tion relations of the electron operators, and as-
suming the atomic states y„orthonormal, one
can show that

[A„,AS]=0, [A„,AS ]=5„8+C„s,

[$(R),A„]=[/(x),A ]=0, (3)

[p(R),A„t]= 3 ' ' f dx, dxm y„(Rx, x, ) gt (x, ) p (xm),

[P(x),A„]=2' f dsRdx' y„(Rxx')Pt(R)gt(x').
Here C„s is a sum of terms of the structures gtP
and ptptp g, and exhibits the kinematical effect
of the composite structure of helium atoms. Its
explicit form will not be required here, but is is
important to realize that the A„and A„t operators
do not satisfy elementary Bose commutation rela-
tions owing to the terms C~+. Similarly, the non-
vanishing commutators [P(R),A„] and [$(x),A„]
exhibit the lack of kinematical independence of
4He atoms from a particles and electrons. A
state of many 'He atoms can be represented" as
a sum of atomic product states A„ t ~ ~ A„ t10&
but such a representation is difficult to work with
because of the complicated commutation relations
(3).

Now introduce the ideal atom space, a Hilbert
space independent of the physical state space. It

consists of normalizable linear combinations of
ideal atomic product states a„ t a„ F10& where,
by definition, the a„and a„t satisfy e/ementary
Bose commutation relations and are kinematically
independent of the nucleus and electron fields:

[a„,as]=0, [a„,as ]=5„8,
(4)

[P(R), a„]= [&(x),a„]= [P(R),a„]= [g(x), a„]=0.

If we define the ideal state space to be the direct
product of the physical and ideal-atom state
spaces, then the physical state space is isomor-
phic with the space of those ideal states 1$& satis-
fying the constraints

a„lg&=0, all cI.. (5)

where, for any 1$&, the transformed state If) is
defined as'

10)=U '14& (10)

In the transformed state 1$) and transformed
observable U 'AU, atoms are represented by true
Bose operators a„and a„t. Thus, it is natural
to define the atomic occupation numbers n by

In other words, there are no ideal atoms in states
1$&, so that the ideal atoms are "redundant
modes. "

Physical content can be given to these redundant
modes by use of an appropriate unitary transfor-
mation, the generalized Tani transformation

U =ea "r, F =Q (a„tA„—A„ta„). (6)

It can be shown' that

UA„10&= a„ I 0&;

i.e., a state of one physical atom transforms
exactly into a state of one ideal atom. Such simple
transformation properties cannot be expected for
states of more than one atom, since a system of
real atoms cannot be unitarily equivalent to a
system of "elementary" ones. In the approxima-
tion in which all atomic overlap is neglected, and
hence C„8 and the commutators [$(R),A„t] and
[P(x),A„t] in (3) are dropped, one has

UA„, t A„ tlO&= a„ t a 10&. (8)

However, the corrections to (8) are not negligible
in liquid 'He, in view of the importance of exchange
and hence the non-negligibility of atomic overlap
in this system. Nevertheless, the transformation
(6) is still useful, since it can be used to introduce
the easily interpreted and easily manipulated ideal-
atom operators a and a„~. If A is any observable.
and Ig& and 1$'& any states in the ideal state space
satisfying (5), then
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n„= (g[antaal&) = &tl Ua. 'a.U 'l0& (11)

In contrast with the operators A ~A~, the opera-
tors a ta~ are true Bose occupation-number oper-
ators and have integral eigenvalues, so that the
definition (11) is quite natural. There are two

exact sum rules which lend further credence to
this definition. Define the total atom number
operator N„, total nucleus number operator ¹„,,
and total electron-number operator N,~, in the
standard way:

Naa=g a„a„,
N„„, = fd'R P"(R)$(R), (i2)

N.„,= fdxy'( x)y(x)

Then it is easy to see that'

A(0) =A, A(-~n}=UAU

Then A(e} satisfies the "equation of motion"

dA(e) =e a~[A, E]ea~ =[A(e), E(e)].

(19)

(20)

In particular, it follows from (3), (4), and (6)
that

da„(e}
( )QL

states y must sum to n.
The transforms needed to evaluate (11)can be

found by the equation-of-motion method. Define,
for any operator A,

A(e) =e '~Ae~,

so that by (6)

[(Naa+Nmc), U]=o, [(2Nat+Nal ), U]=0, (13)

(N„+N„„,)(P& =n~y&,

(2Naa +Nc&cc)lf& =2nl4&.
(14)

since E creates an ideal atom whenever it destroys
a nucleus, and creates an ideal atom whenever it
destroys two electrons, and vice versa If ~P&. is
any state of n nuclei and 2n electrons satisfying
(5}, e.g. , any state of n physical 'He atoms, then

dA„(e) = -a„(e)-Q C„8(e)a~(e),dE'

2"-'Q f dx, dx, y„(Rx,x,)

x pt(x, , e) p" (x, , e) a„(e),

x y (R, e)y (x', e}a„(e}.

(21)

As far as the states ~P& are concerned, these
relations are trivial. However, they acquire non-
trivial and useful content in terms of the trans-
formed states ~g). By (10) and (13), one has also

(N., +N.,)lp) =nI &&,
(15)

(2N„+N,gc }~ $) = 2n( $).

The physical significance is that
~ p} the total

number of nuclei is the sum of the number of bound
atoms (with occupation numbers a„ta„) and the
number of free nuclei [with number-density opera
tor P (R)P(R)]; similarly, the total number of
electrons is thrice the number of bound atoms plus
the number of free electrons. This supports the
interpretation of the definition (11)of the atomic
occupation numbers n, and suggests similar
definitions of the numbers n„„, and n,~ of free
nuclei and electrons:

n., = (P IN-. I P) =
& P I UN-. U 'I P&,

In view of (15), one has the sum rules

Q n„+n„„,=n, 2+ n~+n, „c =2n. .

For liquid 4He in its ground state or more general-
ly in equilibrium, ionized states have very small
occupations, so that (1'I}expresses the fact that
the numbers of atoms in various single-atom

sy(R, e)
Bf

sy(x, e)
86

The solutions satisfying the correct "initial"
(e =0) conditions (19) are

a„(e}= a„cosa +A„sine,

A„(e)=A„cose —a„sine,

P(R, e)= P(R},

y(x, e) = y(x}.

(23)

Putting e = --,'s and noting that U '~0& = )0&, one
easily verifies (8), since by (19) one has UA„U '
~A~(--,'w). More accurate solutions can be ob-

These equations and their Hermitian conjugates
are a set of coupled nonlinear integrodifferential
equations, and cannot be solved in closed form.
However, the lowest-order solutions, valid when
the density of the system is sufficiently low (as
it is for liquid aHe}, can be found by iteration. In
the approximation in which the atoms behave like
elementary bosons, and hence the terms propor-
tional to C„8(e) in the differential equation for
A„(e) and the entire right-hand sides of the dif-
ferential equations for P(R, e) and P(x, e) are
dropped, one has

da (e)
( )

dA„(e)
( )C y d IX
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Ua„U = -A„-Q C„q(—'va8 —-'Az) +

UP(R) U ' =$(R)+2 ' 'Q fdx, dx, y„(Rx,x,)

x P~ (x, ) Pt (x,)(a„-A ) +

Ug(x) U ' =g(x}+2"'Qfd'R dx' y„(Rxx')

x y'(R) y'(x')(a„-A„)+ ". (24)

It is now possible to write the expressions (11)
and (16) in more explicit form. Making use of
(24), (2), (5), and (12), one finds

n„= (PlA „AJ tP& —-,' Q ((QlA„C „8A 8l g&+ c.c.)

+-,' Q (PlA8 ~C„q ~C ~A zl P&+
8y

n „„,= &ply„„, ly& g(y-lA„'A„ly&+ , ~ ~ ~

n.~..= &Vl~...le&-2Z &!tlA.'A. le&+ ~ ~ ~ .

(26)

tained by substitution of these lowest-order ap-
proximations into the right-hand sides of (21) and
solution of the resultant inhomogeneous linear
equations. Putting c =--,'m in the resultant ex-
pressions, one finds

of including only terms in p, , expression (28) dif-
fers from the previous expression" (based on a
different definition of atomic occupation numbers}
only in normalization. The difference is, never-
theless, crucial —the previous expression being
smaller by the factor [n(2n —1)] '-10 4'! The
reason for this enormous difference in normaliza-
tion is that in the previous definition' bath bound
and continuum (unbound) states were treated as
atomic states. On the other hand, according to
the new definition (11}upon which (28) is based,
only bound states of one nucleus and two electrons
are regarded as atomic states y, so that the
set (y„}is undercomplete. The sum rules (17}
are then completed by the contributions n„, and

n,t„of free (unbound) nuclei and electrons. We
regard this approach as more physical than the
old one. This will be confirmed by the subsequent
evaluation of (28) for a simplified liquid- He ground
state, which will be found to lead to Bose-Einstein
condensation in the usual sense (na of order n).
It will also be found that n„„, and n„are neg-
ligibly small, in agreement with the physical ex-
pectation that ionized states have very small occu-
pation in liquid 4He in its ground state.

Since lP& is a state of n 'He atoms, it satisfies

(pl~., ly&=n, (pl~,.ly&=2n. (26)

Hence the expressions (25) are consistent, within
the order to which they are evaluated, with the
exact sum rules (17}. In view of these sum rules,
it is not necessary to evaluate nH„and n,&, sepa-
rately; one needs only the atomic occupation num-
bers n . It is convenient to express them in terms
of the reduced density matrices of the state lg&.
The single-atom (one nucleus, two electron) den-
sity matrix p, is defined by

p, (R x, x„R'x,'x,')

=(Cl!!'(R') C'(;)C'( .') C( .) C(,) C(R)ls&. (27)

The first term in the expression (25} for n„ is
proportional to p, . Recalling that C 8 is a sum of
terms of the structures P P and P P PP, one sees
that the remaining terms in n„are proportional to
p4, p„.. . ; such terms are expected to be small
compared to those involving p, at the low density
of liquid 'He, and will not be evaluated here. One
thus has with (2}

n„= (y~,2p, q)„)+~ ~ ~

-=-,' f q „*(Rx, x,) p, (R x, x„R'x,'x,')
x y „(R'x,' x2 )d R dx~ dxm d~R ' dx,' dx~'+

(28)

It is amusing to note that within the approximation

III. SIMPLIFIED LIQUID- He GROUND STATE

In this section we shall briefly review the defini-
tion and properties of the simplified liquid-4He
ground state" lg, & for which (28) will be evaluated.

Let Aot be the creation operator for a single
'He atom in its ground state (zero total linear
momentum and electronic ground state}, obtained
by taking y, in (2) to be the corresponding 'He-
atom ground-state wave function. The closest
analog of the ideal Bose-gas ground state which
can be constructed from n real 'He atoms can then
be written in the form

const x (A, t )"
l 0& . (29)

This is the second-quantized form of the Schro-
dinger wave function

constx A,„[y,(R, x, x,) p, (R,x,x,) ~ ~ ~

x q, (R„x,„,x,„)], (30)

where A,„ is the antisymmetrizer with respect to
the 2n electronic variables; this state is then
automatically symmetrical under permutations of
the nuclear variables R, R„, so that a nuclear
symmetrizer is not necessary. Although the state
(29}does not contain dynamical interatomic cor-
relations, it does incorporate kinematical correla, -
tions implied by the exclusion principle, which
acts to inhibit overlap of filled atomic shells. "
The state (29) is somewhat analogous to the 2n-
electron projection of the ground state of the BCS
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theory of superconductivity, "which is also of the
form (29}with Aot the creation operator for a
Cooper pair.

As in the BCS theory, it is mathematically con-
venient to slightly relax the conservation of total
particle number. Thus we replace (29) by the
state

~y, &=S[0&, S =e'

G = c(Aot -Ao).
(31}

This state is easier to work with since it is ex-
pressed in terms of a unitary transformation S.
The real positive constant c is to be determined
so as to give the correct total number n of 4He

atoms (hence n nuclei} in the sense of an expecta-
tion value:

(iiio~Nnuc ~$0& =n. (32)

(e.(R), c., (R')]=O,

(c,(R},c, t(R') }=5„.xo (R -R'),
where w is the interatomic overlap integral

ui(R) = f u, *(r)u, (r+R)d'r

(36)

(36)

Both u, and w are spherically symmetric" and of
range -ap, where ap ls the Bohr radius.

It has already been shown elsewhere" that the
state (31) has the following properties: (i) the
single-atom density matrix p, [Eq. (27)] exhibits
ODLRO; i.e., it contains a non-negligible sepa, -
rable term y(Rx, x,) y*(R'x,'x,') and hence does
not vanish at infinite atomic separation; (ii) the
nuclear pair distribution function D(R»), the

In analogy with the BCS theory, the fractional
fluctuations in N„„, (hence in the number of atoms)
can be shown" to be of order n "' for n-~, and
hence negligible. The approximation involved in
the replacement of (29) by (31) is therefore quite
innocuous. The calculations are further simpli-
fied by adopting a simple Hartree-Fock form for
the atomic ground state yp, which implies that
Ap~ can be written in the form"

Aot =0 ' fd'R cit(R)cit(R)gt(R), (33)

where Q is the volume of the system, "gt(R)
creates a nucleus at R, and c,"(R) (a =0 or 4)
creates an electron of spin z-component 0 in the
Hartree-Fock orbital u, centered on the nucleus at
R,

c,t(R}= fd'r uo(r —R) i', t(r). (34)

Here g, (r) is the creation operator for an elec-
tron of spin v at position r. It follows from the
usual anticommutation relations for the P, and

P, t that the operators (34) satisfy anticommutation
relations

probability of finding two nuclei (hence two atoms)
with separation R», vanishes as R»-0; (iii) the
nuclem momentum distribution is a smooth func-
tion of range -I/a, in momentum space, and does
not exhibit Bose-Einstein condensation. Property
(i} implies, by an argument of Kohn and Sherring-
ton, ' that the system will exhibit nonclassical
behavior under rotation, as expected for a super-
fluid. Property (ii) demonstrates that part of the
"hard-core" interatomic repulsion is kinematically
built into the state (31) as a result of the Pauli
exclusion principle which inhibits overlap of filled
electronic shells. Property (iii) is expected be-
cause of the motion of an atomic nucleus in re-
sponse to that of the electrons of the same atom
(conservation of momentum); as a result, any
Bose-Einstein condensation of the atoms is
"smeared" and not exhibited in the momentum
distribution of the nuclei. In fact, we shall find
in Sec. IV that the atomic momentum distribution,
defined in terms of (28}, does exhibit Bose-Ein-
stein condensation.

IV. ATOMIC MOMENTUM DISTRIBUTION

AND BOSE CONDENSATION

By comparison of (2) with (27) and (28) one sees
that the atomic occupation-number distribution of
the state ~P,& can be expressed in the form

(37)

The index n of the atomic states y can be de-
composed as a = (k, v) where k is the translational
wave vector, related to the total linear momentum

p of the atom by p =8k, and v is the set of all in-
ternal quantum numbers labeling the electronic
state. For the time being we shall consider only
states which are not internally excited, and hence
differ from

happ only by having a momentum which
is in general nonzero. Denote the wave functions
and creation operators for such states by y-„and
A.„,and the corresponding occupation number by
n-„, which then has the interpretation of the mo-
mentum distribution of atoms in their internal
ground states. The (pT, differ from yp only by a
phase factor" e'" corresponding to the momen-
tum hk. Accordingly, (33) generalizes to

A-" =g "'fd'ft ei"'" cit(R)cit(R)yt(R).
(38)

Insertion into (37) then yields

11-1f ik'(R'-R)
n'k

x pq(R 0, Rt, R; R'0, R't, R') d~R dsR
' + '

(39)

where the p, in (39), not to be confused with that
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of (27} (although it is closely related), is

p, (Rt, R4, R; R't, R't, R'}= ($0~ c )t(R') c )t (R') Pt(R') P(R) c)(R}ct(R) ~ P~}

=(0~ [c~'(R')] t[c~'(R')] t[P'(R')] t P'(R) c~'(8) c~'(R)(0), (40)

with

c,'(R)=S 'c, (R)S, P'(R)=S 'P(R)S. (41)

Since the state ~g,) is an eigenstate of total linear
momentum with eigenvalue zero, p, is transla-
tionally invariant, i.e.,

p~(RN, R4, R; R't, R't, R'}

= p, (5 -R', t, R -R', t, R -R'; Ot, 0t, 0). (42)

Hence, one of the integrations in {39)can be per-
formed immediately:

n& = fp, (Rt, R4, R; Ot, 04, 0)e '"'"d'R.

By insertion of (34} into (40), one can express
p, in terms of the density matrix D, previously
evaluatedi8

(43)

p~+'(R) =2w(R)ao~l, ~(R)+2ao~l~(R).

Here the integrals I„,are defined by

ao'I»(R) = f [w (R -5')] " [w (R')] "d'R',

(44)

(45)

and the terms " ~ " not exhibited are of higher
order in the small parameter pao', where p =n/0
is the number density of He atoms and ao is the
Bohr radius. For liquid 4He under normal ex-
perimental conditions, pao'=0. 0033. The quantity

X in (44}, the analog of the "pairing amplitude"
of BCS theory, is, by translational invariance
of ~$0), independent of R and closely related to
the condensate wave function g(x, x, R) previously
defined, "associated with ODLRO of D„hence of
p, . It can be expressed in terms of integrals x
and y previously defined':

X =p"*[1—(x ——,'y) pa, '+O((pa, ')*)], {46)

with

xao'= fw'(R)d'Il, ya, '= 1 w(R)d'R (47)

In accordance with the decomposition of p, into
the ODLRO term ~x~' and the residue p, ', n&

[Eq. (42)] decomposes into a Bose condensate
contribution no and an uncondensed contribution
n '

k

nk no ~ho+nb (48)

p, (Rt, Rt, R; Ot, 04~0) =lXl~+pg (Rt, Rt, R; Ot, 0t, 0),

p, '(RW, Rt, R; 04, 04, 0) =p'[p "'(R)+p "'(R)]+

p, "'(R)= -Sw (R)ao'I»(R) +w'(R) ao'I~(R),

with

Then the overlap integral (36) is

w(R) =(1+X+-',X') e-», X =gIt/a„
and

637T 57637m
10 7P P 12 288&3 3 05

Then by (49) one has

(52)

(53)

no = n [1 —0.061 +0((pao') )] . (54)

Thus, for the simplified ground state ~g,}, 94% of
the 4He atoms are Bose-Einstein condensed into the
zero-momentum single-atom ground state, or
equivalently, the "condensate depletion" is 6%.
For real liquid 4He, the condensate occupation is
much smaller; the data on inelastic neutron scat-
tering suggest a condensate occupation of only a
few percent. Such a large discrepancy is not
surprising in view of the highly simplified nature
of the state ~g,} upon which (54) is based. The
important thing to note about (54} is that it does
predict Bose-Einstein condensation, and that this
condensation is directly related to ODLRO of the
single-atom density matrix (in our notation,

X &0), in accordance with the general relation-
ship' ' between ODLRO and Bose-Einstein con-
densation. The small but nonzero (6%) condensate
depletion results solely from the kinematical
repulsion" of 4He atoms incorporated into the
state ~$0) via the exclusion principle. In a more
realistic state in which the atomic motions are
correlated in such a way as to minimize the ener-
gy-increasing tendency of the kinematical repul-
sion, the depletion would be much larger, since
such correlated motions necessarily imply nonzero
momentum components.

Let us now proceed with the evaluation of the
momentum distribution function n-„' of the un-
condensed (depleted) atoms. By (50) and (44}

no = IXI'll =n [1 —(2x —y) pao'+O((pao')')] (49}

and

n-„'=f p, '(Rt, RO, R; Ot, 0t, 0)e '"'"d~R. (50)

If one employs a simple hydrogenic orbital for
the 1s electrons of the helium atom, rather than
a true Hartree-Fock orbital, then the integrals
(47}can be evaluated in closed form. The best
hydrogenic orbital is"

u (r}=(g'/va ')"'e "~'0 Z = —", =1.69. (51)
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n&' ——p'ao' f [w'(R)lmz(R) -8w(R)I, ~(R) +2w(R)l„(R) +2I~(R)]e '" "d R +0((pao ) ).
Inserting the definitions (45) of the I„,and the Fourier transforms x-„,y-„, t-„defined by"

w(R) =(2v) ao' fz& e'"'"d k, w'(R) =(2v) 'ao'fxT e'"' d'k, w'(R)=(2z) 'ao' f t
&

e'" "d~k,

one finds

n&' ——2(pao')zx&z+(2v) (pao~)zao~ f x& & x& ~d k' —8(2z) '(paa')2ao' fzt, &. z&. t &
~ d~k'

+2(2z) (pa03)zao fz& &. z& d k'+0((pao })

(ss)

(56)

(s7)

Using the explicit expression (52) for the overlap
integral of the hydrogenic orbital (51), one can
evaluate x-„, yk, and t „ in closed form. The re-
sultant expressions are related to the integrals
w„(q), defined in Eqs. (A6}, (A7), and (A9) of
Ref. 11, by

a,'z„=w, (q}, ao'x„=w, (q}, a,'t & =w, (q},

(58}

where q =kao/Z. The angular integrations in (57)
are easily done in closed form, and the resultant
one-dimensional integrals can be evaluated nu-
merically'4 for a representative set of values of
q. Such a numerical evaluation of (57) was car-
ried out and, as a check, compared with a nu-
merical evaluation" of the integrals (55). The
result is plotted in Fig. 1. As expected, the 4He

atoms depleted from the Bose condensate are
spread in k space by an amount of order ap

'
(actually -2ao ').

V. EXCITED AND IONIZED ATOMS

The kinematical repulsion of 'He atoms implicit
in the n-atom state ~$0) is expected to lead not
only to the presence of atoms with nonzero mo-
menta, but also to a small but nonzero number of
atoms which are virtually internally excited, as
well as a still smaller but nonzero number of
virtually ionized atoms. In real liquid 4He such
virtual excitations arise not only kinematically
(exclusion principle), but also dynamically. In
fact, the van der Waals attraction, responsible
for the fact that liquid 4He is indeed a liquid, arises
from electromagnetic interactions of virtually
excited atoms (London dispersion force). Such
effects are not included in the simplified model
wave function (31}, so that not much physical
significance can be attached to the detailed nu-
merical values of the populations of electronically
excited atoms implied by the state (31). Never-
theless, the evaluation for the state (31) can serve
as a simplified model of calculations that might
eventually be carried out with more realistic
many-atom states.

Recalling that the index n on n~ stands for
n = (k, v), where v is the set of internal (electron-

ic}quantum numbers of the 4He atom, one can
rewrite the first sum rule (17) in the form

(59)

(60)-„n=Qp, (00, 04, 0; Ot, 0t, 0).
k

Then, recalling that w (0}=1, one finds by (44)-
(47)

g nz = n [1 —4pao'y +0((pao )z}],
k

and hence by (59) the sum of numbers of virtually
excited and ionized atoms is

n-„„+n,„,= 4pa, 'yn +0((pa, '}'n).

(61)

(62)
k, v&0

4X10

3XfP

P.XEO

ixtr'-

f.0 2.O ka

FIG. 1. Ground-state atomic momentum distribution,
evaluated at liquid-4He density pa 03 = 0.0033.

+ nk +n —n
k k, v&p

The number of ionized atoms is equal to the num-
ber n„„, of unbound nuclei. " np is the condensate
occupation and n& (ko0) the uncondensed ground-
state occupation n-„' already evaluated. The sum
of numbers of virtually excited and ionized atoms
can then be obtained by subtraction. The sum of
n-„over all k (including k =0) can be evaluated
with the aid of (43) and the completeness relation
for the exponential, yielding
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According to (53), the numerical value at liquid-
'He density (pass =0.0033) is

n» +n,„,=0 04. 1n (53)
k, v&p

Comparing this with (54), one sees that of the
small fraction of atoms depleted from the conden-
sate, one-third go into the momentum distribution
n-„' (ke 0) of unexcited atoms, and two-thirds go
into virtually excited or unbound states. In a more
realistic wave function one would expect not only
a much larger fraction depleted from the con-
densate, but also a much larger number in the
momentum distribution nt, '(k o 0) than in virtually
excited or ionized states.

VI. DISCUSSION

The most important result of this analysis is
the unification of the viewpoint of superfluidity

of liquid 4He as arising from ODLRO of the two-
electron one-nucleus density matrix"" with that
in which it arises from condensation of "elemen-
tary" bosons. ' ' In our approach the operators
ar„a& t describe elementary bosons ("ideal
atoms"), but nevertheless the detailed electronic
structure of the atoms enters in the evaluation of
n& =(PJUaztaa U '~Pe). Although the model liq-
uid-'He ground state

~ Pc) employed in this paper
is much too crude to yield accurate numerical
results, one expects these qualitative features
to hold for more accurate approximations, and
in fact for the true liquid-4He ground state. Con-
trary to the assertions in Refs. 6 and 11, Bose-
Einstein condensation of 4He atoms is compatible
with the effects of interatomic electron exchange,
although these effects do cause a partial" deple-
tion of the condensate.
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