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Acoustoelectric amplification in piezoelectric semiconductors can be profitably treated as the acoustic
analog of a classical laser. The nonlinear acoustic gain and frequency pulling can be found by
combining Maxwell's equations with the piezoelectric equations of state and solving the resulting system
to third order in a perturbation expansion. Recent experimental findings (acoustic mode locking, etc.)
encourage the use of such methods, which produce results analogous to those of the Lamb theory of a
classical laser. We here present solutions for the case of a single acoustic mode. Diffusion effects are
found to be important, especially near threshold.

I. INTRODUCTION

An ultrasonic wave traveling in a piezoelectric
semiconductor can be amplified by applying a
strong electric field along the direction of propa-
gation. ' The acoustic wave creates lattice stresses
that result in local ac modulations of the electric
field. The latter cause a similar modulation of
the electron density ("bunching"). When the dc
drift velocity of the electrons v„exceeds the veloc-
ity of sound U, , the electron wave will give up
energy to the lattice wave. This situation has
been likened to laser action" in which the acoustic
wave is augmented by the stimulated emission of
phonons. In this analogy the supersonic electrons
represent a population inversion.

A linear theory of the acoustoelectric effect
was developed by White, 4 who coupled Maxwell's
equations with the piezoelectric equations of state.
Nonlinear theories of increasing complexity have
been offered by a variety of authors. For example,
Butcher and Ogg' introduce the steady-state cur-
rent as an ad hoc parameter, and assume a sinu-
soidal space-charge distribution. Computer calcu-
lations by Tien' show, however, that once the
acoustic amplitude becomes large numerous higher
harmonics inevitably appear in the carrier distri-
bution; harmonics of the acoustic wave are found
to be far less important. Ridley and Wilkinson'
use Krylov-Bogoliubov techniques to derive ex-
pressions for the high-field domains observed in
CdS bar experiments. '

In this paper we offer a calculation which car-
ries the laser approach to acoustoelectric ampli-
fication to its logical conclusion. We recast
White's equations4 in the form of the classical
theory of the laser' and solve these to third order
in a perturbation expansion. This procedure is
particularly useful in obtaining, for example,
steady-state power, frequency pulling and mode-

locking in a simple fashion.
The experimental literature on acoustoelectric

amplification is voluminous indeed. Early ex-
periments used piezoelectric semiconductors like
CdS' "because of the strong coupling between
electric and elastic waves (and thus local carrier
concentrations and lattice deformations) in such
materials. Bismuth was also suggested'" and
tried. " Most other materials have weak acoustic-
electrical coupling and require prohibitively large
carrier concentrations and current densities for
acoustic amplification.

Observations on CdS bars' "revealed the exis-
tence of narrow traveling domains of high-field
intensity, corresponding to a wide range of ampli-
fied frequencies. More recently, experiments with
thin CdS platelets (0.3 mm) have limited the output
to a few discrete modes, "separated by the funda-
mental frequency of the plate thickness. These
modes are analogous to the cavity modes of a
laser; and they participate in mode locking, as has
recently been observed. " Such experimental re-
sults provide considerable motivation for a theo-
retical investigation of acoustoelectric amplifica-
tion from a laser point of view.

II. BASIC EQUATIONS

We begin by finding self-consistent solutions
for the acoustic and electric fields U(x, t), E(x, t)
in a piezoelectric semiconductor subjected
to a constant dc field E, along its x axis (Fig. 1).
U(x, t) represents a plane-wave displacement of
lattice ions which propagates down the x axis.
U(x) is perpendicular to x for a shear wave, and
along x for a longitudinal wave, whereas E(x)
points along the x axis. With these spatial con-
ventions in mind, U(x} and E(x}are treated as
scalar quantities hereafter, and the vector signs
omitted. Various boundary conditions can be
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applied at the ends of the bar (x =0, L). We can
use transducers and circuitry to transfer the signal
intact from x =L to x =0. This corresponds to a
ring laser. Another approach is to allow the signal
to bounce back and forth between the sample walls.
This corresponds to a laser oscillator. There is
an important difference between the two cases.
In the former the acoustic wave always propagates
in the same direction (+x} and is continually am-
plified. In the latter the sound wave travels alter-
nately along and opposite to the electron flow. As
will be shown, the acoustic wave suffers losses
on the backward half of its journey, i.e., the
medium is nonreciprocal. This is quite different
from normal laser operation; however, if the
backward loss is small enough, one can consider
the sample to contain a standing wave to a good
approximation. This is often true in experiments
involving thin plates of CdS; and in what follows
we shall emphasize the semi-standing-wave formu-
lation.

is given by

J=q(n, + fN) pE+qg)„N', (6)

where p. is the mobility and X)„ is the electron-
diffusion constant. Taking the time derivative of
Eq. (5) and using Eqs. (4) and (6), we find

D' = -J' = -p. q[(no +fN) E]' qm—„N"

N is eliminated by using Gauss's law (5}, and Eq.
(7}becomes

D' = -p, (qno E —fD'E) —fB„D"' (8)

This equation is important and will hereafter be
referred to as the "matter equation. ""Using
Eq. (2) to eliminate D gives E in terms of U.

The other important equation is the driven wave
equation which follows from (1) and (3):

T' =cU" —eE' =pU.

Expressing this as

A. Phenomenological Equations U —(c/p) U" = -(e/p) E', (10)

The acoustoelectrical coupling in a piezoelectric
medium is represented empirically by equations
of state4 which relate the stress T, acoustic field
U, electric displacement D, and electric field E:

T =cU' -eE,
D =eU'+cE,

(1)

(2)

where ' represents s/sx, c is the elastic constant,
e is the piezoelectric coupling constant, and c is
the dielectric constant. The electric field must
also satisfy the wave equation, the continuity equa-
tion, and Gauss's law:

makes clear the role of E' as a source term. It
occupies the same position as the polarization P
in the wave equation for the classical laser. '

B. Phase —Amplitude Equations

We now convert the wave equation into the phase-
amplitude form used by Lamb' to analyze the gain
and frequency pulling of a laser. The acoustic
field is decomposed into traveling-wave modes:

+ oo + oo

U(x, t) = g U„(x, t) = g U„(t) sin(k„x —&u„t),
n=-'o ~ oo

(11)

T' =pU,

~' =qN, (4) Vp

-x
I

D ' = -q (n, —no)/f = -qN, (5)

where ~ represents s/st, p(x) is the crystal mass
density, J(x) is the electric current density, N(x)
is the electron excess density, and q is the elec-
tronic charge (absolute magnitude). Of course,
not all the excess space charge N(x) in a given re-
gion represents electrons in the conduction band;
a fraction (1 f) of these electr-ons are trapped in
the energy gap of the semiconductor. ' Thus in Eq.
(5) the expression fN=(n, —no) is used to repre-
sent the deviation of the conduction electron den-
sity n, from its equilibrium value n, .

We now assume that Qhm's law holds locally,
i.e., the electron mean-free path l, «the acoustic
wavelength A. . Then the net current density J re-
sulting from the local field E and spatial diffusion

x=Q

u

y
J

Eo = —&0

F I LTER I

C =Vd

x=L

FIG. 1. Experimental setup to study acoustoelectric
amplification in a long CdS bar. A constant voltage
source Vo creates a dc field Eo—- -8() in the sample.
This causes the electrons (charge -q) to travel with a
drift velocity v~ in the x direction, creating a current J.
Transducers transfer the acoustic signal U from x =L
to x = 0 to give ring-laser-like boundary conditions. The
filter restricts amplification to a single acoustic mode.
Alternately, we would allow the wave to reflect back and
forth. Waves traveling in the +x direction will be ampli-
fied for v~ &v, ; those traveling in the —x direction will
be attenuated. If the loss for the backward trip is small,
a standing wave can be approximated.
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where the phase has been chosen to perxnit the
eventual formation of standing waves upon applying
oscillator boundary conditions. All variables are
real, k„=k „, ~„=-~ „, and U, (t}=0; the effects
of amplification are included in the time-dependent
amplitudes U„(t}. The wave vector k„ is fixed,
while e„must be determined by the equations that
follow; this choice of procedure differs somewhat"
from that of White. ' Similarly,

E(x„t) = g E„(x,t)

[S„sill(k„x —(Ll„ t)

+C„cos(k„x—ru„ t)], (12)

where the phase relationship to U„(x, t) can not be
pre-assumed. N(x, t) can be similarly decom-
posed.

When Eq. (11) is substituted in (10) a linear
second-order differential equation results that
can be separated into a set of equations for each
Fourier component U, (t):

V„(x, t)+ " U„(x, t) U„"(x, t—)—= E„'{x,t-},—
(13)

where a phenomenological damping term has been
added to represent the cavity losses Q„ for each
mode. We then use the explicit forms of Eq. (11}
and make the slowly varying phase and amplitude
approximation, i.e., U„(t) and cu„do not change
appreciably in a single cycle. Thus U„(t}is small
colllpared to td„v„(t}, and U„(t) ls Iiegllglble colll-
pared to &um U„(t). We also assume that ~„/Q„ is
small, and thus neglect (&u„/Q„) U„{t). Upon taking

j,"cos(k„x —~„t) and Jo' sin(k„x —&o„t) of both
sides of (13), we obtain the two phase-amplitude
equations

U(x, t) = V(t) sin(kx —~t). (16)

m. LINEAR THEORY

A. Linear Equations

Following the procedure used by Lamb' for the
classical laser, we expand E(x, t) and U(x, t) in
a perturbation series:

E(x, t) =E, +E,(x, t) +E,(x, t) +E,(x, t) + ~ ~ ~,

V(x, t) = U, +U, (x, t)+V (x, t)+U, (x, t)+ ~ ~ ~,

(16)

where the subscripts now refer to the order of the
term in the expansion, and E,«E,«E, . Bound-
ary conditions require Eo = -ho and U, =0 (Fig. 1}.
A look at the matter equation (6) shows that non-
linearities arise only from the term fD'E.

Keeping only the first-order terms gives the
matter equation for /inear theory:

—D,'=-p, [qnDE, —fEOD,')+ fu„D,",
dt ' ex

(19}

where Eq. (2) expresses D, in terms of E, and U, .
From (16) and (19) we see that the appropriate
expressions for U, and E, are

U, (x, t) = V, (t) sin(kx -&ut), (20)

This could be achieved in practice through the
use of appropriate external filters (traveling wave-
boundary conditions) or thin semiconductor sam-
ples (oscillator boundary conditions). No restric-
tions are placed on the possibility of higher har-
monics in E(x, t) and N(x, t}, in accordance with
the results of computer calculations by Tien. '
The foOowing calculation will be expanded to the
case of several acoustic modes in a future publica-
tion. "

U (t)+(&u„/Q„) U (t) =+( e/k02„p) S(t),

(~„-n„)V„(t) = -(ek„/2n„p) C„(t),

(14)

{15)

E,(x, t) =S,(t) sin(kx —(ut) +C(t) cos(kx —a)t).

(21)

where A„ is the unpulled acoustic frequency
(c/p)"*k„. The frequency shift during operation
is assumed small so that (~„+0„)-2Q„in (15) and
Q„can be substituted for ~„on the right-hand side
of (14). These equations are equivalent to the
phase-amplitude equations of a classical laser, '
with U„replacing E„, and E„replacing P„. As in
that case, the problem is reduced to finding the
source terms, i.e., to solving the matter equation
(8) for S„and C„ in terms of U„.

In Secs. HI-V, we restrict our attention to a
single forward-traveling acoustic mode and drop
the mode subscript II; thus

Substituting these into (19) and dividing the results
into sinusoidal and cosinusoidal parts by integra-
tion as before gives

b.S, +(~,+k)C, +kbv, =0,

4C, —((u, + k)S, +6b U, = 0,

(22)

(23)

where several new parameters have been intro-
duced.

The dielectric relaxation frequency &o, = qn,rI/c-
ia a measure of the time required to restore
equilibrium in a perturbed electron distribution.
A frequency w& e, is required if acoustic deforma-
tions are to create measurable piezoelectric
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effects, which explains the use of high-resistivity
(low p, no) samples in experimental work. '"""
The diffusion analog of e, is h = fk'S„, which
represents the smoothing out of the electron spa-
tial distribution by .diffusion of electrons from
regions of high concentration"; this decreases
the effectiveness of the electron-bunching process
and the acoustoelectric interaction. The diffusion
frequency &uv = &o'/h.

The quantity ~ =(fkv, —a&)
= k(fv„-—v,) resembles

both the inversion and detuning parameters of a
laser oscillator. It is more natural to the spirit
of our calculation than the parameter y =1
—f(v~/v, ) =-n. /&u used by White. ' Here v, =&a/k

is the self-consistently determined velocity of the
sound wave, which may differ somewhat from
(c/p}"'. The electron drift velocity v~

-=p. 8, = -pE,
defines the +x direction. Finally, the constant
b =ek/e is useful, since bU has the same units
as E.

sion" as well. (This is described from a different
point of view in Ref. 2).

—D,'=-p, [qn E, —fEOD~]+ f&„D,'"; (2&}

second order:

D,' = ——p, [qnoE, —fE,D,' —fE D,') +fa)„Dg';

third order: (28}

D,'=-p—. [qn, E, —fEOD,' —fE,D,'9x

IV. NONLINEAR THEORY

A. The Matter Equation

The nonlinear theory proceeds by solving the
matter equation (8) for increasing orders of the
perturbation expansion [Eqs. (1'l} and (18)]: first
order:

B. Linear Results —fEm Di)+ fg)„D,"'. (29)
Solving (22) and (22) and substituting in the

phase-amplitude equations (14) and (15) gives the
familiar results" for the linear gain a, and the
operating frequency &o (Fig. 2):

Actually these equations are valid for any number
of acoustic modes, and the nonlinear bracketed
terms of Eqs. (28) and (29) mix the various modes
of the acoustic field in the general case. We first

=-'PQ
a'+((u, +h)' '

( ),~ zP+h((u. +h)
n'+ (&u, + h)'

(24)

(25)
(a)

cu/2 Q

( n/a)--2

((u, —(u}-n = (fv, —v, ) k, (u, —y„; (26)

however, 6 is more than the detuning parameter:
it represents the source of the "population inver-

where we have used 0 = (c/p)' 'k = ~ and 8 =e'/ec
on the right-hand sides of (24) and (25). For CdS,
the electromechanical coupling constant a' = 0.018.
The linear gain reaches its maximum value for
operation at the frequency &u = (e, u&v}"' in the
absence of special boundary conditions or ex-
ternally imposed losses. 4

These expressions are formally similar to those
obtained for a classical laser, ' especially for
h-0. Gain exists for 6&0, or for L greater than
some threshold ar if the cavity loss -~/2Q x0.
The frequency cu is pushed toward the value
Q(1 +-,'8). The Lorentzian factors are reminiscent
of L(~, —~) =1/[(&u, —&u)'+y,',], which appears in
the laser formulation, where &u, = (e, —e,)/5 is the
frequency difference between the upper (e,) and
lower (e,) energy states of the two-level atoms,
and y„ is a phenomenological decay constant char-
acterizing the transition. This suggests the cor-
respondence

I I I I I I I ) I I I

TH I 3 5 ~c

(b)

5 c

FIG. 2. (a) Linear gain 0. for negligible diffusion
(h = 0). For electron drift velocities ez exceeding the
velocity of sound v~ the inversion parameter 4, = (fr~
-v~)» 0, and the acoustic wave can be amplified. How-
ever, finite cavity losses Q/2Q) & 0 may increase the
threshold above 4= 0. For CdS, 2& = 0.018; the di-
electric relaxation frequency co~ =qn Op /e depends on
the conductivity of the sample. (b) First-order shift
a=co —0 in the operating frequency u(h=0). For a
fixed wave vector k', this corresponds to the velocity
of sound increasing away from 4 = 0; the maximum
operating frequency is Q(1+2& ), where 0 = (c/p) + A .
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consider the second-order matter equation (28)
for a single acoustic mode.

B. Second - Order Calculation

The second-order terms of (28) correspond to
products of the first-order forms; by simple trig-
onometry these can be expressed in terms of the
equivalent functions:

sin(2kx —2rut}, cos(2kx —2rut), 1. (30)

Since translations of the whole rod are excluded,
and since acoustic waves of all frequencies except
~ are suppressed in this single-mode calculation,

U, =-0. However, no such restriction exists on

E (x, t) =-S,(t) sin(2kx —2u&t)

+C,(t) cos(2kx —2&et).

The dc electric field is E, by definition.
Using these forms, the second-order matter

equation

E,' =-&u,eE,' —fv~eEg +tifE,'(eU; +eE,')

+pfE, (eUi" +eEi')+ fS)„&EI"

has the solutions

(32)

pfk 2b, (bUSi+2C, S,) —(iu, +4h)(bUC, -S~i+C'i)'-
2 4b, '+ ((o, + h)' (33)

p fk 2b(bUC, —S~i+C~i)+(iu, +4h)(bUS, +2C,S,)2-
2 4b'+ (iu, +h)' (34)

C. Third - Order Calculations

Proceeding to third order (29}yields the matter
equation

e—U,"+e—E,' = eiu, E,-' —fv~(eUi" +eE3')

(n, &u, )bU, +(-', tifk}[Mb, —N(&o. +h)]
a*+((u, +h)'

-[6 +h(&u, +h)]bU, +(~pf k) [M(cu, +h) +Nb]
n, '+ ((u, +h)'

(39)

(40}
+ p,fe(E,'Em+E, Em')+y, fE,'(eU,"+eE,')

+pfE, (eU,"+e, E,")+fS„(eU3'" +eE3")

since U, =0 for this single-acoustic-mode calcula-
tion. The nonlinear terms consist of products
with amplitudes E,'U, and E,'E„etc., and thus
may be represented in terms of a set of functions:

sin(3kx —3&ut), cos(3kx —3~t),

sin(kx —&ut}, cos(kx —&A};

Since

(36)

sin(38) sin(8) d 8 = 0,
~ ~

0

sin(8) sin(8) d 8 = e,~ ~

0

etc. , only those third-order terms which oscillate
like the last two functions of (36) will eventually
contribute to the phase-amplitude equations (14)
and (15). Thus we need only consider the third-
order forms

U, (x, t) = U, (t) sin(kx ~t), — (37)

E~(x, t) =S,(t) sin(kx —&ut) +C~(t) cos(kx —et).

(38)

where

M=S~(C, —bUi) -CeS„
N = CI (C, —b U, ) +S~S,.

(41)

(42)

A. Calculation for h = 0 (No Diffusion)

Ignoring the effects of spatial diffusion (G„=O,
h =0) dramatically simplifies the algebra, but
produces results of doubtful relevance to real
situations. " The solutions of the first-, second-,
and third-order matter equations become

S, = «o,(t,)bU„

C, =-a (ti)bUi,

(43)

(44)

S.= (ltif k) &'~.(4~'. —2&*)(&,}'(t,)b'U'„(45)

V. SELEC.TED CASES

One can proceed by substituting (33}, (34}, etc. ,
in (41) and (42), then into (39) and (40), and finally
into the phase-amplitude equations (14) and (15};
however, the algebra is too protracted and com-
plex to justify an explicit presentation of the
general solution. It is more instructive to discuss
a few special cases.

Substituting in (35) eventually yields C = (2 tif k) &&',(~', —5&')(&i)'(t I)b U' (46)
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S, = L&u, (C,)bU, + (-,')Lfk)'t), &u,

x (3rd —srdsP, -12',*~4+&o',}(4,)'(g.,}b'U', ,

(4V)

c, = -f"(c,)bU, + (-'uf k}'&'~*.

x (10t)4+10gaa&s 6&F4}(&~)4(& )bsUs

where the Lorentsian factors (f,) and (4,) are
defined by

g, =(a'+uP) ', ps=(4a'+(o', ) '.

(48)

(49)

x (2)tfkb)'&u, t) (-2t),s + sg'uP,

+ 12''(u', —~',)((,',}'(g,)U', (so)

~=n+o+gU'=fl+(-, 'M) ~*(g,) -(-,'M)
x (-,')tf kb)'~~'(10tt4 +10''co', -6~',)
x (il,)'(4,)U', (sl)

where the intermediate forms follow the notation
of Eqs. (81}and (89) in Ref. 9.

The net gain a —PU'(t) is plotted in Fig. 3 as a
function of the inversion 6 for several levels of
acoustic intensity 1(t)= U'(t) [measured in units
of —,'x 0, ar„and a = (2ru, /ttf kb)', respectively]. The
results are seen to be unrealistic, especially
near threshold, where P is negative, and the third-

In the absence of cavity losses (Q=~}, the phase-
amplitude equations (14) and (15}become

U =aU pU'—=(-,'x*a) ~~(4,) U -(-.'s'fi)

order terms add to, rather than limit, the linear
gain. No real steady-state acoustic amplitude
U =(I„}'"=(a/P)"'exists for these values of
6 [Fig. 4(a}]. The frequency shift is similarly
pathological [Fig. 4(b)]. These instabilities dem-
onstrate that diffusion effects must not be ne-
glected, especially near threshold. Realistic
calculations must allow electrons to diffuse from
regions of high negative charge once the acoustic
amplitude becomes large enough to "bunch" them
considerably. This becomes particularly impor-
tant for electrons traveling along with the acoustic
wave at velocities v~ -v, .

S, = n.(u, (L,) bU„

C, = -(~'+2er",)(L,) bU„

S, = (-,
'

)Lfk) (u, (20(u4 + 156'(u', —2i),4)

x (L,}'(L,}b'U,',

(53}

(54)

C, = -(-,')Lf k) ~&a', (8uP, +11'')
x (L,}'(L,) b'U,', (ss)

B. Calculation for h = u,

We now include diffusion effects by setting the
diffusion constant S„=&oJfk', which is equivalent
to considering the special case 0 = (&o,&un)" '

, in which the linear gain a is a maximum. 4

The solutions of the first-, second-, and third-
order matter equations become

0.5

0.4 r
a

/ 40

z 0.2
C9 /

/
/

I
I i )

.2 I.4

O. I

0 0.2 0.4 0.6 0.8 I.O I

/QJc

I I I I

t.6 1.8 2.0 2.2

FIG. 3. Net gain as a function of b, for the diffusionless case (co&= ~, h =0). The first-order gain curve becomes dis-
torted (dashed lines) as the acoustic intensity I(t) =U2(t) increases; once the net gain becomes zero, steady-state opera-
tion ensues. The solution is nonphysical near 4=0 (dotted lines), demonstrating that diffusion effects c~yinot be ignored
(see text). The gain is plotted in units of /st(i; f(t) is presented in units of a = (2cvgyfkb)t.
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(a)
20.
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I
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I
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h=O

„(b)
1.0
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I

3
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z(t)= z„
I(t)=0

Q

0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
6 /QJc

FIG. 4. (a) Steady-state acoustic intensity I„in units of a = (2ugpfkb) as a function of the inversion 6 for the diffu-
sionless case (co~ = ~, h =0). The expression diverges near A=0.28co, ; thus there is no steady-state solution for small
6 (see text). (b) The frequency shift (co -Q) as a function of 6 for the diffusionless case. Nonlinear contributions re-
sult in frequency pushing or puning depending on the value of the inversion D. The steady-state frequency shift (I=I»)
diverges near threshold. The ordinate units are gK Q.

(a) )~

(b)

I 500. -

IOOO. -
CO

500. -
O
Z,'

O 0
CL

I I

0 0.2 0.4 0.6 0.8 I.O I.2 I.4 I.6 I.8 2.0 2.2
6/cu, = jm

FIG. 5. Steady-state acoustic intensity I» and the dimensionless polynomials E(m) and G(m) as a function of the inver-
sion 6 for the special case h=1 [or Q= (~,wD) = 4lmax], in which diffusion effects are included. E(m) and G(m) are
balanced by the Lorentzian deno~~~ators (m + 4)3(4m+ 25) to produce a rather constant I» for 0 & 6&1.5m~. Notice that
G(m) is always positive, and I» does not diverge near threshold. For very large values of A, fifth-order terms can no
longer be neglected. I» is plotted in units of c = (2',/pf kb) .
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S,='",(L,)bU, —{,'q-fk)'

x a(u', G(m)(L, )'(L,)b'U,',
C, =-(a'+2(v', }(Lz)bU, —(-,'Pfk)'

xuP, E(m)(Lz)4(L, ) b'U,',
where

G(m) =256+316m+4Vml 4ms

E(m) =240+176m —83m' —28m'

are polynomials in m=- ~,'/e'„and

L =(a'+4~') ' I, =(4s'+25aP) '

(56)

(5V)

(58)

{58)

(60)

ln &e absence of cavity losses (Q =") the phase-
amplitude equations (14) and (15) become

2 m+4

a*Q (a/(o, )G(m),
( )

2 a(m+4)'(4m+25)

KIQ m +2
u -0+cr+(U 0+

E(m)
2 a(m+4) (4m+25)

(62)

where a =(2&v,/p fkb)' and nz =az/uP, as before. The
polynomials E(m} and G(m) and the Lorentzian
denominators (m+4)'(4m+25} are plotted vs ~/&o,
in Fig. 5(b). G(m) is always positive, unlike the
corresponding gain polynomial in the diffusionless
case (50), which is negative for small b, . Notice
that E(m) still charades sign, i.e., frequency push-
ing becomes frequency pulling for applied voltages
sufficient to give A & 1.45~, . The Lorentzian

denominators (m+4)'(4m+25) counterbalance the
large values of E(m) and G(m) for moderate val-
ues of ~; thus the steady-state acoustic intensity
I =n/6 is a rather flat function of the inversion
[Fig. 5(a)] for a& 1.5u&, .

The net gain a —PI(t) is presented in Fig. 6 (in
units of —,'a Q) as a function of b, for several acous-
tic intensities [measured in units of a=(2', /pfkb)'].
As the acoustic intensity increases from 0 to 6a,
the linear-gain curve (I =0) becomes increasingly
distorted by third-order terms. A net gain of zero
means that steady-state operation has been attained
for that value of ~ [compare the gain curve for I
=6a with Fig. 5(a)]. Since G(m) is always positive,
the net gain is always less than or equal to a, and
is we11 behaved near threshold; although fifith-
and higher-order terms may become important
for ~» &o, [Fig. 5(a)]. Notice that the maximum
gain is less than in the diffusionless case g =0)
and occurs at higher values of A. In practice, 6
is varied by changing the external voltage and
thus v.

Figure 7 presents the total frequency shift
(&u-Q) for several levels of acoustic intensity.
The vertical scale {measured in units of —,'x'Q)
has been greatly expanded. The steady-state
frequency shift (attained once I =I ) also re pre
sents the maximum value of (&o -Q) for a given
b, , and is well behaved near threshold. Notice
that the qualitative behavior for h&~, is similar
to the diffusionless case (Fig. 4), although the
crossover from frequency pushing to frequency
pulling occurs at higher values of b/&u, . Notice
too that the presence of diffusion (km 0}ensures
(&u-Q)e0 for a=0, even in the case of linear
theory~ (I =0).

—I(t) =0

~ 15
CQ

I0
.10

K

.O5

rsor

0 0.2 0.4 0.6 0.8 1.0 1.2 I'I 1.6 1.8 2.0 2.2
5, au

C

FIG. 6. Net gain as a function of 6, for the case k=1 or 0= (co~coz) / . As the acoustic intensity I(t) increases, the
net gain is reduced until steady-state operation is approached. Once I (t) =6a, for example, the net gain has become
zero (steady-state operation), for all acoustic amplifiers with inversions 8 ~1.leo~. Note that there is no instability
near threshold as in the diffusionless case {Figs. 3 and 4). The orA~~te units are ~4 9, and a = (2car~/pfbk) .
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VI. THE BACKWARD - TRAVELING WAVE

U„(x, I) =U„(I)sin(kx+&ut)

E„(x,t) =S„,(t) sin(kx+et)

+C» cos(kx+ rut),

(63)

where k and co, are positive and have the same
value as in (20) and (21) but where U»oU„etc. ,
since the material is nonreciprocal.

The matter (8) and wave equations (13) now yield
the linear gain

Throughout this presentation we have considered
only a single forward-traveling wave (20). We
find that it is amplified for fv, &v, and attenuated
for fv„&v, (Fig. 1); and that the acoustic intensity
approaches a steady value l„(b,) once third-order
nonlinearities are taken into account (61). We
now consider the first-order backward-traveling
waves for the same applied voltage:

ples). Then (=-(~+2&v) dominates &a, in the
denominator of (65) and if h-&u,

n, = -(-,'HQ) (u, /(a+2(o), (66)

U(t) sin(kx —&ut)+U, (t) sin(kx+et)

= 2U(t) sin(kx) cos(et) (6V)

can be maintained. This case is particul. "eely
important in light of recent experiments.

The backward-traveling component contributes
negligibly to frequency pulling in the case h, b,-~,« ~ and usually 0, =-,'K'Q. Corresponding
higher-order expressions follow from the sub-
stitution ~- $ in (33), (34), (39), and (40), etc.

yielding a backward loss n, = -(-,'x') &o, = -0.005&v,
which is considerably smaller than the forward
gain (24), since &u, «Q. In such cases, applying
oscillator boundary conditions (reflections at
x=0, L) gives U, -U, with the slight backward
losses compensated by forward gain; and a good
approximation to a standing wave:

n, = (-,'x'fI) ]~,/[('+((u, +k)'], (65)
VII. CONCLUSION

which is equivalent to (24) with the substitution
of $ =-k(fv~+v, ) for b, , where v„still represents
the unchanged positive (+x) electron drift velocity.
Notice that, unlike b, , $ is never positive; thus
the "gain" a, always represents an attenuation of
the backward-traveling acoustic wave U, . This is
reasonable, since the acoustic wave is "bucking"
the electron flow (negative-momentum transfer).
Actually n, is small in many cases of practical
interest, e.g. , for sP, «&u' (high-resistivity sam-

We have formulated the problem of the acousto-
electric amplifier in analogy with laser theory.
Solving for a single acoustic mode to third order
gives nonlinear solutions for the gain and fre-
quency pulling. We find that diffusion effects
must be included, especially near threshold.

Current experimental work supports the philos-
ophy of this calculation. "' Hopefully, future
experiments will help determine to what extent a
single-mode description is valid, "and will search
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FIG. 7. Total frequency shift as a function of 6 for the case h =1 or Q= (co, co~), . Frequency pushing becomes fre-
quency pulling near 6 =1.4'; the frequency shift is well behaved near threshold. Note that err —A&0 at 6 =0, even in
linear theory (I=O), if diffusion effects are included [h&0 in Eq. (25)]. The ordinate units are gK Q.
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for effects like the shift from frequency pushing to
frequency pulling at high h. We are currently
applying similar methods to the multimode case"
to provide a firm theoretical basis for recent
observations of acoustic mode locking.
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~SThe extra spatial derivative ( ') is retained to avoid
introducing magnetic effects; although 7'xII= D+ J&0,
its spatial derivative is zero as is obvious from the
first part of Eq. (7).

~6White (Ref. 4) uses the spatial formulas -0. x to de-
fine the linear-spatial-gain coefficient e . We use the
temporal form U- e~~, whose linear-gain coefficient
0, differs from u by a factor of -v„ i.e. e =u/v .

~TThis restriction will be relaxed in a future publication:
I. M. Asher, F. A. Hopf, M. O. Scully (unpublished).
Typically co&- 500 MHz. Since cu -50 MHz and co - 1
MHz in many experiments, diffusion effects cannot be
neglected in practice (h =u /coD u~).

~~In practice, one might insert electronic filters in the
external circuit of a traveling-wave acoustic amplifier
(Fig. 1), or make use of the wide-mode spacing in thin
standing-wave CdS acoustic oscillators, to realize
single-mode operation.


