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The normal-fluid viscosity of superfluid He* has been calculated for temperatures below about 0.6 °K.
The calculation assumes that the dominant scattering mechanism is the three-phonon process in the
first order of perturbation theory. This contrasts with the previous calculation of Landau and
Khalatnikov, who assumed a second-order process involving four phonons. The theory is compared with
the experiments of Whitworth on heat flow through tubes. Good agreement is obtained, as regards both
the magnitude of the viscosity and its temperature dependence.

I. INTRODUCTION

In this paper I present a calculation of the nor-
mal-fluid viscosity n for He* in the temperature
range below 0.6 °K. Measurements of the viscos-
ity in this temperature range have been made by
Whitworth.! A viscosity mean free path A, may
be defined by

TI=§'PnCerxpt ’ (1)

where p, is the normal-fluid density, and ¢, is the
the phonon velocity for small momentum. Whit-
worth found that

Aexpt =3.8x10"37"*2 ¢cm . (2)

At temperatures below 0.6 °K the thermal excita-
tions in helium are almost entirely phonons. The
mean free path of the phonons is limited by three-
phonon collisions, these occurring at a rate which
is proportional to 7°. At first sight, this seems to
be in reasonable agreement with Whitworth’s re-
sult. More careful consideration reveals a diffi-
culty, however. The three-phonon collisions are
small-angle collisions,? whereas the mean free
path relevant to viscosity must be concerned with
large-angle processes. To correct for this, it is
necessary to multiply the scattering rate by a fac-
tor proportional to a*, where a is the angle of a
typical collision (see the Appendix). The collision
angle is determined by the phonon dispersion re-
lation. Suppose the relation between energy € and
momentum p is exactly linear, i.e.,

€=cob . (3)

Then it is easy to show that the collision angle in
a three-phonon process is exactly zero. If, how-

8

ever,
€=cop(1+g), 4)

where g is some function of p, which is positive
and tends to zero as p -0, the collision angle is
finite, and is of the order of

a~gi” | (5)

We therefore have the interesting result that the
magnitude of the viscosity 1 can be used to esti-
mate a and hence the quantity g in the dispersion
relation. Moreover, the femperature dependence
of a provides information about the momentum de-
pendence of g. This is because the momentum of
a typical thermal phonon is proportional to tem-
perature.

In this paper we investigate theoretically the tem-
perature dependence of the viscosity, assuming
various forms for the phonon dispersion relation.
Our starting point is a formal expression® for the
viscosity in terms of the eigenfunctions and eigen-
values of the phonon collision operator. We de-
scribe the calculation of these eigenfunctions in
Sec. II. In Sec. III we compare our results with
Whitworth’s experiments, and in Sec. IV discuss
what inferences can be made about the phonon dis-
persion relation.

II. CALCULATION OF THE VISCOSITY

Let the collision term in the linearized Boltz-
mann equation® for phonons be written in the form:

9 -
<_11‘L> =f C(f), p')n,, dTpl . (6)
8t Jeon

Introduce the symmetrized collision operator
C(,p’), defined as
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€@, 5)=C®, pnp (ns + /g (mg+ DI/ (D)
where #) is the equilibrium distribution function,
ng = (8T - 1)71 . 8)

C(p,p’') is symmetric® with respect to interchange
of pand p’. We define eigenfunctions ¥, (p) and
eigenvalues \; by

JE@®, ") ®) dry ==, ¥, (D) . (9)

Since € only depends on the magnitudes of f) and
P’ and the angle between them, the angular part of
¥, (p) must be a spherical harmonic Y, (6, ¢). We
therefore label the states, as in spectroscopy, by
S,P, D, etc., depending on the value of I. It can
be shown that, because energy is conserved, there
is one S state with eigenvalue zero. The eigen-
function for this state is?

3,5(B) = (B/CpT)/? (M ? (n3+1)*/2 (10)

where B=1/k,T, C is the specific heat per unit
mass, and p is the density. We define the radial
part S, (p) of the eigenfunction ¥,5(p) by setting

his(®) = Yoo(6, 9)S,(P) (11)

and therefore,
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S, (p) = (4nB/C pT)*? e/ 2 (n3+1)2/2 . (12)

The D states are of particular interest in regard
to the viscosity. Let the nth D state have eigen-
value 1, and eigenfunction

wnD (5)= Yzm(er ¢)D,, (P) . (13)
Then it can be shown® that the viscosity 7 is given
by

2
CpT [ p € ]
Z <o D (14)

Here, the sum is over all D states. The fivefold
degeneracy of the D states has been taken into ac-
count in deriving this result. Thus, only one of the
five D states with a given radial quantum number

n is to be included in the sum. The matrix ele-
ment is defined by

s,

The calculation of 1 reduces, therefore, to the
problem of finding the eigenfunctions and eigen-
values of the D states. Consider first the form of
the collision operator. The matrix element for

pae

€ ap

p-1 [ .12 2= D, (018" b -

phonon-phonon scattering has been derived by

Landau and Khalatnikov.® Using their result, we
find, after a straightforward perturbation calcula-
tion, that

[ €y, 02)f(Py) & @a) d7y, = =[2m2C, (g + 1)2/p*] [ [ pypabsf B2)f (D) d, dbs

x {4[ o ®,) - ¢(,) - $(s)] 5 (B, - D,

'-I.)s) 6(e,—€3—¢€y)

+¢ (131) + ‘P(I;z) - ¢(133)] 5 (131 +-§z ‘-133)5 (€, +€,- €y ‘ ’ (16)

where
f®)=(n3) 2 (ng+ 1)172 (17
9
uosf—o ?gﬂ y (18)

and ¢ () is an arbitrary function of p. In deriving
this result, we have simplified the form of the ma-
trix element by assuming that the angle between

the momenta of the colliding phonons is small, We
have also assumed that the phonons have long wave-
lengths. This allows us to approximate the
Griineisen constant by u,, its limiting value for
small p. In the same spirit, we may assume, for

T

the purposes of estimating the magnitude of the
matrix element, that

€=Cyp . (19)

We discuss the uncertainties introduced by these
approximations in Sec. IV. We must, of course,
keep the complete form of the dispersion relation
[Eq. (4)] for calculating the angle of scattering.

Consider now the eigenvalue equation (9). Letp
be in the z direction and let ¥, (p) be a D state with
magnetic quantum number zero. Then if

D,(p)=f()d, ®) , (20)

we find that the eigenvalue equation (9) becomes
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[ 202 coluo+1)2/0h*] [ [ pbatuf (0 f(bs) dDy ds
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|oo

x {4[d, ®) - d, (p;) P,(6,) - d, (0 P{69)]6(D ~ D, ~ D)6 (€ — €5~ €5)

+[d, @) +d, (D)P(8,) - d,(p)PA6)] 5(p "'.53 ‘53)5 (e+e, “s)g =N, pf B)d, (P) . (21)

6, and §, are the angles between the z axis and p, and f),, respectively. The geometry of the collision is
shown in Figs. 1(a) and 1(b). P,(6) is the Legendre polynomial for I =2, normalized so that P,(0) =1,
After performing the integrals over the directions of p2 and p,, we obtain

{coluo + 1)*/4xphi* }ffpg dp,pidps f (D.)f (By) i%[dn (?) = d, (D)Py(6,) — d,, (P5)Py(65)] 6 (e — €, - €3)

+[d,(p) +d, (b2) Pi(0,) - d,(0)Py(6,)] 8(€ +€; - €} =251 (D) d, B) .

It is more convenient now to consider f and d, as
functions of energy rather than of momentum.
Next, we use Eq. (19) to convert the momenta
outside the square brackets into energies. We may
then perform the integral over €;. Finally, we ex-
press the result as

JA(e,e,) D, (€;) €, de; =2, p D, (€)e (23)
where

A(e, €)) =T(€)b (€ - €,) — Beey(e - €,)*f (| € = €, | )P,(6")

+Bee€,y (€ +€,)°f (e +€,) P, (") (24)

T(e) =[B/e f(€)] [ (e = €)* €3f (|e — €| ) f (€5) des

-[B/ef(e)] f (e +€3)2€:f(€ +€5) f(€5) dey
(25)

B =(uy+1)*/4nphi*ct , (26)

(a) (b)

FIG. 1. Geometry of the collisions.

(22)
, _D€) +P%(e)) - P?(le — €, 1)
cosé’= 21>(2€)1>(€2) at (27)
o _De+€g) —pP(e) - p*(e)
cosd 2leple) ' (28)

The lower limit of the range of integration is zero
in each case. The upper limit is restricted only
by the requirement that 8’ and ¢’’ be real.

The physical significance of I'(¢) is the recipro-
cal lifetime of a phonon of energy €. We can make
the result for I look more conventional by writing
it as

T(e) =3B fo ® €2(€ - €5)?[n%(eg) +n°(€ — €5) +1] deg

+Bf

€3(e +€,)2 n%(ey) - n’(e +€y)] deg ,(29)
where
n(€) =(e*MsT — 1)1 | (30)

The first term comes from processes in which a
phonon of energy € decays into two phonons of en-
ergy €; and € — €;. The second term arises from
collisions of a phonon of energy € with a phonon of
energy €;. Although in this case we have explicitly
indicated the limits of integration, it is to be un-
derstood that the range is still limited by the re-
quirement that 8’ and 6’’ be real.

We may now find the D-state eigenvalues and
eigenfunctions from Eq. (23). Consider first what
happens if the dispersion relation is linear, i.e.,
if Eq. (19) holds exactly. Then from Eqs. (27) and
(28) we find that

P,(6") =P,(6'") =1. (31)

Suppose we try to find an eigenfunction ¥, (p) with
radial part:
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D,(e)=€f(e) . (32)

This is equivalent to setting d,(€) =e. This choice,
together with the result (31), leads to the vanish-
ing of the expressions inside both square brackets
on the left-hand side of Eq. (22). Hence, (32) is an
eigenfunction, and its eigenvalue \,, is zero. Any
other radial function must be orthogonal to D,(e).
Thus, all of the other radial functions must have
at least one node. It follows that for the other
eigenfunctions, the expressions inside the square
brackets within the curly brackets in Eq. (22) are
of the order of d,(¢). The order of magnitude of
the eigenvalues of these eigenfunctions must be

B(k,T)® .

If the dispersion is now allowed to be finite but
small, the eigenfunction D,(e) will have a small
but finite eigenvalue. The eigenvalues of the other
eigenfunctions will be changed only slightly. We
therefore expect that the 1D state will dominate
the sum (14) involved in calculating the viscosity.
This dominance is made more certain because the
radial functions S,(e) and D,(€) are very nearly
equal, Thus

b oe [ b de ]
[31 €op Dn]“ D, € 8p D,|. (33)
But, if the dispersion is small,

AL

€ 9p
Hence we have

p de
[s.[2%|p.] = 2101 . (39

But this last matrix element must vanish by or-
thogonality for n #1.
The sum in Eq. (14) may now be simplified to
n=CpT/15),, . (35)

When the only excitations in helium are long-wave-
length phonons, it is easy to show that

CpT=3p,ck. (36)

Hence, if we define a “ theoretical” mean free path
by

n =% pncOAtheox ’ (37)
then
Atheor = 300/5 AJ.D . (38)
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Numerical calculations of Ay, were made by re-
placing the €, integral in Eq. (23) by a sum over
the set of points jAe, wherej=1,...,jmx . By
considering only discrete values of €, Eq. (23) is
converted to a matrix eigenvalue problem. Vari-
ous values of j,, and A€ were used. With jmx
>15 and a suitable choice of A€ (generally be-
tween 0.6k ;T and 1.25k,T), the results were
found to be independent of the details of the mesh
to better than 1%. A further check on the accuracy
of the calculation of A,, is described in the Appen-
dix,

III. COMPARISON WITH EXPERIMENT

We now have to decide on a form for the phonon
dispersion relation, The principal sources of ex-
perimental information are as follows.

a. Specific-heat measurements. Phillips et al.’
have measured the specific heat down to about
0.3 °K. They were able to fit their results by as-
suming

e=cp(1+7p? (39)

with ¢,=2.397x10* cmsec™ and y =4,1x10% cgs
units. In their analysis both ¢, and y were treated
as adjustable parameters. However, ultrasonic
measurements give®

€, =2.383%0,001x10* cmsec™ .

If the specific heat is analyzed using this value of
Co, One finds® y =8x10% cgs units. However, the
uncertainty in the data is such that values of y be-
tween about 6 and 10x.10% are not ruled out, It
should be noted that the specific-heat data are sen-
sitive only to the part of the dispersion relation
below an energy of around 2 °K.%°

b. Neutron scattering. Woods and Cowley*! have
measured the dispersion relation down to about
4°K energy. The phase velocity of a phonon is

c=e/p =cy(l+g) . (40)

Woods and Cowley’s results for ¢ are shown in
Fig. 2 as a function of ¢?, where

qa=p /% .

Their results show that for ¢ 2 between 0.4 and
1.0 A~2, ¢ is approximately given by

c=c,(A-Bg?, (41)

where A is between 1.1 and 1.2 and B is approxi-
mately 0.3 A%, This range of g corresponds to en-
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FIG. 2. Phonon velocity ¢ as a function of g%(q =wave
number). The experimental points are the measurements
of Woods and Cowley (Ref. 11). The solid line is from
dispersion curve C [Eq. (42)], using the parameters
listed in Table I.

ergies between 11 and 18 °K. For smaller ener-
gies the neutron results become too scattered to
provide useful information about g.

A simple form for the dispersion relation which
is consistent with the neutron scattering results
and the specific-heat measurements is

€ =c°p(1 +yp? :——:T'(%pg:—;,) .

For the moment, let us take ¥ to be 8 x10% cgs
units, and choose p, and p, to give the best fit to
the neutron data. A simple way of doing this is to
demand that Eq. (42) give the correct velocity ¢ at
¢*=0.4 and at 1,0 A-2, From Fig. 2,

(42)

Co.4=2.30x10* cmsec™!,
¢,=1.75x10* cmsec™! .
Then, we find

Pa=Fq,, Ps=Fqp,

where g, =0.5384 A~ and g, =0.3727 A-!, The
dispersion relation is plotted in Fig. 2, and the
small-p region is shown in more detail in Fig. 3
(curve C).

We have calculated A, and A, using this dis-
persion relation. A value of 2.84 was used for the
Griineisen constant.!? The results for the viscos-
ity mean free path are shown in Fig. 4 (curve C),
together with the experimental values. The theory
is in excellent agreement with the temperature de-
pendence of the experimental results. The magni-
tude of the predicted mean free path is about 20%
greater than the experimental values.

Since there is some uncertainty in the correct
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FIG. 3. Phonon velocity ¢ as a function of wave num-
ber ¢. The parameters defining these curves are listed
in Table I.

value for v, we have repeated these calculations
using ¥ =4, 6, 8, 10, and 12x10% cgs units. The
values of ¢4, and g5 are shown in Table I, togeth-
er with cm,, the maximum value of the phase ve-
locity. For ¢®>0.3 A~? the dispersion curve only
changes slightly as v is varied. Thus all of these
dispersion curves are consistent with the neutron
results, The small-momentum part of the disper-
sion relation is shown in Fig. 3, and the calculated
values of the viscosity mean free path are includ-
ed in Fig. 4.

IV. DISCUSSION

The comparison between theory and experiment
(Fig. 4) indicates that ¥ =10x 10% cgs units is the
best choice for the dispersion parameter. It is
not obvious, however, that the theory and the ex-

cm)

MEAN FREE PATH

04 0.5 0.6
TEMPERATURE (°K)

FIG. 4. Viscosity mean free path A as a function of
temperature. Solid lines are the results of calculations
using the dispersion curves A—E whose parameters
are listed in Table I. The dashed line is the Landau-
Khalatnikov theory. The solid circles are the experi-
mental points of Whitworth.
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TABLE I. Parameters defining the dispersion curves in Fig. 3.

37 Y co‘: C-tt qﬁ 5 Cmex
Curve (10°" cgs units) (10* cmsec™) (A ) (A 1) (10* cm sec 1)
A 4 2.30 1.75 0.522 0.537 2.433
6 2.30 1.75 0.533 0.433 2.450
C 8 2.30 1.75 0.538 0.373 2.464
8 2.31 1.75 0.551 0.388 2.469
8 2.30 1.76 0.537 0.368 2.463
10 2.30 1.75 0.542 0.332 2,475
E 12 2.30 1.75 0.544 0.303 2.484
periment are sufficiently accurate to clearly favor find

¥ =10x10% over y =8x10%, for example. Consid-
er first the uncertainties in the experiment. The
viscosity was measured by heat flow along a tube.
Corrections had to be applied to allow for slip at
the boundary,'® partial specular reflection of the
phonons, end effects, and the contribution of
rotons to the heat flow at the higher temperatures.
Despite these difficulties, a number of cross
checks on the data were possible, and the results
for the mean free path are probably accurate to
£20%.

There are a number of approximations in the
theory. Consider first the approximation of using
the long-wavelength small-angle limit for the pho-
non-phonon matrix element. If we attempt to go
beyond this approximation, we will find that
(uo+ 1)2 m Eq. (16) is replaced by a function of p,,
p2 and ps, Wthh will now appear inside the inte-
gral over p2 and ps. The error in this approxima-
tion is roughly of the same order of magnitude as
the difference between u,, and u,, the Griineisen
constant at finite p, which is defined by

%¢

=L
eap

U, =

Some information about how u, varies with p may
be obtained from the neutron scattering measure-
ments of Svensson, Woods, and Martel.!* They
measured the dispersion curves €,(p) at zero pres-
sure and €,,(p) at 24 atm. A very rough estimate
of the ratio of u, to , at p =0 can be obtained
from

ea(p"o)
€20~ 0)-€,(0~0) °

uy _ €24(0) — €(P)

Uy €,(0)

In the present context, we are most concerned with
momenta in the region where the phase velocity
has its maximum value. Phonons of around this
energy are able to be scattered in collisions hav-
ing the largest possible angle. For ¢=0.3 f&“, we

u,/uy,=08%0.1,

Thus, if we replaced u, by «, in the (u,+1)? factor,
the scattering rate would be reduced by between
15% and 40%. This would increase the theoretical
mean free path by the same factor. Ignoring the
finite angle between the momenta of the colliding
phonons introduces a much smaller error, of the
order of 1%. This error, if corrected, would also
increase Ay,,. Another uncertainty in the matrix
element arises from using € and c,p interchange-
ably in several places, The same approximation
is implicit in Eq. (36), and also occurs in the cal-
culations performed by Whitworth in determining
Acxpt from his data. At least some of these approx-
imations cancel one another. The total error is
probably 10%, or less, but could be in either di-
rection,

Uncertainties in the neutron data of Woods and
Cowley!! will change the values assumed for the
velocities ¢, , and ¢,. From the error bars in Fig.
2 we see that these velocities could be varied by
0.01 or 0.02x10* cm sec™* without becoming in-
consistent with the data. Variation of the velocity
¢, by these amounts has very little effect on the
dispersion curve for small p, or on the mean free
path. Changing ¢, , to 2.31x10* cm sec™! shifts
the dispersion curve for y =8x10% cgs units up-
wards for small p (see Table I). Ao is decreased
by 13% at 0.55 °K and by smaller amounts at lower
temperatures.

In their original papers on the viscosity of heli-
um, Landau and Khalatnikov®:!®* assumed that the
viscosity mean free path was governed by four-
phonon processes, these arising from the three-
phonon interaction in the second order of perturba-
tion theory. They had assumed that the dispersion
was “normal” in the sense that the group and phase
velocities at finite p were always less than ¢,. The
three-phonon process is then unallowed. While
their assumption about the dispersion must now be
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regarded as wrong, it is still possible that the
second-order process that they considered makes
a significant contribution to the scattering rate.
We think, however, that this is unlikely. Accord-
ing to their calculations, the viscosity mean free
path should vary with temperature according to
the law

A =AT ™.
Although they do provide an explicit expression
for the constant A in terms of known quantities,
they also admit that there is considerable uncer-
tainty in A due to the various approximations they
were forced to make. Their value of A gives a
mean free path 30% above the experimental value
at 0.6 °K and about six times A . at 0.45 °K (see
Fig. 4). The fact that the experimental results do
not have a 7~° dependence!® strongly suggests that
Landau and Khalatnikov have somewhat underesti-
mated the constant A, and that consequently their
process can be neglected below 0.6 °K. If the cor-
rect value of A is three times their value, the four-
phonon process would make a contribution of only
about 25% of the three-phonon process at 0.6 °K,
and only 5% at 0.45 °K. It would be interesting to
attempt a more accurate calculation of the mean
free path for four-phonon processes.

For phonons of energy above a critical energy
€., the three-phonon scattering rate vanishes.
This is because the conditions of conservation of
energy and momentum can no longer be satisfied.
The critical energy is approximately 8 °K but
varies slightly for the different dispersion curves.
The mean free path of phonons with energy greater
than €, will be limited by four-phonon processes.
We have ignored these phonons in calculating a, ,.
This was achieved by choosing jmax and A€ so that
the mesh of points used in solving the eigenvalue
problem had its upper limit below €,. The error
resulting from this approximation should be very
small, Even at 0.6 °K the fraction of the total en-
ergy of the phonon system which is carried by pho-
nons of energy greater than 8 °K is less than 0.5%.

One final assumption that should be mentioned is
that we have taken a particular analytic form for
the dispersion curve. We have not investigated
the effect of choosing other forms. It is clear,
however, that a low-order polynomial such as

€ =cop(1 +ap? - bp*)

will not give a good fit to the neutron data and the

|oo

specific-heat results., One could, of course,
choose any number of expressions such as

- 2 1-(p/p )‘)

€ =Co? (1 YT (0]

However, in the absence of any strong theoretical
arguments, choosing the dispersion relation (42)
seems simpler and most natural,

Putting together these pieces of information, we
can draw the following conclusions: (i) The theory
describes the temperature dependence of the vis-
cosity very well, (ii) Using the value y =8x10%
cgs units for the dispersion parameter gives
agreement in the magnitude to within 20%. (iii)
The combined uncertainties in the theory and the
experiment are such that one cannot determine a
definite value for y. The most likely value appears
to be somewhere between 8 and 12x10¥ cgs units.
The value of 12x10%, however, does not appear
to be consistent with the specific-heat results.

Finally, we note that measurements of the vis-
cosity under pressure would be interesting, The
specific-heat measurements of Phillips et al.” in-
dicate that the dispersion parameter y becomes
smaller under pressure. Thus the scattering an-
gle should decrease and the viscosity mean free
path should increase, Near the freezing pressure
the specific-heat measurements imply that the
dispersion curve is normal, The three-phonon
process should then be unallowed and the Landau-
Khalatnikov theory should apply, giving a mean
free path proportional to T-°,
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APPENDIX

If the dispersion has the form
€ =c,p(1+yp? (A1)
and yp?<<1, it is possible to calculate the eigen-

values in the series A;;,\\p, etc. as a power se-
ries in the parameter

Y(kaT/Co)z .

The lowest nonvanishing term is'’

X gy = (135/10120%)(1 = 1) L(1+ 1)(1+2) [v*(up + 1)2/p%] (B T/c)° [ ' 54(1 = 2)* J” dyy™ esch® 3y coth xy

=17433 (1-1) L(1+1) (I +2)[v%(uy+1)2/pli %] (R T/cy)® . (A2)
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We have confirmed that for sufficiently small T
(T <0.1 °K for y =8 X10% cgs units) the results ob-
tained numerically agree with this analytic result.
It is very interesting to consider the way the
analytic result depends upon ¥ and 7. The colli-
sion rate T is proportional to T5. For the disper-
sion law (A1) the collision angle is of the order of

a~(kgT/covl. (A3)

Hence, we may interpret Eq. (A2) as suggesting
that

Ap~Tat. (A4)

At first sight this is surprising, since one might
expect

A\p~Ta?. (AB)

A naive argument leading to (A5) is the following.
The small-angle collisions may be considered as
a random-walk process in angle space. After N
collisions the direction of a phonon will have
changed by an angle

6~avVN,

One therefore needs a number of steps of the order
of

N, =m%/4a?,

before the direction of a phonon will have changed
by an angle of 7. Hence, the effective large-angle
collision rate is

Xp~T/N,~Ta?.

This argument is fallacious. To see this, consid-
er a gas of phonons that have a net drift velocity
in the z direction. The diffusion model, in which
each phonon’s direction follows an independent
random walk, leads to the inescapable conclusion
that after sufficient time the distribution of phonon
wave vectors is isotropic, But this clearly vio-
lates conservation of momentum. The key point,
of course, is that when a phonon is deflected in
one direction in a collision, another particle must
be deflected in the opposite direction. Thus the

“ diffusion” is highly correlated and proceeds much
more slowly than the simple picture would predict,
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