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The response of a system of coherently pumped atoms to weak electromagnetic perturbing fields is
discussed in general terms. The pump field is prescribed, and is assumed to propagate unattenuated
through the medium which the (identical) atoms comprise, exciting a particular transition through
either electric or magnetic dipole coupling. The perturbing field, which is assumed to act through
electric dipole coupling, is allowed to be the {resonant) field emitted by the atoms, a weak external
field absorbed by the atoms under resonant conditions, or a resonant or nonresonant wave propagating
through the pumped medium. All of these cases are conveniently described within the same general
framework, based on an analysis of the {single-atom) two-time dipole-moment correlation function. This
function contains nonstationary components as well as stationary ones, owing to the time dependence
imposed by the pump field. We are accordingly led to introduce a time-dependent linear susceptibility,
which is inhomogeneous and anisotropic, due, respectively, to the variation of the pump phase within
the medium and the preferred direction established by the pump-Geld polarization. Such disparate
efFects as parametric frequency conversion, emission- and absorption-line splitting, and time-dependent
modulation of resonant emission and absorption functions in optical-pumping experiments emerge
naturally from a single unified formalism.

I. INTRODUCTION

In a wide variety of physical processes, atoms
which are driven by a strong coherent "pump"
field interact weakly at the same time with fields
other than the pump field. These may be either
the fields emitted by the atoms or fields incident
upon the atoms from external sources. Processes
in the latter category oecux in the ac Stark effect, '
optical-pumping and double-resonance experi-
ments, ' and, more generally, any experiment in
which the effect of the pump field is monitored by
observing the change it produces in the absorption
of a weak "probe" or "signal" field. (An inter-
esting example of the latter is the phenomenon of
saturated absorption, ' in which the pump and signal
fields induce resonant transitions between the same
pair of atomic states. ') The emission of radiation
by strongly driven atoms has been discussed in a
number of recent publications, both for the case of
transitions between the same yair of states as are
coupled by the pump field' ' and for the case of
transitions between one of these states and an
undriven state of the atom. ' Finally, one may
mention as processes in this same general eate-
goxy the nonlinear processes of stimulated para-
metric amplification and frequency conversion of
light waves. '

The purpose of this paper is to analyze in some
generality the time-dependent electromagnetic
properties of a pumped medium consisting of
identical stationary atoms in the case in which the
pump field oscillates at a frequency near reso-
nance for transitions between a particular paix of

atomic states. The pump field is treated as a
prescribed classical function, and is assumed to
pxopagate unattenuated through the medium. The
fundamental processes both of emission and ab-
sorption are described in a unified way in terms
of the correlation function which represents the
product of the atomic dipole moment at two dif-
ferent times. An important advantage of this
method of formulation is that of enabling one to
carry out the fundamental calculations without
explicit reference to the perturbing (emitted or
incident) fields, since the correlation functions
are evaluated in the presence of the pump field
alone.

Because the atoms are driven throughout the
process in question by a time-dependent field,
their electromagnetic properties are described by
nonstationary functions as well as by stationary
ones. The stationary functions which describe the
emissione' and absorption" of radiation by a
single atom have been discussed previously within
the general fx amework adopted herein. The analy-
sis of the stationary functions is developed in this
paper from a somewhat more unified point of view,
and is extended to include an evaluation of the
dielectric susceptibility. In addition, the non-
stationary functions which describe both emission
and absorption of radiation are evaluated. In
certain cases, it should be emphasized, a sin-
gle process requires an evaluation of both sta-
tionary and nonstationary functions for its com-
plete description. In the frequency splitting (sub-
harmonic generation) of light, for example, the
intensity of light at either subharmonic frequency
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is given by the familiar stationary cross-spectral
density, while coincidence counting rates for the
same process depend upon the value of the non-
stationary correlation function which describes
coherent photon-pair emission.

It is found that the absorption of radiation can be
fully described by introducing a time-dependent
linear complex susceptibility. The susceptibility,
which has components oscillating at harmonics up
to the second of the pump-field frequency, is both
inhomogeneous {due to the variation of the pump-
field phase within the medium} and anisotropic
(due to the preferred direction of the pump-field
polarisation}. Such physically different effects
as the parametric frequency conversion of light
waves and the time-dependent modulation of emis-
sion and absorption functions in double-resonance
experiments are thus naturally described within
the same general formalism.

The description of double-resonance experiments
is formulated in terms of a coherent optical field,
which leads to solutions of rather more complex
and interesting structure than does the more com-
monly considered broadband field, the results for
whih can be obtained directly from those pre-
sented here. In contrast to the broadband case, it
is found that for a coherent optical field, oscil-
lating components in the absorption rate survive
even in the limit of intense pump fields, where
the pump-field-induced mean dipole moment van-
ishes. Similarly, while the gotgl emission rate
has an oscillating component only for moderate
pump-field intensities, the emission process is
characterized even in the limit of intense pump
fields by appreciable time-dependent correlations
bebveen the fields emitted at different frequencies.

In Sec. II the atomic dipole-moment correlation
function is introduced and the basic method of
evaluating it is described in general terms. The
evaluation is then carried out in Sec. III under the
conditions imposed by a harmonic resonant driving
field. Section IV is devoted to an analysis of the
emission process {both stationary and nonsta-
tionary), and Sec. V to a similar analysis of the
processes relating to dielectric susceptibility and
absorption.

g""(t', t) =(p' '(t')p"'(t)&, (2.1)

the superscripts + and —denoting positive- and.

negative-frequency components according to the
usual convention. The effect of a weak perturbing
or signal field

Et( t) Et c-iPt+ElgelPt (2.2}

(p(t)p, (t')&= Q pi~(a~~(t)a~. ~ (t')) pq ...
),A, g k

(2.6)

where a»=)k&(j( and a~t, =( j&(k~ are the atomic-
lowering and -raising operators, with expectation
values

on the other hand, is to produce a small change in
the equilibrium atomic density operator which is
given to lowest order by the relation' "

ap{t)=(ik} ' f dt' [If'(t'), p], (2.8}

where p is the unperturbed density operator and
H'(t) =-p,(t) E'(t). By evaluating the expectation
value Tr[p, np(t}] of the dipole moment induced by
the perturbing field and then multiplying the result
by the number density N of (identical) atoms, one
finds that the polarization at any point in the me-

Hlm ls

P'(t)=&t(v, t)E08 '"'+X*(v,t)E,'~8'"', (2.4)

where the (second-rank tensor} complex electric
susceptibility is given as'~

y. '(~, t)=tK/g) f „«'([p"(t),p'(t')]&e'"" ". (2.5)

The superscripts in this relation are polarization
indices and the statistical average is taken in the
absence of the perturbing field. The susceptibility
contains time-dependent and orientation-non-
symmetric components in the case to be consid-
ered, in which the atom is driven throughout the
process in question by a time-varying pump field
with a specified polarization. In addition, there
is a (suppressed} spatial dependence, due to the
variation of the pump-field phase within the medi-
um.

The dipole-moment correlation function

(p {t)p, ( t') & may be expressed as

II. DIPOLE-MOMENT CORRELATION
FUNCTION (a &=p (a, &=p (2 Va)

The lowest-order interaction of an atom with the
electromagnetic field is fully characterized, in
the electric dipole approximation, by the atomic
correlation function(p, (t)p(t')&, where p is the
atomic electric dipole-moment operator. The
emission of photons, for example, is described
by an electromagnetic-field correlation function" "
which is simply proportional to the cross-spectral

and moments

(aga aga& =pai (a»a»& =t) a. (2.Vb)

The dipole-matrix element p» =(j~ p~k& is assumed
to vanish for j=k,

(2.8)

Stationary processes involving resonant transi-
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tions from an initial state
~ j& to a final state ~k&

are described by the function

g'o&j a&(")=pja paj f „dvc (sjksjk(~)&&

which is appreciable for v=(Ej -Ek}/g. For
Ej &Ek

&
tile function glveI1 by Eq. (2.9}ls directly

proportional to the emission spectrum for the
transition in question, while the absorption of
radiation from the signal field in Eq. (2.2} duri&4,

transitions between the same pair of states is
described by the linear absorption coefficient

(2.9)

where the functions u(t, i') satisfy the Hermiticity
relation

~o(jk}("}= (vN/2~c) [go&a j&( ") go&j a&(v}]

the second term on the right-hand side represent-
ing stimulated emission. [The symbol T indicates
transposition of the (suppressed) vector indices. ]
The relation (2.10) follows directly from the ex-
pression

o&j,&(v)=(iN/I)AjjIjk J dI. e'"'([ajk(v)&sjk]&

(2.11}

for the stationary part of the complex susceptibility
for the transition in question. It should be em-
phasized that no simple relationship exists between
the functions g«j k&(v) and g«, j&(v) if either of
the two states

~ j& or ~f&& is one of the pump-field-
coupled pair of states ~0) and (1&, and that there
is thus, in general, no simple proportionality be-
tween the emission and absorption spectra cor-
responding to transitions between a particular pair
of atomic states.

The expectation value on the right-hand side of
Eq. (2.6) is easily evaluated in the Markoff approx-
imation by means of the quantum fluctuation re-
gression theorem, "whenever the time-dependent
solutions to the equations of motion for the atomic
density matrix are known. These take the general
form

(2.12)

the latter relation following from Eq. (2.Va) and
the identity a„af „=5„fa~

IH. RESONANT PUMP FIELD

I et us now suppose that the atom is driven by a
strong classical pump field

F(t) =E~e '"'+Eoe' ' (3.1)

which for the sake of generality will be allowed to
be electric or magnetic, with AI denoting the rele-
vant (electric or magnetic) dipole-moment opera-
tor. It is convenient to introduce off-diagonal
decay rates ~f'~, transition rates' ~» from the
state

~ j& to the state
~ k&& and the diagonal decay

I'ate j&j =+ j&jk . The eqllatiolls Qf Inot1011 fol' 'the

density matrix are then

df
+iojjk+ j&jk pjk(i) -6jkZ pa~(f) j&~j

=is(f) [j&,p(f)]„, (3.2)

&o-jk(Ej -E )/fkI (3.3}

&jj (f)jI (f')& = E jkkj jIj'k' nk'+ jk I'k'(i» j.')
f,k, f', 0' =0

10 + paj p'j 1 jk j'0('
f,kof =0

+ c&1o e ~ p,kj jjj&oqbk; j&I(t, t')
f ak, f =0

(t & t'), (3.4)

(The state labels do not necessarily indicate ener-
gy ordering. )

It will be assumed that the pump field induces
resonant transitions between a single pair of states
~0& and

~
1& (not necessarily the ground state and

first-excited state), so that &o» = &d. Then the only
off-diagonal matrix elements which are nonvan-

ishing in equilibrium are p&o(f) = a&o e ' ' and

po, (t) =a&os™,and it fO11OWS direCtly frOm Eqe.
(2.6) and (2.15) that the dipole-moment correla-
tion function is given for t & t' by the relation

and the initial condition

tt jk;»»& ( & } 6j&& 6k»& '

(2.13)

(2.14)

where nj -=pjj is the (constant) equilibrium occupa-
tion number for the state

~ j&. For t(i', the func-
tion (jI(t)ja(t')& may be found from the Hermiticity
relation

The expectation value in Eq. (2.6) may be ex-
pressed in terms of the functions a(f, t') and the
equilibrium density-matrix elements pjk(t') as

&jk(i)jI(f')& = &jNi')V(j)&t, (3 5)

where f means complex conjugation and transposi-
tion of the suppressed vector indices.

The equilibrium matrix elements which refer to
the pair of strongly coupled states may be ex-
px essed, if relaxation mechanisms connecting
these states to other states of the atom can be
ignored y as
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(8.6)
t&t', jxk (j,k~2) (8.11)

8 = K~o+g4(d

6(d = (d (a)~o y

so+ "ox y

II-=2IF, ~„l,
II' -=[a*+(~&u)']"*.

(8.Va)

(3.7b)

(3.Vc)

(3.Vd)

(3.Ve)

It is assumed that the parameter 0 is small
compared to ~ = {d,o, and hence that harmonic
production and other nonresonant phenomena asso-
ciated with the action of the pump field by itself
can be ignored. (The same assumption enables one
to ignore refinements on damping theory such as
those proposed by Lehmberg. ")

The general form of the time-dependent func-
tions &».„(t,t') in the presence of the pump field
(3.1) is conveniently expressed in terms of param-
eters {d»=—-~», defined by relations similar to
Eq. (3.3), but with E, -E, +0K600 and E0- E0
——kA+1

(j,@=2},

(d11 = &dg1 —06(d (g ~ 2)~

(d»= (d»+ 06ld {I~ 2),

ctP~o = QP.

(3.8a)

(8.8b)

(3.8c)

(3.8d}

where nj ' is the equilibrium occupation number for
the state I j) in the absence of the pump field, and

'Il j'1.g1(S) = (e + «g0 —016(d)/fy{s)I

II 10.10(8 ) = (s + «11 + 0 16&d)/fi (s )~

0(S) = ~F* X*/f, (S),

II/0 1(1s) = -&F0 ' A 10/f, (s) (j -2)
in which the polynomial f~(s) is defined as

f& (s )= (8 + «&1 + 0 i6(d )(s + K& 0
—z 1 8k(d ) + 0A

(j -2)

(3.13)

(3.14)

(c) Under conditions in which relaxation cou-
plings between either of the states IO) and I 1) and
other states of the atom can be ignored, this cate-
gory is effectively reduced to the four matrix ele-
ments p„(t),p~(t), p10(t}, and p01(t) The tim. e-
dependent coefficients 'II'(v) in this category which
enter into Eq. (3.4) have the Laplace transforms"

{b} In the second category, the matrix elements
are coupled in pairs, with the two elements p1, (t)
and p»(t) coupled to each other for every value
of j~2.' The functions %(t, f'}, which are nonvan-
ishing in this category, are thus the four functions
e„.„(t,t'), 'II„.„(t,t'), ~„...(t, t') and ~„„(f,t. '},
and the functions which are related to these through
Eq. (2.13). The Laplace-transform functions

'II'(e)=- f dv e"@'(-)T (8.12)

in this category are given by the relations'

One finds the general time dependence

'II„.„(f,t') =e" 10" 'u (t —t')
14)1 1+IQJ0~1 Igt (t fI)jQ; ffm

where the functions 'IL(v}-=II(v, 0) are given in terms
of the slowly varying functions 'll'(v) by the relation

(s +g)(s + «) +-,'0'
+10'10 f(s}

fE, ~ X„(s+z)[-s+ «(P,"-2,")]

1F, ~ X„(s+z }[s+ «(n,"'-n,"'}]
10l00 ef (e)

{8.15}

In the general equation (3.2}for the time-depen-
dent density matrix, the elements p»(t) are cou-
pled to one another, in the resonant approxima-
tion, only within the following three categories:
(a) the category consisting of the off-diagonal ele-
ments for which j&2 and k&2; (b) the category
consisting of the elements p~0(t), p»(t), and their
complex conjugates, for all j&2; and (c) the cate-
gory consisting of ail of the diagonal elements and
of p«(t) and p01(t). We shall consider these cate-
gories in turn.

(a) In the first category, the density-matrix
elements are unaffected by the pump field, and the
time-dependent coefficients in Eq. (2.12) are just

where the polynomial f(s) is defined in terms of
the parameters defined by Eqs. (3.7) as

f(S) =(S+«)(S+Z)(S+Z*)+Q'(S+«,'0). (8.16)

Pf. EMISSION

A. Time-Dependent Atomic Correlation Function

The dipole-moment correlation function as given
by Eqs. (3.4) and (3.9) has the general form

(I1(f)I1(t')).g0(t —&')+ Z e '""'g„(t-&'),
n=&l, &2

(4.1)
in which the functions g(1 }, by virtue of Eq. (3.5},
satisfy the Hermiticity relations
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go(&) -gp'(-7')

g-. (r)=e'" 'g.' (-~)

(4.2a)

(4.2b)

for ~oo «4 $ «+00

By making use of E(ls. (2.1$}, (2.8), and ($.9) in
E(I. ($.4), one finds that the functions g(v} are
given for v &0 by the relations

go(~) + V'kj j jk nk +fkl jk( } + [ 10 j )f l f1+f1;fo( } 10 j of j 10+jol jl(
(T -0) j,O=O j=O

(4.$)

g (~) Z [j f O'f [ 1+fo;fl( ) + lottfo;fp( )] + ~f1 j Of j +f( f o(
(T~O) j=2

g (~) = Q(jl„y.„[fl,e„,„(v)+a,*,g, .„(v)]+jl„P„)1,,~,', „(v.)},
(& ~O) j=2

g, (~) = u., j „e '"[n,~,', „(~)+~„~,,„(~)1,

[np+(0;01(~) + +(0+(o (((~)]
(T MO)

(4.4a)

(4.4b)

(4.5a)

(4.Sb)

8. Emission Cross-Spectral Density;

Resonant Multiphoton Processes

The function go(v) in Eq. (4.1) determines the
stationary part of the process under consideration,
the remaining functions charactex izing time-de-
pendent or nonstationary processes. The (average)
spectral density of the emitted radiation, for
example, is proportional to the Fourier transform

gp(V) = f dVe ("'gp(1) (4.6)

By making use of E(ls. (4.3) and (4.2a) in this re-
lation one finds, with the aid of E(ls. (2.13), (3.10},
and (3.12),

go(V) = + jljk jjkj j)j 2R+e:fkjk(k(V ~fk)}
j,k=O

++ [V'l j j fl 2 R [+10 fl; jo(k (V ~(j))]
j=Q

+ jjpj jljp 2 Re [()jlp% jp f 1(5(v (dpj ))]}
(4 I)

Inasmuch as the functions "LL'(s) are appreciable
only near s =0, it is a simple matter to pick out the
terms in E(l. (4.7) corresponding to transitions be-
tween any particular yair of states. Transitions
from I j& to ll& (where j~2 and Ej&E,), for exam-
ple, are accompanied by the emission of radiation
with spectral density'

go(j~()(v) =(lj( j(lj sf 2 Re aj(.jl(-l(v —(djl))) (4.8)

Kj, [j(,(I —n, (d/0') +ma(d/K, '&']
(V ld 6(d — 0 ) +Klj 2 2 j+

dg [s (1+6(a /)0-WEe/v'j)'])
(V —(dlj —01)((d+OQ ) +Kj

in which the widths are defined as

(4.10)

fro m Ij» l0& and Io& « I j&, respe«iveiy. »-
nally, the spectral density corresponding to the
transition from the upper driven state I1& to the
lower state IO& may be found simply by setting
j=0 in E(I. (4.9).'

It should be noted that although these solutions
are described as representing direct transitions
between specified pairs of states, in fact rather
complicated processes, involving multiple atomic
transitions and the emission and absorption of
arbitrarily high numbers of pump-field and emis-
sion-field quanta, are implicitly present, and are
correctly described by the same formalism. The
only restriction is to processes in which one reso-
nant photon is emitted or absorbed during each
atomic transition.

As a means of illustrating this point, it is con-
venient to examine the limiting form of the spectral
density given by E(l. (4.9) when Kjo and Kj, are
small compared to O'. One finds the function to be
sharply peaked at the frequencies &»+ 2~u+ 2Q',
and to be well approximated by the expression

while if Ej&E, , the spectral density corresponding
to the transition I 1&- I j& is Kjk =0 (Kjp + Kjl) f 0 (Kjp —Kjl) A(d/0 (4.11}

go(1 j) (v) jl(f jlj( 2 Re [F(1%jl fl (L(v (d(f }}
+ ix(0 ujl jo (1(v (dl j)}] (4 9)

Similar expressions, with the state indices 1 and
0 interchanged, hold for the ease of transitions

and %', the rate at which quanta are absorbed from
the pump field, is given by the relation

~ = lf}('K,'.(n. -n, )/IKI'= l&'Kl. (n. —n }/(&~)'

(4.12)
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K&
= a~ (K.o+ K.&). (4.14)

In the limi, t of weak pump fields, on the other
hand, the spectral density for the same transition
is, to order 0',

—,'K,', &a, Qa/(S&d}'
go&i-s&("}=j Wj a I ia &a(~-~+~~,J +~~0

«l,[&,——.'n. o'/{a(a)'&
)(&& —od~g} + Kg&

(Q, K,
' ,«)no&(. ). (4.15)

if the state ~1) js populated by transitions (e.g. ,
collisional} other than those induced from the state
~0& by the pump field, then in the limit 0-0, the
second term on the right-hand side of Eq. (4.15) is
predominant, and in, fact reduces to the familiar
spontaneous emission field for the ~1)- ) j) transi-
tion. The (smaller} first term, on the other hand,
represents a Raman-type txansition from the state
[0& to the state

~ j), induced by the absorption of a
pump-field photon of frequency v followed by the
emission of a photon of frequency v. The state
~
1) is an intermediate state in this process, and

does not enter into the determination of the width

~,'-0 or the emission resonance frequency ~ —~&, ,"
It should be emphasized that the equilibrium

occupation numbers in all of these relations are to
be determined in the presence of the pump field,
and may even be wholly due to the action of the
pump field. An example of the latter possibility
is the case in which [0& is the ground state of the
atom, and the atomic relaxation is purely radiative
[K~a =~a(K&+Ka), where K~ and K„are the natural
widths of the states ( j) and [k&]. It is found in this
case that the relative magnitudes of the two terms
in Eq. (4.15) are reversed, with the second now

the smaller. [It is given as zero in this case by
Eq. (4.15) and must be evaluated by returning to
Eq. (4.10).] One finds in this case that

—,'K, Ila/(ao&)a

(V —O& + O&
~ +—'K'

—,', (K, + Kg}0'/(ao&)'
(&& 4I&&} +o(K& +Kg}

the latter approximation holding for K,'o«~ Aa&~.

In the limit of strong pump fields, the peaks in
the spectral density in Eq. (4.10) become equal in
width and in integrated strength. The function
is well approximated. in this limit as

goo-s&(~) = j v ja "~ Ks [[(»- o&&; —ail)'+K,'*]

+[(V —~„+-.'&)'+ K,"] ']

(0» ) n&d[, K,',), (4.13)

where

The second term in this relation, which re-
sembles in resonance frequency and in width a
spontaneous-emission transition from j 1) to ) j),
may be shown to represent the photon emitted
during the last transition in the sequence ) 0) - ~ 1)-

( 0) - ( 1) - (j), where the transitions ) 0) - ( 1)
in each case are induced by the absorption of a
pump-field photon, while the transition

~ 1) - [ 0)
is accompanied by the emission of a photon of
frequency near the pump-field resonance frequen-
cy 4)ip.

It is instructive here to examine the transition
Ij)- I 0), for a state )j) with energy higher than
the state (0). One finds in this case the spectral
density

2K'
&o(S-O&("}=j'~oj"O&@a („~ )a+ K&aV —

GOg()g + K)0

a Kg&G /(4(d)
(v —++ v~& + za)

(4.17)

The first term in this relation corresponds to the
spontaneous-emission field. The (smaller) second
term is due to the composite process

~ j)- ~ 0)- ~ 1&,

with a photon of frequency v emitted during the
first stage and a pump-field photon of frequency
y absorbed during the second: The width &g &

and
the resonance frequency ~ —ap, z for the emission
are determined solely by the initial and final scree
(j) and (1) of the composite process. The stj&te

) j)may here be populated by collisions or by radiative
transitions from higher states, e.g., as part of a
cascade process.

A further possibility, which arises when inver-
sion asymmetry is present, is that a state

~ j)
intermediate in energy between the states

~ 1) and

~ 0) and coupled to both may be populated wholly
by the transitions from the state

~ 1) represented
in Eq. (4.16}. [This implies &a&

= —,'K,oil'/K&(ho&}'. ]
The first terms on the right-hand sides of Eqs.
(4.16) and (4.17}then can be shown to correspond
to a frequency-splitting process, in which a
pump-field photon, absorbed during a transition
from )0& to j 1), divides its energy between two
(nearly resonant} photons of smaller energy,
emitted successively during the transitions ) 1)-

) j& and I j& - 10). [Exact energy conservation in
this process is not evident from an examination
of the stationary spectral functions considered
so far, but requires an analysis (presented below)
of the relevant nonstationary functions. ] The
small second terms on the right-hand sides of
Eqs. (4.16) and (4.17}in this case are due, in
addition. to the process discussed above, following
Eq. (4.16) (which now must be completed with a
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gg}li)(t', t}= (-2pn~/0')e "I" "sin-,'Q'(t —t')

x [j' .g ~ il el~fit'-i~lPl
p z gx af

el(d~ pl 'l(d t]ll

(El )El) i (4.19)

where 0' is defined by Eq. (3.Ve}. For E&&Ep, on
the other hand, one finds the contribution

gj(I( (tl t ) 3u il elrlpl l l4Jlj
(t ~ t')

x [HP'ul'~+, l P (t —t ') + a lP'ul'l", l ~ (t —t ')]

+ (1 0) (El & Ep}, (4.20)

in which the interchange of the state indices 1 and
0 must be understood to imply the interchange

1p jp'

~ j)- ~ 0) transition and is thus a three-photon
emission process), to two additional processes,
both beginning with the elementary-transition
-. equence i 0)- ( I)- ) j)- ~ 0), one ending with a
repetition of this same sequence, the other with
the sequence ~0)-

~
1)- )0). The former process

involves the emission of four photons whose
energies sum to 2'. These processes are rather
difficult to analyze by the usual methods of scat-
tering theory, even in the weak-pump-field limit
presently under discussion. By far the better
method is to deal directly with the correlation
functions, which are the quantities of direct phys-
ical significance, and which can be evaluated by
an entirely systematic method which automatically
includes the effects of whatever processes are
important.

C. Nonstationary Emission Functions;
Cross-Spectral Terms

The nonstationary terms in Eq. (4.1) correspond-
ing to the transitions of interest may also be
evaluated in a straightforward manner. The con-
tribution of the oscillating terms proportional to
g and g in the cross-spectral correlation
function defined by Eq. (2.1), for example, is

gt' "(t', t) = e ' ' gt '(t' —t)+ [t—t']t, (4.18)

where the superscript on the right-hand side is
a frequency signature. By making use of Eqs.
(4.4) and (3.10), one finds that appreciable contri-
butions to this function occur for the case of
transitions involving any state

~ j) for which either
E& E, or E&&Ep. In the first case, one finds, with
the aid of Eqs. (4.4}and (4.2b), and after inverting
the Laplace transforms in Eqs. (3.13) and (3.14)
under the special assumption taffy Kgp=l&y the
contribution

The expressions given by Eqs. (4.19) and (4.20)
both represent interference, the first between the
fields emitted during the two transitions

~ j) - [ 1)
and

~ j) - ] 0), and the second between the fields
emitted during the two transitions

~ 1) - [j) and
[0) - ~ j). The interference is of course produced
by the action of the pump field in coupling the
states

~ 0) and
~ 1), and vanishes for Fp= 0.

In the second case (E&& Ep), the interference
terms lead to an oscillatory time dependence in
the total emission rate g('" (t, t). By evaluating
Eq. (4.20}at t ' = t with the aid of Eq. (2.14) one
finds, after adding the total stationary emission
rate [= fg, (v)dv/2ll], the relation

(1 1) }=&&v&ill'p+ &ll&ll"l+ &e&ll lp

5 tdt+ P vPgpni*oe (4.21}

An oscillatory component in the total emission
rate is thus present in this case mhenever the off-
diagonal matrix element a,p referring to the pair
of pump-field coupled states is nonvanishing. The
expression given by Eq. (4.19), on the other hand,
vanishes identically at t'= t, and hence no oscijla-
tory component in the total emission rate is pres-
ent for transitions from an upper state ~j), where
E&)E„ to the coupled states ~0) and

~
1).

The nonstationary components in the Eqs. (4.19)-
(4.21) are simplest to interpret when the oscilla-
tions at the pump-field frequency are slow com-
pared to the oscillations of the emitted radiation,
i.e., when co= (d,p« ~f,= (dip. This condition is
mell satisfied in double-resonance or optical-
pumping experiments, ' where the pump field
oscillates at rf or at microwave frequencies,
coupling pairs of states within a Zeeman or hyper-
fine multiplicity, while the process is monitored
by observing its effect on optical transitions. The
nonstationary functions in Eqs. (4.19) and (4.20)
in such cases appear in squared form in the ex-
pression for the intensity autocorrelation func-
tion"'" of the emitted field, leading to oscilla-
tions in this function both at the pump-field fre-
quency lp and at the (lower) Rabi frequency 0'."
Unlike the oscillations in the total emission rate,
these oscillations survive even the limit of intense
pump fields, where egp 0.

It should be emphasized that the phase of the
oscillations in the nonstationary components de-
pends on the phase of the pump field, and hence
in general varies within the medium. The con-
tributions from different atoms to the emission
field will in general tend to cancel one another
except at observation points very nearly in the
direction of propagation of the. pump field, unless
the pump-field wavelength is large compared to
the sample size.



1956 B. R. MO L LOW

The Fourier transform function

g "(v„v,) =(2v} ' JJ dt, dt,

(4.22)

e~+2tm+ +g gg't 0 2) (f f ) (4 23)

is proportional, in lowest order, to the wave am-
plitude for finding two photons coherently radiated
(i.e., with definite phase relationship) at the fre-
quencies vy and v2.

Appreciable resonant contributions to this func-
tion occur, according to Eqs. (4.1), (4.4a), and
(3.10), whenever a state (j) is intermediate in
energy between the states (0) and (1) and is cou-
pled to both of them. The frequencies of the emit-
ted photons add up exactly to &, showing that the
process so described is one of frequency split-
ting of the pump field. To lowest order in the
pump-field intensity, under the assumption that
the atomic states in question have nonvanishing
populations even for zero pump-field intensity,
one finds

g (v2& vl) 6(vl v2 +}l OJ l J l~ 0 10

Sp Sg $$

&x + 44
+ (v, —v,)* (0, c,', «(&(o(),

(4.24)

where f, —= v, —(co —u~, ) —iz&, and ff v, —e»=
~ /—SKp

Each of the three terms exhibited in Eq. (4.24)
represents a process in which a pump-field pho-
ton is absorbed during the transition (0) -(1), and
photons of frequency v, and v, are emitted during
the transitions (1) -(j) and (j) —

( 0), respec-
tively. The three processes differ from one

D. Double-Positive Frequency
Nonstationary Functions

The emission process has been described so
far only in terms of the cross-spectral correla-
tion function for the radiated field, which is pro-
portional to the cross-spectral atomic correlation
function defined by Eq. (2.1). The field correla-
tion function which represents the mean value of
the product of two field-annihilation operators is
also important, however, especially in cases in
which photons are emitted in pairs, where its
value is needed to determine the field-intensity
autocorrelation function"" and hence the coin-
cidence counting rates. The function in question
may be shown to be proportional to the double-
positive frequency, time-ordered atomic correla-
tion function2'

another only in the order in which these events
occur. In the term proportional to Kp the absorp-
tion occurs first, while in the term proportional
to n„both emissions occur before the absorption.
The term proportional to Sf, finally, represents
a process in which the emission at frequency v,
occurs first, followed by the absorption and then
by the emission at frequency v, . In the processes
represented by the terms proportional to n, and
nz, one must think of the states (1)and (j) as ini-
tial states in a perturbation-theory sense, having
been populated, e.g., by collisional processes.

If (0) is the ground state and the relaxation is
purely radiative [ the situation described in Eqs.

. (4.16) and (4.17)], however, one must think of
(0) as the initial state for any process described
in elementary perturbation-theory terms. In this
case [which Eq. (4.24) is insufficiently accurate
to describe] one finds that the function defined
by Eq. (4.23} is well approximated in the limit of
weak pump fields by the expression

( p,2) i Ep A.,pg '
(vgs v~) —6(vg + vm

—A)Dpi I fl.

x ——,~ + v, v, . 4.25
1 1

While the first term still represents the elemen-
tary frequency-splitting process during the tran-
sition sequence (0) -(1) -(j)-(0), the term pro-
portional to If may be shown to be due to phase
coherence between the wave function for the pho-
ton pair thus emitted and the wave function which
describes the four-photon emission process al-
ready mentioned as being responsible, in part,
for the terms centered at v, =u» and v2 Q) Q)gf
in the spectral densities given by Eqs. (4.16) and
(4.17).

Another contribution of interest to the function
g~0 2~ (f ~, t, ) is made by the terms proportional to
g, in Eq. (4.1). These are due to the action of the
pump field on the states (0) and (1) themselves,
and involve no other state of the atom. The con-
tribution in question has the form e'~', "~+ ~~ times
a function of t, —t„ thus leading to the factor
6 (v, + v, —2&v} in the spectral function defined by
Eq. (4.23). In the weak-pump-field limit, the
latter function is found to be sharply peaked at
the frequencies ~ —4u and (d+ 4~, thus repre-
senting the coherent emission of pairs of photons
at these frequencies. The basic process in oper-
ation here consists of the absorption of two pump-
field photons followed by the emission of two pho-
tons at nearby frequencies v, and v„ the relation
v, + v, =2&v representing energy conservation. (The
atomic transition sequence is ( 0)- ( 1)- (0)- (1)—(0), with the absorptions and emissions occur-
ring during the transitions (0) -(1) and (I) -(0),
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respectively ) .What is being described here is in
fact the spontaneous part of the process which has
been called light-by-light scattering' when it is
stimulated by the initial presence of a photon at
either of the frequencies vg or pg.

The (spontaneous) two-photon emission process
under discussion here must of course contribute
to the ordinary cross-spectral density defined by
E«I. (4.6), since f (g~ o'~ (v» v, ) ['dv, is propor-
tional to the probability of finding one of the pair
of emitted photons with frequency v, . The con-
tribution one finds in this way in the weak-pump-
field limit (where processes of higher order may
be neglected) is indeed in agreement with the
result which has previously been found for the
cross-spectral density in the same limit. o Proper
interpretation of the effect as one of coherent tmo-
photon emission, in addition to implying an in-
creased coincidence counting rate, implies that
the emission is sharply peaked in the direction
of the pump beam, where the contributions from
different atoms to g~ '~ add coherently. These
facts cannot be deduced from an examination of
the stationary cross-spectral density alone.

V. TIME-DEPENDENT LINEAR
SUSCEPTIBILITY AND ABSORPTION

A. General Relations

The time-dependent complex susceptibility as
given by E(ls. (2.5) and (4.1) has the general form

X(v* f }=X.{v}+ Z e '""X,(v) (51)
n=al, %8

Although v must of course be understood as posi-
tive in physical applications, E(I. (2.5) defines a
perfectly mell-behaved function for all positive
and negative values of v. The function so defined
satisfies the relation

x(v, t)=x*{-v f) (5.2}
which is simply a reflection of the invariance of
the polarization (2.4) under the interchange
E,'e —Eo*e.'~ [which leaves the signal field
(2.2) unchanged] . It follows from E(I. (5.2) that
the coefficients in E«I. (5.1) obey the identities

x ~ {v}=x*(- v). (5.3)

By substituting E(ls. (4.3)-(4.5) and (4.2) into
E(ls. (4.1) and (2.5) we find with the aid of Egs.
(2.13) and (3.10), that the coefficients

23(g)
X,(v), X (v), and X, (v) in E(I. (5.1) are given by the relations

oo

X,(v) =«(N/I«) g ]«„p,„(l„-n,)e,', .„((-«(v (u,„))—

(«+~+) 5 ([+i Pl/ Ol J«@'jl:Jo ( «{v ~pl)) +10 I oj I Jo @go; Jl( «(v ~JO))] [v v] (5.4a)

i ( ) (o(/)i) g p „.p,„[(,=-r, ) ii],.„(- '( - „))+ „i],', ,„(-i( —o„))]
S=2

(5.4b)

X«o)(v) =«&&+)po«((«o«0«««««o) +«oo«( «(v+~)) + o'«o[&«o;oo( «{v +)) &«'o;««( «(v+o)))]]' ~ (5.4c)

8. Stationary Components

For values of the signal-field frequency p far
from any atomic resonance, the functions 'll'(s)
are not appreciably affected by the pump field,
and are thus given by the approximate relation

~,', .„(«~v}=6,„6, («nv) ' ((nv()»a', )«). (5.5)

( ) ~ ~ P.o~ ]«~o{tT~ —««~)

o —o 1(ooJo
—v}

(5.6)

The stationary part of the susceptibility as ex-
pressed by E(I. (5.4a) is thus e(lual in this limit
to the expression

This relation makes no explicit reference to the
pump field, and in fact is the standard perturba-
tion-theory result for the real off-resonance sus-
ceptibility for stationary systems. The pump
field nevertheless plays an important implicit role,
in determining the occupation numbers n&. It
should be emphasized in this connection that the
susceptibility X,(v) as given by E(I. (5.6) is in gen-
eral anisotropic, a preferred direction being de-
fined by the polarization of the pump fieM.

When the signal-field frequency is near an
atomic-resonance frequency, the stationary part
of the complex susceptibility as given by E(I. (5.4a)
is easily evaluated with the aid of E(ls. (3.13) and
(3.15). One finds, "for E~ &E, and v = (o» &0,



1958 B. R. MOL LOW

() N. (FT, -n j}[-i(v- (df, + a(Q) + Kj,]- iF,* ~ X,*po.'„
Xp(fl) g j lf V'fl f ( i(v oj +1 j) (d)) Nf

fl

while for E& &E, and p Q)lg +0, one finds

(5.7a)

( )
. N (n j nl)[i(v (()1j ZL (()j+Kjp] + 1FQ Alp(212

Xp(lf& g } fl( lf f (i(v (j lgoj}) f 1
lj 2

(5.7b)

where (p» and a(p are defined by E(is. (3.3) and
(3.7b), respectively, and fj(s) is defined by E(l.
(3.14). The two cases v= (pjp (where E, &E,) and
vnp (()Qj (where Ef &E,) can be treated by interchang-
ing the state indices 1 and 0 in E(is. (5.7a} and

(5.7b), respectively, and making the substitutions
~co- -~(a) and F,* ~ X,*palp- F, ~ A, lpga,*p. Finally, if
the signal field induces resonant transitions be-
tween the same pair of states ~0) and

~
1) as are

coupled by the pump field, " i.e., if v= ~, the
stationary part of the susceptibility is

. N
Xo(lo) ("}=

g

fool(halo(no

of frequency co and a signal-field photon of fre-
(luency v. The state ~1) is an intermediate state
in this process, and consequently does not enter
into the evaluation of the resonance frequency or
width.

In the limit of strong pump fields, the complex
susceptibility is split into two terms of equal mag-
nitude, each identical in form to that for an un-
driven line. It is well approximated in this limit
by the relation

Xp(jl)(v) 2+/g}l lf i fl(nl nf}[(+f1 2Q v 2Kf}

+ ((df1 —2Q —v —1Kf) ]~

(—(EP+ K)(-ISV+Z) —(n kl IE)
f(-i(a v)

(5.6) (5.11)

where av-=v —(Q, f(s) is defined by E(1. (3.16}, and
the remaining parameters are defined by E(ls. (3.7}.

The limiting forms of these functions are readily
found. The function defined by E(l. (5.7a), for
example, in the limit KIl Kgp«Q', behaves much
as if the state (1) had split up into two states with
energies E, +-28(t)oj+Q') and widths K'f, [with the
latter defined by E(l. (4.11)]. The function is well
approximated in this limit as

1 N (n, -nj)(1+5(j)/Q')+i%'e/K', QQ'
Xp(jl) 2 g 0ljff1 '~ 1 j) + + lQI v i K)fl 2 2

I 1where Kj = ,(Kj, + Kjp—).

The mean rate at which energy per unit volume
is absorbed from the signal field may in all cases
be expressed as

Wp = 2cE,'*pp(v)E,', (5.12)

i}p(v) = v[X (v) —Xt(v)]/2ic, (5.13)

and may be found from the solutions for the emis-
sion spectral densities by using E(l. (2.10).

where P„ the (second-rank tensor} linear absorp-
tion coefficient is defined as

(Q && Kj~l, Kfp' Ej &E,), (5.9)

where % is defined by E(l. (4.12}and the substitu-
tion 0'- -0' implies Kg Kg . For weak pump
fields, one finds that

N rT, nj (np -n, ),'Q2/(S(p-)2—

(Q, Kjp« i)a(di; Ej &E,). (5.10)

The first term in this relation is the familiar ex-
pression for the complex susceptibility near a
homogeneously broadened (undriven) resonance
line. The smaller pump-field-dependent second
term represents a process in which the atom,
initially in the state ~0), reaches the state (j)
after absorbing two photons, a pump-field photon

C. Nonstationary Components;
Off-Resonance Functions

The meaning of the time -dependent terms in the
complex susceptibility given by Eq. (5.1) is shown

by substituting them into E(l. (2.4). The term
proportional to X (v), for example, induces the
polarization component

P', (t)= X (v)Epee '"+ '+ c.c., (5.14)

while the term proportional to X~(v) induces the
component

P', (t)= X (v)Epe ' " ~ '+ c.c. for ((j& v

(5.15a)

= X* (v)E,'*e ' "'+ c.c. for (d» v,

(5.15b)

the positive -frequency part being exhibited in each
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case. The electric fields generated by the polari-
zation components in Eqs. (5.14) and (5.15a) are
examples of frequency up and down conversion,
respectively, and correspond to the absorption
of a signal-field photon followed by its re-emis-
sion at a different frequency, the energy difference
being made up by the emission or absorption of a
pump-field photon. The process described in Eq.
(5.15b), on the other hand, is stimulated subhar-
monic generation (or frequency splitting), and
consists of the absorption of a pump-field photon
followed by the emission of two photons, one at
the frequency co —v and the other at the signal-
field frequency v. (The spontaneous part of this
process was discussed in Sec. IV.)

Both of these processes are susceptible of a
straightforward Hamiltonian description when v

is far from any atomic resonance. The quantities
X„(v) and X (v), according to Eqs. (5.4b), (5.3),
and (5.5), are then given as

(„) N — pw p~i V ~&pox
e lo y

CO~ l —V CO~ o + V

(~) . ("V V VsN—
rb 9 =2 (dJO v M/1+ v

(5.16)

X..(v, ~) = e' X..(v, 0), (5.18)

where n=0, + 1, +2. It follows directly from this
relation that in a dilute medium (X«1}only pairs
of waves traveling parallel to the pump wave will
be appreciably coupled.

It is interesting to observe that a single initial
nonresonant light wave of frequency v traveling
parallel to a pump wave oscillating, say, at a
microwave frequency co, would thus soon acquire
frequency components at v a nu, where n = 1, 2, 3,

owing to the successive operation of the
processes described in Eqs. (5.14) and (5.15a).

and consequently obey the identities

X (v) = X-~(v + &u)) X-*~(v)= X- (&u —v). (5.1V)

As was indicated previously, if the phase of the

pump field varies within the medium, the time-
dependent susceptibilities are spatially inhomoge-
neous as well as anisotropic, having the spatial
dependence for pump fields &,(z) = &De' ',

p(v, t) = Po(v) + P (v)e ' ' + p (v)e' ', (5.19)

Po(v) being given by Eq. (5.13), and P (v) by the
relation

p (v)=(v[X (v) —X (v)]+&@[X (v)+ X (v)]}/2ic

(5.20)

It should be noted that the full expression (5.20)
for P~(v) must be used in the off-resonance case,
since it follows from Eqs. (5.16}that the term
proportional to ~ on the right-hand side of Eq.
(5.20) is comparable to the term proportional to
v, even though ~&& v.

D. Nonstationary Components;

Resonance Functions

When the signal-field frequency is near to an
atomic -resonance frequency, on the other hand,
it becomes possible to approximate Eq. (5.20) as

P (v) = v[X (v) —X-~(v)]/2ic, (s.21)

which is v/c times the first-harmonic component
in the imaginary (skew-Hermitian) part of the
time -dependent susceptibility. By making use of
Eqs. (5.4b) and (5. 3) in Eq. (5.21), one finds that
for E& &E„ the harmonic amplitude p (v) in the
absorption of radiation during transitions from
the pair of coupled states

~ 0} and
~ 1) to the state

li} is

For optimal pump intensity, a,o can be made
comparable to unity, and the susceptibilities
evaluated in Eq. (5.16) become comparable to the
stationary susceptibility given by Eq. (5.6). The
effect could thus, in principle, be made appreciable
over distances comparable to that required for
the phase change due to the ordinary (real) dielec-
tric susceptibility. "'

In lowest order, the effect we are speaking of
appears as a time -dependent modulation of the
signal-field absorption rate. Indeed, by directly
evaluating the absorption rate E"P', with P'
given by Eq. (2.4}, we find that the contribution of
the first three terms in Eq. (5.1) is 2vE', 'p(v, t)EO,
where the time-dependent linear absorption co-
efficient P(v, t) is

P i&i (v) = (Nv/2ff c)V.,V»Q(s, -s&%&.;»(-i(v -~»)) + ~»~,', .„g-,(v - iv»))]+ [1-0]+}

(~ax ~~ ~so) )

while for && «„ the absorption is from
~ j) to

~ 0) and ) 1), and the harmonic component is

p„i&) (v) = (Nv/2kc)ii»p zg(nz —n, )%L&ou,(i(v —&o„))—o.„ei,,&pi(v —&o~))]+ [1—0]*}

(S.22a)

(&o„»~„). (5.22b)
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The harmonically varying part of the absorption
function, like the time-independent part, is a
sharply peaked function near the resonance max-
ima, and shows the effect of the pump field through
splittings comparable to the Rabi frequency Q',
defined by Eq. (3.Ve). This detailed structure is,
however, not seen in typical double-resonance or
optical-pumping experiments, where the (optical)
signal field has a large frequency bandwidth. The
absorption rate for a signal field with constant
spectral density I is fy(t), where y(t) = f P(v, t)dv/
2w. By substituting Eq. (5.19}into this relation
and making use of Eq. (2.14) one finds that for the
two cases described by Eqs. (5.22a) and (5.22b),
the infinite-bandwidth absorption coefficient is

y(t) = (Nv/2kc)[p»V. „(n, n) -+g~p„(n, -n, )

+ p. oIp~,a,pe + I"uI"&pipe

-Cfire

i' )

(~„»a&„) (5.23a)

y(t ) = (Nv/2K c)[p»p»(H~ -n, ) + p~~~(R~ -no)

$QJt jet l
I"~j.I"e xo -&gpp~aj*.pe

((d»» &go) ~ (5.23b)

The total absorption rate from an infinite-band-
width signal field thus contains oscillating compo-
nents only if the off-diagonal matrix element asap

is nonvanishing. The absorption rate from a
coherent signal field, by contrast, has appreciable
oscillating components even in the limit of very
intense pump fields, where ayp 0. This is in
direct analogy to the case of emission, where the
oscillating components in Eq. (4.21) for the total
emission rate vanish for a,o-0, while the non-
stationary functions given by Eqs. (4.19) and (4.20)
remain appreciable in the same limit.

The effects of inhomogeneous broadening of the
atomic-resonance frequencies v~, and ~f p it
-should be noted, are much the same as those of
broadening of the signal-field frequency spectrum.
In the limit of infinite inhomogeneous width, in
particular, the oscillatory components in the
absorption rate vanish unless a„+0. It is inter-
esting here to consider the case in which the
inhomogeneous width is finite, though large com-
pared to 0, while 0 is in turn large compared to
the homogeneous widths and to

~
bur ~, thus implying

a yp 0 One finds in this limit for the case de-
scribed by Eq. (5.22a) that the harmonic amplitude
in the absorption function is well approximated by
the expression

P~&&(v) = Fo ~ X,~+-p»(v/2tic)(((n, nz)[vN, '-(v) -iP fd&o»N,'(e») /(e» —v)]]+(1-0j*}, (5.24)

P,'(t) = X, (v)E,'e ' ""~'+ c.c. ,

(t) )(4 (v)EI ge sstl v)t +c

(5.25a}

(5.25b)

The function g, (v) as given by Eq. (5.4c) is a
comparatively small quantity for all values of v& 0.
The function X~ (v), as given by Eqs. (5.3) and
(5.4c), on the other hand, is sharply peaked near
v = &a. One finds, with the aid of Eqs. (3.15) and
(3.6), the relation

where Ã, (&u»)d ru&~ is the number of atoms per
unit volume with resonance frequencies between egg
and ~„+d u„, N,'(~„)= dN, (u&g, )/d rag„end P means
principal value. The oscillatory absorption com-
ponent is of order (0/inhomogeneous width} times
the stationary component P,(v) for the same tran-
sition, and, as noted above, vanishes for N(v}
= constant. [A similar analysis can be carried out
for the case of large though finite spectral width
of the signal field, essentially by replacing the
number density N(v) by the spectral density I(v).]

The effect of the terms proportional to X„(v)
in y(v, t) is to induce the polarization components

X,„(v)= 2iN% 'g,~,o(n, n, }(&,—~ X„)~
y(-in. v+ 2a,'0}/zf (-ihv). (5.26)

where 6 v =-v —&o and f(s) is defined by Eq. (3.16).
For small values of &v, i.e., for signal-field
frequencies nearly equal to the pump-field frequen-
cy, the frequency 2~ —v= ~ -&v of the polariza-
tion component given by Eq. (5.25b) is nearly equal
to both v and ~. By evaluating directly the rate
E' P ' at which energy per unit volume is absorbed
from the signal field, one finds, after adding the
stationary contributions described previously,

W'(t) = 2c Eo*p,(v)EO

+ [i~Eog, (v)E,'e " "'+ c.c.], (5.27)
where Po(v) is given by Eqs. (5.13) and (5.8). The
absorption rate thus contains a slowly varying
component which oscillates at the frequency 2&v
= 2(v -&u) and is comparable in magnitude to the
stationary component. This is in fact the result
of interference between the signal field and a field
oscillating at the frequency e —4v which is gen-
erated by the polarization component given by Eq.
(5.25b), and which becomes parametrically coupled
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to the signal field when both fields travel in the
same direction as the pump field." The process
in operation here is "light-by-light scattering, "

the associated spontaneous part of which is rep-
resented by the nonstationary terms in the emis-
sion process discussed at the end of Sec. IV.
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