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Structure of the Surface of Liquid He at Zero Temperatures
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The ground-state wave function of a 6nite drop of liquid He4 is taken as a product of two-body and
one-body factors. The surface energy is calculated, taking into account the variation of the
two-particle-correlation function in the surface region, and is minimized by a density profile which falls o6'

outside the liquid with a scale length 0.7 A and approaches the interior density with scale length 2 A.
The calculated surface tension is 10% higher than the observed value.

I. INTRODUCTION

Ground-state properties of an infinite sample of
liquid He' have previously been calculated' ' quite
successfully from a wave function of the Jastrow
form

4'= exp 2 u(t, ~).

This wave function is readily generalized to de-
scribe a finite droplet by inclusion of one-body
factors, and provides the basis for a "first-prin-
ciples" calculation of the microscopic structure of
the He' surface. Current interest in such calcula-
tions arises principally from Andreev's' proposal
that the observed' "surface tension of dilute so-
lutions of He' in He' can be understood if some of
the He' atoms live in bound states at the He' sur-
face. Several calculations" "confirm that the
nature of these bound states depends in detail on
the structure of the pure He' surface. Further-
more, the extension of E{l. (l) to inhomogeneous
systems is intrinsically interesting because of the
challenging technical problem of calculating the
correlation function and kinetic energy density in
a region of rapidly varying density. Early calcu-
lations"' "of the surface tension were based on
very simple assumptions about these functions,
which can now be seen to be insufficient for more
than order of magnitude purposes. Shih and Woo"
and Bowleyi7 have made calculations similar in
principle to the present one; the differences are
discussed in subsequent sections.

To describe a finite drop of the liquid we have
used the wave function

(2)

The function f(r) controls the density. Far out-
side the drop t- —, and deep in the interior t 0
(provided u is sufficiently short range; a long-
range I can necessitate a different behavior of t in
the interior in order to avoid unphysical behavior

of the density, as discussed in the Appendix).
is a normalization factor. Ideally one would like
u to depend on more than the scalar distance r„.,
so that u could change its form when r; and r& are
near the surface, but calculations with such a u
are prohibitively complicated. Vfe have adopted
the form of I used by Francis, Chester, and
Heatto' (FCH) in their calculation of the bulk en-
ergy, namely,

u(r) = —(a/r)' —f)/(r'+ k, '),

with a=2.990A, 5=6.987A', and k, =0.5A '. The
second term represents the zero-point fluctua-
tions of the phonon field, and its inclusion was
found by FCH to lower the ground-state energy
slightly. Our most recent calculations, which
will be reported in a subsequent paper, make us
doubt that inclusion of the second term in Eq. (3)
really lowers the energy, though such a term is
necessary to produce the experimentally observed
linear behavior of the x-ray structure factor S(k)
for small k.

H. METHOD OF CALCULATION

The density and the two-particle-correlation
function are, in principle, obtained from the wave
function by integrating

p(r} = )V jt 4'(r, r„.. . , r„}d r, ~ {fr„,

p,(r, r')= (- )f)r)4r'{r)F, r„.. . , rr),
We also define P(r) =p(r)/ps (ps is the number
density in bulk) and g(r, r'}= p,(r, r')/p(r)p(r'). The
energy is the expectation value of the Hamiltonian
H= —(g'/2M)ZV, '+ Zv(r, ~) and, when the droplet
is large, can be written as the sum of a volume
term and a surface term E=¹s+AZ (es is the
energy per atom in bulk, 4 is the surface area),
where
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(8)

by (2), with density p(z), we guess

g{ ')=g(l — 'I;l[p( )+p( ')]&

or (equally plausibly)

g(r, r'}=gzOr r'—I; p[z(z+z')]).

(10a)

{lob)

+pg dzpz 8 8

S(r,&=- ~ {f ai, Wr, )g(r„i,)&,*u{r„)

drlg 1$ 2 j, 12 lp

+ pg d'rg rg 'U &g2 g rg, r (8)

We have assumed that t(r) depends only on the
coordinate ~ which measures distance normal to
the surface; thus h(R and p(r) depend only on z.
The function t has been eliminated by means of the
relation

&p(r)=p(r)vtP)+ f a 'v, (r, i')v; (r, '), (W

which follows from the form of 4. The bulk energy
e& depends only on u, which is not varied in our
calculation. Instead of varying t so as to minimize
the surface energy, we can vary p(z). In princi-
ple, p(z) and u(r) determine g(r, r'), which is
needed to calculate Eqs. (8) and (7).

The major calculational problem is to find the
g(r, r') which goes with a given p{z}and u(r).
Even in the homogeneous fluid, approximate inte-
gral equations such as the Percus- Yevick (PY)
equation" and the hypernetted-chain (HNC) equa-
tion" are insufficiently accurate for reliable cal-
culations of ez. The energy (- V.14K/atom) con-
sists of about 18-K/atom kinetic energy and —20-
K/atom potential energy. The above integral equa-
tions make errors in gz(r) which lead to errors of
1 or 2 K/atom in the kinetic and potential energies,
and thus a large fractional error in the total en-
ergy. " These equations can be generalized to the
case of an inhomogeneous fluid [pz p(z)], in which
case accurate numerical solution becomes virtu-
ally impossible since g then depends on three vari-
ables (e.g., z„z„r»}.Even if the equations
could be solved, there would be no reason to trust
the results in view of the inaccuracy of these equa-
tions in the homogeneous fluid. Rather than deal
with a numerically intractable approximate inte-
gral equation for g(r, r') we elected to guess di-
rectly at the nature of the solution. Suppose we
know the bulk correlation function gz(r; p) associ-
ated with the wave function (1) at every bulk den-
sity p. Then, in the inhomogeneous Quid described

We shall shortly discuss how to obtain accurate
values of gz(r; p). Assuming that these are avail-
able, we calculate the surface energy (7) for a
given p(z), by means of (10a) and again by (10b).
Calling the results Z, and Z&, we regard ~Z, —Z~~

as a reasonable estimate of the error introduced
by the approximation {10a)or (10b). In fact this
error proves to be very small (3% or less in Z).
We note that the function gz(r; p) is calculated once
and for all. When a new trial function p(z) is
chosen, g(r, r') is found from (10a) or (10b) merely
by consulting a table of gz(r; p). If it were neces-
sary to solve an integral equation in three vari-
ables each time p(z) is changed, the calculation
would be impossible. Shih and Woo" proceed from
a philosophy similar to ours, using the approxima-
tion

g (r, r') =gz [I r r' I; p "—(r)p'~(r')], (10c)

which undoubtedly'0 yields results in close agree-
ment with (10a) and (10b). Their values for gz(r; p)
are, however, obtained from the truncated; Bogo-
liubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy, which is even less accurate" than the
PY and HNC equations.

IH. CALCULATION OF SULK. CORRELATION
FUNCTION

To obtain g~(r; p) we have solved an integral
equation which interpolates between the PY and
HNC equations and is an order of magnitude more
accurate than either when the interpolation param-
eter is properly chosen. One such equation has
been proposed by Carley and Lado" and Bowlin-
son" and has been successfully used by Pokrant'
to reproduce (with maximum error of 2%) the bulk
correlation function which Schiff and Verlet' ob-
tained by molecular dynamics for the "short range"
u(r) = —(2.990/r)'. Unaware of their work, we
used a different interpolating equation, which also
reproduces the Schiff-Verlet results with com-
parable accuracy. Both the PY and HNC equations
make large fractional errors (as much as 25%) in
the region where g is rising tow'ard its first maxi-
mum, which lead to the pxeviously mentioned
errors in the bulk energy. With the use of an
interpolating equation, the error in bulk energy
induced by inaccurate calculation of g is reduced
to 0.1 or 0.2 K/atom.

Curves A and Bof Fig. 1 represent g~(r)-g~(r}
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FIG. 1. Comparison of
the Schiff-Verlet g(r),
computed by molecular dy-
namics, with solution of
approximate integral equa-
tions. (A) Pere us- Yevick
equation; (8) hypernetted
chain equation; (C) Eq.
(15) with u =0.59 (D) Eq.
(15) with u =0.68.
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snd g„(r)—g&v(r}, where gsv(r) is the Schiff-
Verlet molecular-dynamics-correlation function
[u(r) = —(2 990/r.)', p=0.02185 atom/A'—=p, ] and

g „and g~. are the correlation functions which
we have calculated from the PY and HNC equations
for the same u(r) and p. Since the figure shows
that the PY and HNC equations make errors of
opposite sign for essentially all r, the use of an
interpolating equation seemed promising. Our
interpolation procedure was suggested by writing
the PY equation in the form

and the HNC equation in the form

(12)

where c(v} is the direct "correl-ation function" de-
fined by

or, in Fourier space,

S(k) =[1—pc(k)] ' (14)

f}t(c-i-c)e
ge +1, (15)

(where p '[S(k) —1) and c(k) are the Fourier trans-
forms of g(r) —1 and c(r), respectively) . Our
interpolating equation, which we call "the 0.'equa-
tion, " is

which reduces to (11) as a-0 and (12) when o. = 1.
We solved (15) for various o., and found that an
excellent fit to g~v(r) is obtained for a rather wide
range of o.. Curves C and D of Fig. 1 show the
accuracy of the fit for e = 0.59 and a = 0.68, re-
spectively.

Of course one would like to determine the value
of the interpolation parameter n without consult-
ing the molecular dynamics calculations. Like
Pokrant, we have done this by imposing the re-
quirement of compressibility consistency, which
is an easier to use variant of the pressure con-
sistency requirement proposed by Rowlinson" and
Lado." Compressibility consistency states that

—p+ ~p' rg(r}u'(r)4nr'dr = ' (16)
d 2

",
2 1

dp ~ o $(0)

the left and right sides being alternate expressions
for the derivative with respect to density of the
pressure P of a classical gas with interatomic po-
tential -u(r) at temperature kT=1. At density p,
we solved the system (14), (15) for g(r; p, n) and
sg(r; p, a)/sp. If the variation of c( with p is ne-
glected, then (16) determines a. The value of a
thus found is a = 0.68, which is within the region
of good fit by eye to g». The calculation was
repeated at several other densities in order to
estimate do. /dp. The latter turns out to be small
enough so that inclusion of the term (SP/Sc()dc(/dp
in (16}produces only a very small change in the
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The resulting bulk energy was slightly higher than
that resulting from (3}. If one believes this calcu-
lation, the conclusion ia that the best Jastrow-
type [Eq. (1)] wave function is not the one which
yields the observed g. This might be direct evi-
dence of the limitations of the Jastrow wave func-
tion, as discussed by Campbell and Feenberg' and
Woo 26
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FIG. 2. Two-body-correlation function in bulk fluid,
calculated from Eq. (15).

compressibility-consistent value of o.. In the limit
of zero density, the compressibility-consistent n
can be determined analytically, and is n(p = 0)
= 0.47.

Equation (16) says nothing when the long-range
u of Eq. (3) is used, since both sides of (16) are
infinite for any e. However, the long-range part
of u does not change g much, and it seems rea-
sonable to use the previously determined (for
short-range u) value of n. We actually used n
=0.59 over the entire range 0 (p (1.2po. Con-
sidering that e does not vary much with p, and
that g depends only weakly on a, and that PY and
HNC become identical at low densities, it seems
clear that our results would be negligibly affected
by letting a vary with p. The bulk correlation func-
tion resulting from (3) and the n equation with n
=0.59 is shown in Fig. 2. Calculations were
carried out at density intervals =0.05 p, and
interpolation was used in evaluating (10a) and
(10b).

As we mentioned earlier, our most recent
culculations indicate that the inclusion of the long-
range term in u(r) does not lower the energy.
Omission of this term would, of course, answer
possible objections to the method of choosing the
value of o.. Comparison of the optimal surface
shapes resulting from inclusion and omission of
the long-range term in u(r) will provide additional
insight into the overall reliability of the calcula-
tion. In the early stages of this work we con-
structed an "experimental" bulk wave function by
solving the n equation (with n =0.59) to find the u

IV. SHAPE OF THE SURFACE

and the Fermi function

P(z) =(1+ee') '. (18)

Minimization of the surface energy (7) with re-
spect to the function p(z) makes sense only if, for
the u chosen, the bulk energy && has its minimum
with respect to density at the physical density po.
Otherwise, it is energetically advantageous to take
matter out of the bulk and form an arbitrarily thick
surface layer of matter at the density which mini-
mizes &z [making the second term of (7) arbitrari-
ly large and negative]. If v(r) is taken to be the
Lennard- Jones potential v(r) = 4e [(o/r)" —(o/r) ']
with the deBoer-Michels parameters o = 2.556 A
and z, = 10.22 K, then the choice (3) of u(r) leads
to a minimum c& when p = 0.9p, . We can either
adopt the deBoer-Michels parameters and do a
calculation at bulk density p =0.9p„or alter the
parameters in v(r) in such a way that the bulk en-
ergy is minimum at p = p, . We have done the latter
with the choice o = 2.556 A. and & = 1.09&, . This
results in a bulk energy ez= —7.43 K/atom Since.
this is close to the experimental value, one might
expect the calculation to yield a fairly good value
for the surface tension.

At thxs point it Should be mentioned that Bowley"
asserts that inclusion of a long-range (proportional
to r '} term in u(r) leads to a (negative) divergence
in the surface energy. This arises because the
integrand $(z) —8z in his counterpart of Eq. (7)
dies off only as ~ ' deep in the interior of the liq-
uid when a long-range u is used, leading to a
logarithmic divergence. Indeed, the first term on
the righ:-hand side of (8) approaches its asymptotic
interior value very slowly, the difference being pro-
portional to z '; however, this z ' term is exactly
canceled by the second term on the right-hand
side of (8) (which does not occur in Bowley's cal-
culation} so that ~(z) —~e dies off more rapidly
than a '. In the Appendix we discuss the nature of
Bowley's approximation, and how the term which
cancels the divergence is lost in his calculation.

The first trial forms which we used for p(z} were
the exponential

p(z) = —', e 8'(z &0); 1-—,'e '(z (0) (17)
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FIG. 3 Surface energy for exponential (1A, 1B) and
Fermi (2A, 2B) density profQes. The scale length is
P ~. The A and B curves refer to different approxima-
tions for the correlation function in the inhomogeneous
region.

The resulting surface energy is shown in Fig. 3.
The curve lA refers to the trial form (17), with
the approximation (10a) used for g(r, r'); curve
1B refers to Eq. (17), with (10b) used for g;
curves 2A and 2B refer to Eq. (18), plus (10a} and
(10b), respectively. We note that the A and B
curves agree within 1.5% near their minima, and
that the difference between the two curves system-
atically decreases as P decreases. The latter is
to be expected, since (10a) and (10b) become more
nearly identical as the scale length in p(z) in-
creases.

The smallness of the difference between the A
and B curves is surprising. The approximations
(10a), (10b), and (10c) all become increasingly
accurate when the length scale of p is large com-
pared with the length scale of g (i.e., the inter-
particle spacing), but in fact our optimal p(z)
varies considerably over a distance of one inter-
particle spacing (about 3A). It is hard to make an
a Priori estimate of the error introduced by using
(10a) or (10b) when p(z) is not slowly varying. The
smallness of the difference between the A and B
curves leads us to conclude that this error is only
one or two percent in our case. ' We regard the
agreement of the A and B curves as the measure
of the internal consistency of the calculation. If
the two approximations yielded significantly dif-
ferent surface energies, then neither approxima-
tion could be trusted. The good agreement arises
as the result of the weak density dependence of
g&, and the fact that the surface energy functional
depends on many different relative configurations
of two particles. It appears almost self-evident
to us that the true surface energy Z lies in the
range covered by ~„Z„and Z, . We cannot

envision the mechanism by which all three approx-
imations could yield almost the same surface en-
ergy, and yet all be far from the truth. When
accurate Monte Carlo or molecular-dynamics cal-
culations on inhomogeneous fluids become avail-
able, further investigation of the accuracy of these
approximations will be possible. One might guess
that it was not even necessary to take account of
the density dependence of g, and that the crude
approximation g(r, r') = gz(( r —r' ~;p,) would have
sufficed. A few points were calculated with this
approximation, and the resulting surface energy
was 30-35% higher than that calculated with (10a)
and (10b); we conclude that this approximation is
much too crude to be used in a search for a mini-
mum. The approximation (10a) was used in sub-
sequent calculations.

Both Bowley" and Shih and Woo" have used a
trial function of the form (2) in conjunction with a
short-range u(r). Bowley finds that the surface
energy is minimum for P=2.2 A ', and Shih and
Woo find P= 1.67 A ', compared with our value
P=1.0 A '. We ascribe the discrepancy principal-
ly to Bowley's use of the approximation g(r, r')
=gz(~ r —r'~; p, ) and Shih and Woo's use of the
truncated BBGKY hierarchy to calculate the g&
which is used in (10c}.

Having found the best Fermi function, we re-
laxed the condition of "particle-hole" symmetry
[P(- z) = 1 —p(z)] contained in Eqs. (17) and (18).
We tried the "generalized Fermi function"

which tends to a Fermi function with parameter
t}, for large positive z, and parameter P, for large
negative z. With y= 1.0 A. ' and P, =1.0 A ', P,
was varied, with a minimum & (& =0.296 K/P)

0
occurring when P, =0.6 A '. Then P, was varied,
keeping P, =0.6, resulting in a minimum E = 0.294
when P, = 1.4. Then P, was varied again, with P,
=1.4, resulting in a minimum &=0.293 when g
=0.5. Variation of y produced only a small change,
the final minimum (Z = 0.2920 K/A') being obtained
for y=0.5, P, =1.4, P, =0.5 (all in A '). The ex-
perimental' value of Z is 0.268 K/A'.

The possibility of overshoot [i.e., that p(z) rises
above its bulk value somewhere in the surface]
was explored, and we found no indication that this
is energetically favorable. This is in disagree-
ment with a recent calculation by Regge, "who
predicts overshoot on the basis of an essentially
hydrodynamic calculation.

Cal.culations of the He' surface states, based on
this work, are presently being carried out.
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An exact expression for the surface energy per
unit area, before f is eliminated by means of (9),
ls

Q=Pg gZP Z $0 Z -'Ng

(Al),

on the right-hand side of (9}, which is precisely
the term which cancels the divergence.

Of course (Al) is exact, and one is not required
to eliminate t, as we have done. However, if the
function i is physically reasonable [i.e., if the
corresponding P(z) tends to unity as z- —~ and
zero as z- ~], then the second term in (Al) will
contain a divergence which cancels the divergence
in the first term. The apparently reasonable
choice

ttc) (I zs)-x (A6}

which Bowley has made, does not correspond to a
reasonable P(z). The second term on the right-
hand side of (9) can be evaluated when r is far in
the interior; letting the gradient operate on r' and
integrating by parts (the integrated part vanishes
on a surface which is entirely outside the droplet),
the term becomes

~(z,) = P —
J d rg(r, )g(r„r,)V,'u(r„)

+ Iggl
p(r}&p (AV)

+-,'p& dr@ r, e r» g r„r, (A2)

and we=co(-~)=ez (z--~ far inside the drop).
Bowley's equation (2.15) for Z follows from (AI)
and (A2) with the additional approximations

(A3)

P(z) = e"& (A4)

Although (AS) introduces substantial numerical
error, it does not introduce spurious divergences
into the calculation. Reasonable as (A4) may
seem, we shall see that it is seriously in error
when a long-range u(r) is used, and that the ap-
proximation (A4) introduces a spurious divergence
into Z, which is not present in the exact expres-
sions (A1) and (V).

With u(r) given by Eq. (3), an elementary calcu-
lation of the asymptotic behavior of the first term
on the right-hand side of (A2) yields

—peak mb
K(z) —Kz (A5)

for large negative z. The first term on the right-
hand side of (8) has identical behavior. The sec-
ond term in (8) also behaves asymptotically as
(z~ ', with a coefficient exactly the negative of
that in (A5}, so that (V) exhibits no divergence. If
Eq. (9) were used to eliminate the function t(r}
from (A1) [thus generating (V)], Bowley's calcula-
tion mould contain no divergence. The approxima-
tion (A4) is equivalent to omitting the second term

where we have assumed that &'p(r') exists only
near the surface. The integral in (AV) is a sur-
face integral (n' is the outward normal), whose
value depends on the sample size and shape. If
the boundaries are planes at z = 0 and z = —I., and
r is far in the interior but still "near" the z = 0
boundary (i.e., z large and negative, but ~z ~

« I,)
then (AV} becomes p(r)bpz 2zlnLk, where k is a
unit vector in the positive z direction. For a ..

spherical droplet, 1nL is replaced by lnR. In this
region, Eq. (9) becomes

d lnp(z) dt
gZ gZ

(AS)

where 8= 2mbp&lnL. In order for p to be constant
as z -~ we must have t--Bz, so that e' grows
exponentially in the interior. Thus, (A4) is not
reasonable deep in the interior. The next term on
the right-hand side of (A8), which has been
omitted, is proportional to in~z]. This gives rise
to the divergence in the second term of (Al) which
cancels the divergence in the first term.

If t has been eliminated from the calculation by
(9), none of these troubles arises, since it is easy
to make physically reasonable guesses for p.
Bowley suggests that the divergence arises from
the fact that u does not change its form near the
surface, so that surface waves are treated inaccu-
rately. As Bowley points out, the divergence
which he found is a negative one; since the varia-
tional principle gives an upper bound on the energy,
an "improved" choice of u mould not cure the con-
ceptual problem.
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