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A physical picture of the smectic C phase is proposed in which the molecules rotate freely about
their long axes in the smectic A phase and this rotation is frozen out in the smectic C phase. This
picture is in contrast with the accepted view that the long axis of the molecules is normal to the
smectic planes in the smectic A phase and tilted in the smectic C phase. A microscopic theory of this

phase transition is constructed using the dipoleWpole interaction of the permanent molecular dipole
moments. Three ordered phases are found, one with the physical properties of the smectic C phase
(tilted director, optically biaxial, secondwrder smectic-A-smectic-C phase transition). The
second-ordered phase is a two-dimensional ferroelectric and the third, low-temperature ordered phase is
both tilted and ferroelectric.

I. INTRODUCTION

The nature of the molecular order in the nematic
and smectic A. phases has been clear for some
time. In the nematic phase the long molecular
axes lie paxallel to an axis in space and in the
smectic A phase the long axes are paraQel and
the molecular centers sit on parallel equidistant
planes. The long axes are perpendicular to the
planes. Given the nature of the molecular order
one can write down theories of various sorts and
the theoretical situation is well advanced in these
two phases. In the nematic phase one has a micro-
scopic' theory, a continuum theoxy, "a I andau
theory, and a hydrodynamic theory. ' ' In the
smectic A phase one has a microscopic theory' '
and a Landau theory. ""

The accepted picture of the smectic C phase is
that the molecular long axis tilts over with respect
to the plane normal and deGennes'2 has constructed
a Landau theory using the tilt angle as an order
parameter. In this paper I wish to present an
alternative physical picture of the smectic C phase
in which the tilt angle plays only a secondary role.
The primary role is played by molecular x'otation
around the long axis; this rotation is assumed to
be free in the smectic A. phase and frozen out in
the smectic C phase. Liquid-crystal molecules
usuaQy have two or three large pexmanent electric
dipole moments associated with oxygen and nitro-
gen atoms in their structure. We investigate here
a simple moleculax model with dipole-dipole inter-
actions and show that one of the ordered phases
of this model has the physical properties of the
smectic C phase.

We adopt a model in which the smectic A order
is well established and the molecules are paral-
lel and sit on planes. The xemaining molecular
motions which are permitted are rotation about
the long axis and translation in one plane. We

assume that there are permanent dipole moments
attached to the molecules a,nd examine the rota-
tional phase transitions within the mean-fieM
approximation. The model is quasi-two-dimen-
sional in that the intraplanar interactions bebveen
molecules are far stronger than the interplanar
interactions. In the calculations which follow we
will usually neglect the interplanar interactions
and treat a two-dimensional model of motion of the
molecules in one smectic plane; corrections due
to interplanar interactions are inserted at the
end of each calculation.

The dipole model which we treat is surprisingly
rich and exhibits three ordered (smectic-C-like)
phases in addition to the disordered (in one plane)
smectic A phase. The phase transitions between
these phases are all second order and one of the
oxdered phases has the physical properties of
the smectic C phase. Each of the three ordered
phases is optically biaxial. The other physical
properties are as follows.

(i} Smectgc C. When the molecular structure
is dominated by two outboard oppositely directed
dipoles the first ordered phase is shown in Fig.
l(a}. The outboard dipoles on one side of the plane
are oriented parallel and the central dipoles (if
any) are randomly oriented. The long molecular
axis tilts over in the direction of polarization with
the tilt angle proportional to (T; T)'~'. The smectic
A. phase is optically uniaxial and the optical prop-
erties are continuous through the phase transition.
The optical anisotropy in the smectic plane is
proportional to T, —T. These are the known phys-
ical properties of the smectic C phase.

(ii) Smectic C~, . When the molecular structure
is dominated by one centx'al dipole the first or-
dered phase is a two-dimensional ferroelectric
[Fig. 1(b)]. The central dipoles are parallel to
each other and the outboard dipoles are randomly
oriented. Whether or not the three-dimensional
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structure is ferroelectric or antiferroelectric
depends on the sign of the interplanar interaction.
The transverse dielectric constant exhibits a
Curie-Weiss singularity (T —T,} ' near the phase
transition and there is no tilt of the molecular
axes.

(iii) Smectic C,. If the central and outboard di-
pole moments are comparable in magnitude there
exists a low-temperature ordered phase below
either smectic C or smectic C,. In this phase
[Fig. 1(c)] both the central and outboard dipole
moments are aligned and this phase is both tilted
and a two-dimensional ferroelectric.

The plan of the paper is as follows. In Sec. II
we will define the model and solve the self-consis-
tent field equations to find the order parameters
and transition temperatures. In Sec. III we will
calculate the physical properties of the three
ordered phases. In Sec. IV we wiil derive a
Landau theory (an elastic theory} from the micro-
scopic theory for the smectic C phase. In Sec. V
we will compare the smectic C model with the
available experiments and in Sec. VI we discuss
the relationship between the molecular structure
and the stability of the smectic C phase.

H. THEORETICAL MODEL

Consider one plane of a smectic liquid crystal
and call it the x-y plane. The long rodlike mole-
cules have their centers on the plane and move
as a two-dimensional liquid in the plane. Their
long axes are parallel to the g axis. We assume
that there are three electric dipole moments
rigidly attached to the molecule on its central
axis and directed perpendicular to that axis. One
dipole of magnitude p, , is at the molecular center
and its direction defines the short axis of the
molecule. A second dipole of magnitude p., sits
a distance d/2 above the first and parallel to it.
A third dipole of magnitude p, sits a distance d/2
below the first and antiparallel to it [Fig. 1(d)] .
The dipole-dipole interaction is

V, (y) = —v, cos(y),

V (y) = —v cos(y) .
The distribution function is then

(2)

(3)

(4)

(6)

(6)

With this distribution function the average centra?
dipole moment is

&a+=&x d9 cosy + y +
0.

and the average upper dipole moment is

&aP~p 2 dpcosq [j (p) -f (0)].
,
'0(

If the spacing between dipoles on one molecule,
d, is somewhat larger than the intermolecular
spacing we can neglect the interactions between

(b)

/ /

/ /

molecule and the x axis. Call the configuration
with the central dipole parallel to the upper di-
pole the (+) configuration and that with the central
dipole parallel to the lower dipole the (-}con-
figuration. We specify a single-particle angular
distribution function for a molecule by writing
down a single-particle potential for both config-
urations:

where r&z is the distance between aipoles and c„is
the high-frequency dielectric constant of the medi-
um. This, together with the intermolecular cor-
relation function, defines the model.

We will calculate the properties of the model
using the self-consistent-field method by calcu-
lating the average electric field at each dipole
due to the other dipoles. The molecules are free
to rotate around the long axis, to turn upside
down, and to translate in the x-y plane. Take y,
as the angle between the central dipole of the ith

(c)

FIG. 1. (a) Molecular order in the smectic C phase with
the outboard dipoles aligned (central dipoles random).
(b) Molecular order in the smectic Cq phase with the cen-
tral dipoles aligned (outboard dipoles random). (c) Mole-
cular model in the smectic C2 phase with all dipoles
aligned. (d) Molecular model: a cylindrical shape with
length L and width D and three electric dipoles rigidly
attached to the central axis, one dipole of magnitude g
at the molecular center and two dipoles of magnitude /(f2

at a distance d/2 from the center.
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dipoles on different levels. Then the electric
field at the central dipole of one molecule is de-
termined by the average central dipole moment
of the other molecules and by the planar inter-
molecular correlation function g, (r):

s)1,a „rdrg, (r)
1 3T

(9)

(10)

We take a simple approximation for the correla-
tion function,

jo, r&Dg() )„

(21)

A =~A -+A3+ +AB~(~ )3/2+2 2 16 + 16 t
2 1

(22)

(~ )3/22~2 2 16 16B=+B -+B3++BA~. (23)

When p. g
& 2p., we find a phase transition at

( .)'' l (20)
&/AT

(sn2)3/2)1222 p
c+T

and substituting (15}and (16) into (17)-(19)we find

where n2 is the number of molecules' per unit
area. Then with

21(sn. 2)3/2

Qe„

(1,n(sn2)' '
1

Similarly the electric field on the upper (and
lower) dipole is

or

X = [8(1 —T/T, )] '/'

c. = [2(1 —T/T, )'] '/',

(25)

(26)

z ) 'P(mn2)'"
(12}

V, (y) = —()1,E, + 2)1+2)cosy, (13)

Then the average potential on the molecule in the
(+) configuration is

and B=P =0.
We name the phase with + x0, p =0 the smectic

C, phase. Smectic 4 in this model has a =P=0.
The phase transition is second order and the

ordered phase has a net polarization in the plane
(two-dimensional ferroelectric). Substituting (25)
into (23) we find a second phase transition at

and in the (-) configuration

V (y) = (&,Z, - 2-)1~2) cosy . (14)
2TyTc
T~+ T (27)

Self-consistency requires that these average po-
tentials be equal to the starting potentials (2) and

(3) so that

where
)12(sn2)3/2

c y~ y (28)

v, = ' (9, ',a+ 2)12p),

!~,'/'
v =' '

(p, ', a -2)1'Bt)}.

(15)

(16}

N =4s(1+ 3[(v+/kT~)'+ (v /kT)']+ ' '}, (17)

o. =—"((v,/kT) +(v /kT)

Near the phase transition the order parameters
will be small and we can evaluate the integrals (7)
and (8) by expanding the exponentials in a power
series. We find

LLJ

0
LIJ

LLJ

Cl

O
O
LLI

K

+ —,
' [(v/k T)'+ ( v /kT)']+ ~ ~ },

P =N((v, /kT) —(v /kT)

(18)
0

~2/(p2+ p~2 )

Writing

+ —,
' [(v,/kT)' —(v /kT)']+ ~ ~ } . (19)

FIG. 2. Phase diagram of the theoretical model show-
ing the transition temperatures in reduced units
(2&+&/((F12+2)122) (ss2)3/2}} versus the relative magni-
tude of the central dipole moment.
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(35)

or

(80}

in the smectic C phase and

e = ' ' [(1—r/r, )] '»"
K T, +T, (36)

We name the phase with R 0 0, p 4 0 the slllec'tlc

C, phase. The smectic-C, -smectic-C, phase
transition is second order.

If instead we have 2p, g'& p. ', we have a phase
transition at T, with

in the smectic C, phase when the smectic C, phase
lies at higher temperature. There is no' tilt in the
smectic C, phase. In the deGennes phenomenolog-
ical theory the tilt angle is taken as the order
parameter, whereas in the present microscropic
theory the tilt angle passively follows the order
parameter P.

which we label smectic C(o, =0, P g0), and a second
phase transition at T, into the smectic C, phase.
Both phase transitions are second order. The cal-
culated phase diagram is given in Fig. 2.

IH. PHYSICAL PROPERTIES

A. Optical Properties

We assume that the molecules are optically
anisotropic in the g-y plane and that the molecular
polarimability is of the form

C. Dielectric Constant

According to the model the smectic C, phase
is an indifferent ferroelectric and one expects
an anomaly in the low-frequency dielectric con-
stant at the smectic-A. -smectic-C, phase transi-
tion. In the smectic A phase with an external field
present Eq. (22} reduces to

The external field is equal to the applied field E
minus 4xP, where P is the induced polarization

p(»p») ~po+ pl (cos pl g)» (32)

where y, is the angle between the measuring field
and the central dipole axis. Averaging (82) over
the distribution function leads to

We find

+E T
~

27Plsg g

e+T T, c„kT, -

(38)

x (cos'y, -~2), (83) The dielectric constant e is given by

B. Tilt Angle

Suppose that the outboard dipoles are not per-
pendicular to the long axis but have a component
p, ,5 along the axis and are still antiparallel to
each other. The torque to tilt it over in the x
direction is 3kT, 5p. There mill be a restoring
torque -&8, where 8 is the tilt angle and g is an
elastic constant characteristic of the smectic A.

phase. Equating torques we find the tilt angle

3' T25p
z (34)

where y, is the angle between the measuring field
and the x axis (the preferred axis). The smectic
A. phase is uniaxial (a =P =0) and the three ordered
phases are biaxial. The optical anisotropy in the
plane vanishes at the phase transition and in-
creases linearly with temperature below the
transition temperature in the smectic C and
smectic C, phases.

(40)

and we find

2',p.
i

e~(r —r, )
' (41)

IV. LANDAU THEORY

In this section we will write down a Landau the-
ory (an elastic theory) for the smectic C phase
and derive Landau-theory constants from the
microscopic theory. The natural order parameter
for the smectic C phase is a two-dimensional real
vector p(x), where the magnitude is 81lual to the
local orientational order

which exhibits a ferroelectric (infinite) anomaly
at the phase transition. If this phase is actually
antiferroelectric the dielectric constant will reach
a large but finite value at the phase transition.

which is IP(x)l =& cosa & (42)
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The first two terms are the usual second- and
fourth-order terms in the Landau theory of a
second-order phase transition, and the gradient
terms are analogous to the Oseen-Frank elastic
energy of a nematic. The next term gives the
coupling to a fictitious electric field which points
in the E direction on the upper dipoles, and in
the -E direction on the lower dipoles. The last
two terms involving the director produce the tilt.

We will derive the terms in this expression
from the microscopic theory below. The easy
way to carry out that derivation is to compute the
response of the order parameter ) to an external
field E according to both the Landau and micro-
scopic theories, and to equate these responses.
We first calculate the response function using the
Landau theory. Suppose the smectic C is aligned
in the x direction and the field is applied in the

y direction. We write

p(r)=p, »+ p,e' ''y,
(44}

(45)

(46)Pk =A(T, —T)/B .
The free energy is then

F(f) = F(P,) + [,Cq„»' C+„q,'] P', -2p, P,Z, .
(4V)

and the direction is taken to be the direction of
polarization of the upper-level dipoles. This vec-
tor lies in the smectic plane. Let p be the smectic
plane normal and n be the direction of the long
molecular axis; the tilt angle is then 8 =pxn. We
write down the following expression for the free
energy per molecule:

F=+A(T —T, ) I plk++~BI Bl4

+ ~C„(V ~ g)'+ &C„(p ~ (V x) )) '

+,C„lpx(»p)l'-2), p E

+ ( n II}+~2K ( I}f

2 (43)

Minimizing F with respect to P, we find

pr = 2)) 2Er/(C»qr + C22q* }.
Similarly, for E in the x direction, we write

E =xE~e

P(r) =(p, + p,e"')»
and find

(48)

(49)

(50)

V,„(r,y}= —2)).+,e' "' ' siny, (52}

where r is the position of a molecule and y is the
angle between the upper dipole and the x axis. We
use the self-consistent-field method and assume
a single-particle potential

V(r, y) = —v, cosy —v, e' ( ' siny .
The single-particle distribution is then

f(r y} e-V(r ~ rP)/k d2V dy e-V(r ~ P)/kr (54)

As before, one calculates the average potential
which one molecule feels due to its dipole-dipole
interaction with the other molecules. For self-
consistency this calculated potential plus the
external potential must equal the starting potential
V. The self-consistency equation is

p, =2pkE, /(2A(Tk —T)+ C»q 2+ Ckkq„k) . (51)

We now calculate the response function according
to the microscopic theory. We take a two-dipole
model with one dipole of magnitude p., sitting a
distance d/2 above the molecular center and nor-
mal to the long axis and a second dipole sitting
d/2 below the molecular center and antiparallel
to the first. It turns out that we cannot neglect
the interactions between the dipoles on different
levels in this calculation. We assume that the
smectic C is oriented in the x direction and apply
an external field E, in the y direction. The ex-
ternal potential is

V(r„y,) = 2)22 d'rk dy, f(r„y,)x U(r», y„yk) + V,„(r„y,),
1

(55}

where the sum is over the two levels and U is the dipole-dipole interaction (1). In the integral one excludes
the area where ( r, —r, ( &D, the molecular diameter. The integral is tractable if in the distribution func-
tion one first expands exp (-v, e'"' ' siny} to first order in v, and then expands e'2' ' to second order in
q. One finds

—V, COSy, —V, e+2' 'r Siny, = (r(222)2/2(1 —Y ')(COSy, ),COSy,

( Sinkyk), V, e'2' ' r Siny,

x[(1—Y-2) —(q D)2(1 —Y 2)/8-(q D)2(16Y-5-8Y '-3Y '}/8]- 2)).+,e'2' 'siny, ,
(56}
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where panding the integrals in ( cosy, ) near T, one finds

and

Y = (I, + d ~/D ) /~ (5V)

(58)

v, = kT[8(1 —T/T, )]
'/'

k T, = p, '(nn )'/' (1 - Y-')/e„.

(59)

(60)

Equating coefficients of cosy, and sing, one finds
the self-consistency equations for v, and v, . Ex-

Including the dipole-dipole interaction between
levels reduces T, by the factor (1 —Y '). We can
now calculate ( sin'y, ) and find

v, q, 'D~ q„'D' (16Y-5-SY '-3Y ')
8kT ~ ~ ~ 4 4 (] Y-~) (61)

Identifying coefficients in (61) and (48) we find

C„=kT,D /4,

kT, DI (16Y-5-SY ' —3Y )$$4 (1 —Y-')

(63)

(63)

Both elastic constants are positive for all values of d/D. Neglecting the dipole interaction between levels
is equivalent to letting d-~ or Y-~, which means C» is infinite. Thus, this approximation is inadmissible
when calculating elastic constants. With the external field in the x direction we find

T q, 'Dm (16Y-5-8Y ' —3Y ') q„~D~
(64)

Comparing (64) with (51) we find

A =2k. (65)

where l is the interplanar spacing.
From Sec. III B the torque tending to tilt over

one molecule is 3kT,5P so that
The temperature dependence of the order param-
eter is G=3kT, D. (V1)

Comparing (66) with (46) we find

kTc ~

(66)

(6V)

The elastic constant K is a property of the smec-
tic A phase and cannot be calculated from the
model. This completes the derivation of the
Landau theory.

If one assumes that the translational motion of
molecules on different smectic planes is uncorre-
lated there is no electrostatic interaction between
planes. We suppose that there is a weak steric
interaction between molecules on neighboring
planes when the ends of the molecules are touch-
ing:

U'=- J cos(y, - y,), (r, - r, )~ p( &D

=0 otherwise. (68)

Then the free energy per molecule is

E' =-J icos(y& —
y& ), (69)

C» =2Jl (VO)

where y, is the angle of f in the ith plane and the
sum is over neighboring planes. One finds from
this expression the twist elastic constant

V. CnMPARISON WITH EXPERIMENT

In this section we want to compare the predic-
tions of the theory of the smectic C phase with
experiment. The model predicts that the smec-
tic-A-smectic-C phase transition is second order
(if it is isolated in temperature from other liguid-
crystal phase transitions). In a differential-scan-
ning-calorimeter curve one usually sees a small
peak at this phase transition which puts an upper
limit of about 0.02&oon the transition entropy.
However, physical properties such as tilt angle
appear to be continuous at the phase transition, "
indicating that the phase transition is truly second
order.

The model predicts a tilt angle varying as
( T, —T)' '. The model was solved in the classical
mean-field approximation, which produces an
exponent of ~. One does not expect the measured
exponent to be &. The measurements of Taylor



SIMPI E MOLECULAR THEORY OF THE SMECTIC C PHASE 1927

et aE.'3 are consistent with an exponent of —,', al-
though the data are not accurate enough to deter-
mine an accurate exponent.

The model predicts that the smectic C phase is
biaxial with transverse anisotropy varying as
(T, —T). The smectic C phase is biaxial; how-
ever, there have been no measurements of optical
anisotropy versus temperature.

Durand'4 and co-workers have observed the
thermally excited director fluctuations in the
smectic C phase of di-(4-n-decyloxybenzal)-
2-ehloro-1-4-phenylene diamine. This material
transforms from the nematic phase directly into
the smeetic C phase with a tilt angle of about 45'.
The observed elastic constant ratio is about 2 to
1.

A twisted smectic C phase was suggested by
Saupe" and observed by Helfrich and Oh." With
the present theory one would expect such a phase
when there are asymmetric carbon atoms near
the ends of both end chains and this is the case
studied experimentaQy. Presumably one could
produce a microscopic theory of the twisted
smectic C phase similar to Goosens" theory of
the eholesteric phase by incorporating into the
present theory the va, n der Waals interactions of
asymmetric carbon atoms on molecules in neigh-
boring planes.

The available experimental evidence is qual-
itatively consistent with the physical properties
of the ordered phase which was labeled smectic
C. The theoretical model assumes that rotation
of the molecule about its long axis freezes out in
the smectic C phase and that the tilt angle pa,s-
sively follows the orientational order parameter.
These experiments are also consistent with
deGennes-Landau theory, which is based on the
accepted picture of the smectic C phase as a tilted
smeetic A with no additional orientational order.
In order to determine experimentally which phys-
ical picture is correct it is necessaxy to have
experiments which probe the rotational motion
of the molecules.

The calculation as presented is quasi-two-di-
mensional, with intraplanar interactions taken
into account from the start and interplanar inter-
actions grafted on at the end. This is a reason-
able thing to do if the interplanar interactions
are weak; if this is actually the case one would
expect that the interplanar elastic constant C»
would be small and that critical exponents mould
be two-dimensional. The present experimental
evidence, though weak, contradicts this. The
observed critical exponent for the tilt angle is
=~~ (three-dimensional) rather than~a (two-dimen-
sional), and the observed elastic constant anisot-
ropy is 2. This does not invalidate the model but

it is an indication that one needs to incorporate
interplanar interactions into the model from the
beginning.

VI. FACTORS AFFECTING THE STABILITY
OF THE SMECTIC C PHASE

We would like to be able to use the theoretical
model to discuss the relationship between molec-
ular structure and the stability of the smectic C
phase relative to the smectic A, phase. The ulti-
mate goal would be to calculate the transition
temperature from the molecular structure. %'e

will first attempt to calculate the transition tem-
perature from the dipole-dipole interaction and
then discuss the other factors which contribute to
the smectic C stability.

In order to discuss intermolecular interactions
one must first understand the molecular con-
formation in the liquid state. In the crystalline
state the molecules are often in the all-trans con-
figuration. (However, in para asoxyanisole" the
ether oxygens are cis relative to the azoxy oxy-
gen. ) In Fig. 3, we show three molecules (in the
all-trans configuration) which exhibit smectic C
phases. The double bonds are drawn in to show
that the central ring structures are conjugated
and that the end chains are aliphatie. Pi bonding
makes the central ring structures relatively rigid
and the barriers to rotation about partial double
bonds is relatively high. In the aliphatic end
chains the rotational barriers are much lower and
one has an appreciable occupation of gauche con-
figurations, which makes the end chains flexible
in the liquid. It is important to know the relative
orientation of the dipole moments associated with

TBBA

AB

FIG. 3. All-trans structures of three liquid-crystal
molecules exhibiting smectic C phases: terephthal-
bis-butyl aniline (TBBA), n-pentyl-azoxy dicinnamate
(PAC), and e-heptyloxy azoxy benzene (HAB). The
actual conformations in the liquid-crystal phases are
unknown�.
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the oxygen and nitrogen atoms in the molecule.
In the all-trans configuration shown in Fig. 3 the
outboard dipoles are approximately antiparallel
and approximately perpendicular to the long axis.
This is favorable for the smeetie C phase. How-
ever, if the barriers to intexnal rotation for the
bonds between the dipoles are not high enough,
bond rotation can reverse one dipole in laboratory
times (minutes or hours), and roughly half of one' s
moleeules will have parallel outboard dipoles.
This situation is less favorable for the smectic C
phase. If the smeetic C phase occurs anyway,
the antiparallel dipole conformation will be pre-
ferred and the internal rotation will freeze out in
the ordered phase. %'hether or not internal rota-
tion occurs must be decided in individual cases.

We will now ignore the conformational problem
and calculate the transition temperature from the
dipole-dipole interaction using the geometry of
the all-trans configuration. We will first improve
Eg. (60) somewhat by taking a more realistic in-
termolecular correlation function; we assume six
nearest neighbors at a distance «(2'», )'»' and
a uniform distribution for distances greater than
(7/m, )'~'. With this correlation function the tran-
sition temperature is reduced by 20% and we find

For TBBA (Fig. 3) there is a dipole moment" of
4.5Vx 10 "esu associated with the nitrogen in
each Schiffs base linkage which is nearly per-
pendicular to the long axis with a dipolar sepa-
ration of 'l A. Taking D = 5 A the 1 —F-' term
is 0.8; taking n2=4X10' cm we find kT, =260 'K
compared with the experimental value of 445'K.
A similar calculation for PAC and HAB yields
transition temperatures of SVO and 220'K com-
pared to experimental values of 411 and &360'K.
The dipole-dipole interaction evidently accounts
for about half the interaction.

The molecular shape also contx ibutes to the
stability of the smectic C phase if the molecules
are not cylindrical. In HAB (Fig. 3) the end chains
are not collinear with the central body of the mole-
cule, resulting in a zig-zag molecular shape. If
the molecules rotate freely about the long axes,
as in the smectic A phase, the end chains of neigh-
boring molecules get crosswise and impair the
translational motion of the molecules. In the
ordered smectic C phase, however, the end chains
are parallel and there is more freedom for trans-
lational motion. Thus the entropy of translational
motion stabilizes the oriented phase in the smectic
C case just as it does in the nematie case. This
effect is obviously stronger for longer end chains,

which explains the increased stability of the smec-
tic C phase for higher members of an homologous
series. In addition, the interaction of end chains
of molecules in neighboring smectie planes is
responsible for the interplanar interaction.

The model assumes that the smectic order is
well established and neglects the thermal motion
of the molecules normal to the planes (in the
s direction). Thus if the dipole moments are sym-
metrically arranged about the molecular center
the dipoles on neighboring molecules will be '*in

register" in the g direction and the interaction
will be a maximum. The averaged dipole-dipole
interaction will be reduced by thermal motion in
the z direction and by having unsymmetrically
placed dipoles. This thermal motion increases
strongly near the smectic-nematic phase transi-
tion and it requires a strong interaction to main-
tain a material like HAH in the smectie C phase
over the entire smectic range. The smectic order
is stronger and thermal fluctuations weaker for
higher homologs, which wouM explain part of
the increased stability of the smectic C phase
of higher homologs. The smeetie C phase is
apparently not observed in unsymmetrical com-
pounds, but this effect has not been systematically
explored.

The structural factors favoring the smectic C
phase relative to the smectie A. phase are then:
(i) approximate center of symmetry; (ii) large
outboard antiparallel dipole moments; (iii) zig-zag
(trans) gross shape of molecule. It would be of
great value at this point to have a thorough chem-
ical study of the effects of various structural
factors on the stability of the smectic C phase.

VII. CONCLUSIONS

%'e have introduced a molecular model with
dipole-dipole interactions and have shown that
it leads to three orientationally ordered phases,
one of which has the physical properties of the
smectic C phase. In this model the molecular
tilt follows the orientational order parameter.
This physical picture of the smectic C phase is
distinct from the accepted view of a smectic C
as a tilted smectic A, . If one measures properties
associated with the tilt angle both pictures lead
to the same experimental results. To my knowl-
edge there is no experimental evidence that the
rotationally ordered picture is correct. The
microscopic theory is based on well-known inter-
actions and is certainly plausible; it is also the
only microscopic theory we have. Nonetheless
it is obviously highly desirable to have measure-
ments of properties associated with molecular
rotation to confirm the basic physical picture.
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One would like, in fact, to have a variety of ex-
periments on a material which exhibits a smec-
tic-A. -smectic-C phase transition. TBBA is an
unfortunate choice of material because it deteri-
orates at the high temperature of this transition.
One would like to see thermal and optical mea-

surements, and light scattering experiments. Qf
pax ticular interest would be NMR measurements
with a probe which couples to the orientational
order parameter P, and dielectric loss measure-
ments to observe the rotational relaxation of a
molecule with a net dipole moment.
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