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A formalism, previously presented, for describing atom-atom scattering in the adiabatic representation to
higher orders in m/M is generalized to describe the problem of different isotopes and different atoms. This
is accomplished by a sequence of nonlinear coordinate transformations which introduce a "switching
function" which is defined only in the asymptotic limit of separated atoms. It is found that the effective
potential for elastic scattering contains energy-dependent terms in order m/M and that it also depends
upon the switching function in this order so that the potential is not unique. It is also found that in this
order the definition of adiabatic states is not a trivial problem. A variational choice is made for the
switching function and explicit calculations are presented for the He-He interaction. The coupled equations
describing transitions are then derived and it is shown that terms are omitted from the usual coupling
operator which are of the same order of magnitude as the one usually kept. This leads to a modification of
the usual Landau-Zener transition formula.

I. INTRODUCTION

In a previous paper, ' the low-energy scattering
of two identical helium atoms was treated to higher
orders in the parameter m/M. This was done
because the interaction potential between He atoms
is so small that small corrections may be appre-
ciable. The question of whether a higher-order
potential could be treated as local and energy in-
dependent was investigated. It was found that the
nonlocality, entering from the dispersive part of
the potential, was negligible, and that the energy
dependence from the same source was also neg-
ligible.

In this paper we allow the two He atoms to have
different masses and obtain the nuclear mass-
dependent terms in the potential. ' %'8 also find
energy dependence which is not negligible from a
source which was omitted in I. We thereby have
terms of relative order m/M in the potential which
are both mass and energy dependent, but that are
local.

The procedure used here is similar to that used
in I for the equal-mass ease: We define a scatter-
ing coordinate and an adiabatic Hamiltonian. As
in the usual case we find that it is impossible to
define a true adiabatic Hamiltonian. That is, if
we require Chat (i) H,~ is symmetric in all elec-
trons and has eigenfunctions which dissociate into
antisymmetric products of atomic wave functions
and (ii) that; ( enter only as a parameter so that
V& does not enter into II,~, then we find that there
are still transitions between adiabatic states
even when the local momentum of the atoms van-
ishes. However, we find here that the operator
causing these transitions vanishes for separated
atoms so that it may be diagonalized away in a
limited basis set. This is discussed in Sec. II.

We are forced to introduce a "switching func-

Cion"~ f(x, g)(here x is an electron coordinate in
order to define both g and H~). The function has
the property that the factors -', (I+f) are, in the
limit of separated atoms, projection operators
for the electron into one or the other atom. The
corrections to the interatomic potential depend
upon this function which is arbitrary except for
its boundary conditions. We are therefore led to
the conclusion that the interatomic potentia1 is
not uniquely defined in the m/M terms. Never-
theless, we use a scattering variational criterion
to define the switching function which, at most
energies, turns out to depend only on the bound-
state functions. The resulting equation is then
crudely solved for the switching function which is
then substituted back to obtain the mass- and en-
ergy-dependent terms in the potential.

In Sec. IV we turn to the coupled-channel prob-
lem in this formalism. We find that the coupling
operator between two states is not (s~V„~-)m. V„
as in the usual theories but has additional terms
which depend upon the switching function. It is
pointed out that these additional terms make the
coupling operator vanish at R- ~ where the above
form does not. The additional terms also have the
effect of coupling states of opposite parity, where-
as the usual theory leaves them uncoupled.

In Sec. V we turn to the problem of dissimilar
atoms and the problem of rearrangement collisions.
The method used is a slight generalization of that
in I. This is necessary in order to allow for the
dissociation into different configurations of elec-
trons. The example used is He+8 where we allow
for neutral final states or ions He'+H . We find
similar results and that the transition operator
is not the expectation of V& but something that
involves the switching function also. This will
have great importance when ~a Priori calculations
of Landau-Eener transition rates are attempted.
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We turn here to the problem of the lom-energy
scattering of two helium atoms of different masses
using the method of I.'

H. FORMULATION OF PROBLEM

We seek an expansion of the total wave function
of the form

e"= Z„V„(X,g)Z„"(~),

where X is the collection of all electron coordi-
nates and where the U„are adiabatic wave functions
which, in the $-~ limit, become products of atom-
ic wave functions. The boundary conditions on the
scattering functions are

P(+) g +i P K+ (I/~)eit+ cga)(~} (2.2)

where p is the incident momentum. The scattering
coordinate must take the appropriate form in aD
poxtions of configuration space into which the at-
oms can dissociate. For example, the ground state
can break up into the configuration

(Ririrg) ~ (5grgr~} .
Here R„5, are the coordinates of the nuclei with

masses M, and M„respectively, and r, are elec-
tron coordinates. We call this the reference con-
figuration. The scattering coordinate must also
describe the asymptotic situation in which for ex-
ample, electrons 1 and 3 are exchanged. Toward
that end a nem set of coordinates is introduced
through the nonlinear transformation

m 1+fiR =p+ —$ ——Zxj.

Mi+2m ' Ma+2m '

a~

&& 1 ——Zx Vlf+0 — . (2.8)f f K i

It is nom a simple task to rewrite the total kinetic
energy in the new variables. The original form is,
in units in which N =1,

1 a 1 a 1
T = — Vg — Vg — Z]V„

and dropping all derivates V&, the result is

where

1 m
spa 2 ~pe 2 ii Zi(e KpliLfi}

P

(2.9)

4+
2 Zitri(fi —~) &—fi]

M, +2m M, +2m 2p
(2.7)

M~Rq +Manq +mZ)rg
p=

Hence p is the coordinate of the center of mass of
the entire system and is ignorable. In the asymp-
totic limit in any particular configuration, $ be-
comes the coordinate connecting the centers of
mass of the tmo atoms. For example, in the ref-
erence configuration we get the limit

M,R, +m('f, +P,) M,R, +m($, +r,)
Mj +2m Ma+2m

We shall need the Jacobian of this transformation
later. A straightforward but lengthy calculation
results in

g =P — $ + ZiXi
p. - m 1-f,

M, p
' ' 2

(2.8)
mX

+
8 aZil(Vipi. fi)+(Vipi, fi)]

where the switching functions f, are restricted by

fi =f (xi~ () ~
"(~j (2.10a)

+1 for x,-
lim M~ +2m
E~ i

—1 for xi
Ma +2m

Here p, is the reduced mass of the atoms

PP= 2
ZiVi —

4 Zi[Vi, sq j'q]+0

y=- ZiVi + 2.. .(ZiV, ) +0

(2.10b)

(M, +2m)(M, +2m)
Mg+Ma+4m

(2.5)

M, -M,
Mj +Ma +4m

The inverse of (2.3) is given by

(2 &)

and me introduce a mass-asymmetry parameter by

(2.10c)

where V, =V„,.
We now turn to the problem of the construction

of the adiabatic Hamiltonian H ~. The problem is
one of constructing a Hamiltonian which is sym-
metric in all electrons and mhich in the references
configuration, with g- ~, is just the sum of two
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noninter acting atomic Hamiltonians. The method
is again a simple generalization of the one used
in I. A first try is

no smaller than 1/p, then the adiabatic Hamiltonian

H, d
=H', ~

—(I/2m)Z, —V,J V,

1 1
H

2 m

+—g1
4p

1 2 A.

('ff d)
- - - )'fA)

] Vf +V] Vf

(2.11)

= H~+( I/2p) Z(V((x, Vtf, ) V& =T~+ V.

(2.15)

(2.16)

with the orthogonality property

We define a set of adiabatic wave functions from
this by

[w„(~) -H „(x,()]U„(x,t) =o,

where V is just the usual potential energy rewritten
in the new coordinates': dX~Un U. =&nn ~ (2.17)

where

4el

l(u/u. )Y (m/2—u.)Z(x((f( —&o) I

1e p mV= ——2e Z x ——$+—S+
j yf Xff Mg Mj,

1m-
+ x]+—g+ —S

Mq M2

(2.12)
(olE -H -H, Hlo»,"(t)=0, (2.18)

If the operator H ~ is expanded in powers of m/y,
then we also obtain S'„as a power series in this
parameter. The zero-order result is identical
with the usual molecular wave functions.

The exact elastic-scattering equation can be
written'

(2.13)

and the subscripts 0 on p. and X indicate that we
set m =0 in p, and X to 2.5 and 2.6. H,d is aper-
fectly adequate adiabatic Hamiltonian. It satisfies
the two criteria laid down for H,~ in Sec. I. We
shall, however, modify it so that it is Hermitian
with respect to the weighting function J [Eq. (2.8)].
That is, we require

where E =E~+W, (~) and where (0 I

~ ~ Io} indicates
expectation with respect to U, (with Z in the inte-
gral) for fixed $ and where Q is a projection op-
erator projecting onto the entire X space excluding
only the state Uo. Neglecting the dispersive term
for the moment the equation becomes

&o IE -H lo»0" =&o IE —Wo(t) —T glo»o" =o

(2.19)

where

(2.14) Tg=H -H~ =T —T,d (2.20)

for arbitrary functions I and v. This can be ac-
complished by replacing the gradient operators
V, by V, +(I/2J)V, J, which we note from Eq. (2.8)
is a correction of order m/p, . If we retain terms

jfP K K ~jf K

where a~ and P„are given in (2.10) and

(2.21)

and T~ can be gotten from (2.16). We write T&
in the form

1 1 1 A. 1y= — ——ZV +—Z(fV +V f)+ V V2M+M, 2p. '' 8p. ' '' '' M+M, „
V V+V V + — ' ' V'V+V V ——ZV(x V f)~ V2 2 i f f f 2 2 2 5 f f f 2 4 i f i

(2.22)

Then Eq. (2.19) can be rewritten

[E W, ($) A)'"s @s, B" s, —C„]F,"(f)=0,

(2.23)

where

(2.24)

A„"" (() =(n Ia„„lm},

B„" (f, ) =(nl(a„, +a,&}sr,+p„lm&,

C„($)= (n la„,s @8 g, + pq& g +y lm),

and one can show that B~j' =0 provided U, is real,
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which we shall assume. Using (2.10a), one can
write

The last term, a first derivative may be trans-
formed away by the transformation

(2.25) F.= exp[(m/t() (-.g+ 5'g ')]F. , (2.35)

$ „=(„'[I+ (m/(() g(h")], (2.2V}

where we determine g by the condition that the sec-
ond derivatives in (2.26) enter only as a Laplacian.
In the new coordinate $', Eq. (2.26) becomes (we

drop the primes now as a notational change)

m aW0 1 2&+
E —W&, ($) ——g$ + —1 — g V

2p

(10g'+4g" &'8 V+4g'((:VV

+ 2,A„,B(„s( —C~ Fc(') =0. (2.28)
2 p.

~

Since U0 is a Z state of the molecule, invariance
arguments lead to the requirement that

A„.($) =5„.A((5') + $„(.Aa($') 3

where A, and A, are functions of g'.
If we determine g by the condition

(2.29)

5„.(A. —2g) +(„&.A~ —4g''5„h. =5„Z(h'), (2 3o)

where o is a new scalar function, we then obtain

so that (2.23) can be written

(E
—W +—V'4 A~/)436 —C )P(4(3)=0.

2p 2p,

(2.26)

The term X&„makes this an unconventional type of
Schr5dinger equation which can be converted to the
conventional type (at least to order m/p} by the
coordinate transformation

where the energy-dependent potential is now ex-
plicitly shown. These terms were erroneously
omitted in I. &r is given by (2.32) and A» can be
obtained from (2.29), (2.25), (2.24), and (2.10a)
with the result

A, =-,'Z((0jx( V, f, -x,. jt V,f,
',X[V( ( -xf()(—( V((] X f()(]

+ -,'(f, 1) + -,'(x, .Vf, (.x (.(V f(,)

+ lb (
—(t x()'(V(f()'] I0&,

A, =(1/ 2'))0Z((0~( (3x(] V( x( V-()f
—EX(3$ x(( V( —x( V()f(

+E(3) x($ V( —x, V()f(E

+ —,'[3($ x,)' —&('](V(f()*lo&.

(2.37a)

(2.3Vb)

In order to explicitly exhibit the m/g corrections
in the scattering potential, 8'0 and H,~ can be ex-
panded in this parameter,

W, =W&" +(m/q) (0 ia&»io&+ ~ ~ (2.3'lc)

We then define

which generates new potential terms of order
m /((, which we drop. Then, dropping the bar
on I'0 we obtain the equation

(
1 ng BW

E —W, +—V' ——g$
2p, p. a(

4(E——W ) —C )E~4=0, (3.36)

oo

g=- — dt A (t)4 3 2 (2.31)
(2.38)(m/(()C„= C„+(m/(() (0 ~H ~' P &;

and by using (2.24), (2.21), (2.20), and (2.9), we

can obtain

oo

a(f') =A, ((') + 2, dt A'(t) . (2.32)

Then (2.28} can be rewritten

1 m, mE —W'0+ —1+—O V' ——g$
((

——,(5g'+2('g")$ V(-C~ Fo('(=0. (2.33)

We may divide out the factor 1+(m/(()o to obtain
(note C~-I/g) in order m/g:

m 8W0 m
E —W + —V ——g$ — &r(E —W ) —C-

2p. p, ag 0 00

(m/(()Co, =(m/(()(0~T(»+ V(» ~0&, (2.39}

where T ' and V' are the first-order parts of
T [Eq. (2.9)] and V [(Eq. (2.12)], respectively. In
ail the exPectation values [(2.37c)and (2.39)], zero-
order wave functions are used. These are the
conventional wave functions calculated by molecu-
lar theorists except that the origin of the electron
coordinates is here taken as the center of mass of
the nuclei where in the usual calculation it is their
midpoint. We now shift to these more usual co-
ordinates,

y( =x)+~A,g, H =$ (2.40)

——.(66' ~ 33'6")(&)E."=o (334)
P

and define

Uc(X, () =((0(Y,R), f(x, $) =f(y, %). (2.41)
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The boundary conditions on f are then

+1 for y ~R
-1 for y--3'5 (2.42)

and we may take f as an odd function of both y and
In these new coordinates we obtain

Ax=2 dypy, R —,
' —1 + y V„-R yR &„

+3(y V R.y-R V)f '
+-.'[y*-(y R)*]lvf I*j, (2.43 a)

As= a d'yp y, R 3 y V„-y V„

+ —(3R.yR V —y V)f '

+-,' [3(R y)*-y*'+-3'~3R3] lvf I3),

(2.43b)

where p(y, R) is the single-electron density in the
state g0. In these coordinates we also obtain

&o IT'" Io &
= - (I/2m) &0 lva3 - ((z(v()3

+ 3z([v(, y, „f,]v„

X*z(([V(,f(]R V( IO & (2.44a)

]
(Oll""IO& =&OI-2 'Z

Iy&
—2

~ (R —3X Rz( f( —Z(y([3(1+f()]]

+4e3 — + 3'Z(y( f( IO) (2.44b)
1

R

from which C~ [Eq. (2.39)] can be constructed.
Now let us return to the dispersive part of the

potential

(2.45)

The operator T &
is already of order p.

' so, as in
I, the denominator may be treated to lowest order
which makes it diagonal in the adiabatic states.
Furthermore, the intermediate state Green's func-
tion is essentially local so that 'U takes the simple
form

1%33=+ (0IT(ln&
( ) (

)(nlT(IO& (2 46)
e-M 0 n

Now, because of the fact that T II/ th((en 'U-I/((3.
The only place where (( ' has been kept is in A3"
so that we need keep only terms -p, ' which have
two $ derivatives acting on E. These are

which will be added to Ag in Eq. (2.23). From
Eqs. (2.24) and (2.10), we may obtain B,"„. In the
new coordinates [Eq. (2.40)], we obtain

B3. =(I/()(Ol-V. --.'Z, [V(', y(P(]ln&

+ (m „/6(()(0 lz, [v,*,f(] ln&, (2.48)

where the first (second) term survives only for
intermediate states of even (odd) parity E.'valua-
tion of the sum in (2.47) in a formidable task which
we shall not attempt. However its contribution to
A~~" is likely to be small because of the large ex-
citation energy associated with He. That is, the
denominator in (2.47) is large even for the first
excited state. We therefore drop 5A~~.

Then examination of Eq. (2.36) shows that the
effective-scattering potential may be written

V,(((R) =W', (R) —W', (~)

+ —tr[E —w 8)]+gR ' +c —w,'( )),
m aw,'

(2.49)

where the energy dependence is explicit and the
mass dependence is explicit in the m/p, factor and
implicitly in C~ and 0.

Another feature of the result is the appearance
of the switching function in the m/p, correction to
the potential. Since this function has so far been
defined only by its boundary conditions [Eq. (2.42)]
it is arbitrary in the rest of configuration space,
and the potential [Eq. (2.49)] is therefore undeter-
mined to this extent. We must therefore conclude
that the scattering potential is not uniquely defined
in the adiabatic representation, beyond the lowest
order in m/((. Physically, this nonuniqueness of
the potential is the result of our forcing the non-
local potential which results from the inclusion of
the Pauli principle (for electrons) into a local
form. This lack of uniqueness will however not
be reflected in physical observables such as scat-
tering data (see the Appendix).

Recently, the scattering potentials for He4+He,
and He3+He, have been extracted from low-energy
scattering data with a marginal difference in the
two potentials. Calculation of the two different
effective potentials [Eq. (2.49)] is evidently a for-
midable task but a great simplification results from
combining the two measurements. We note that
for both cases X=0 so that we obtain

( 44[ eff ( )]44 ( 33[ ef(( )]33
( ) ( )0 0

&44 &33

(2.50)
p v

5Auv ~ Bon Bn 0~ w, ( )-w„(R)' (2.47) where V,~ are to be taken directly from experi-
ment at a fixed energy and W, (R) is the zero-order
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calculated interaction. The requirement that V,s (R)
be determined at a fixed energy is a restrictive
one since this determination strictly speaking
requires data at all energies.

We may estimate the order of magnitude of the
energy-dependent term in Eq. (2.49), which is

(m/p)o(R)[E —W', (~)].

The factor o will turn out to be positive and of the
order unity near its maximum and m/p-3x 10 ~.

The experiment of Ref. 2 covers the energy range
0.01 to 1 eV so that this part of the potential is
repulsive and ranges from about 3x10 ' to 3x10 ~

eV at its maximum in configuration space. The
zero-order potential [W', (R) —W, (~)] has a magni-
tude of about 10 ' eV at its minimum so that the
energy dependence of the potential is small com-
pared to the potential throughout this energy range.
However, it is not small compared to the differ-
ence in (V,s)«-(Ve)~ determined in Ref. 2. This
difference is about 5x 10 ' eV at the potential min-
imum, which is comparable to the magnitude of
the energy-dependent part. Therefore, the energy
dependence must be explicitly inserted before the
potential difference can be extracted from the
cross-section data.

III. DETERMINATION OF THE SWITCHING

FUNCTION AND NUMERICAL RESULTS

5)=—Zx 5f (3.4)

and 5Up is given by

~ U„&s~ ,Ef5, ( sH~/ fs,) ~0)

w, (g) —w„(t)

and we note that

(3.5)

state in 4 ",
e"=F"(5)U.(X, h), (3.2)

where we contemplate variations in F ' and in f, .
Variation of F~ ~"(F~'~) yields an equation for

F +~(F~ ~), which is just Eq. (2.26). Variation of

f( is slightly more complex. We carry it out by
assuming that the integral, Eq. (3.1), is written
in terms of the original coordinates R, and rz. The
functions f, then enter through the definition of (
[Eq. (2.7)] and through the definition of U, by H ~
[Eq. (2.16)]. The appearance of $ in F does not
contribute to this variation since F is varied in-
dependently of f,. Then the total variation due to
the variation of f, enters through Uo and is

5) t Up 5)VgUp+5Upy (3.3)

where the last term signifies the variation of Up

with respect to f, because of its appearance in H~.
Using the transformation equations (2.3), one
readily obtains

If one uses the complete set of adiabatic func-
tions U„ to expand the total wave function and

solves the resulting coupled equations then the
scattering data which is obtained must be exact
and independent of our choice of f If, howe. ver,
we choose a truncated basis set, then we expect
that the results of the calculation will depend upon

this choice. We can optimize some property of
the scattering problem with this freedom. The
one chosen here is the total cross section or equi-
valently the forward- scattering amplitude.

This is accomplished via the Kohn variational
principal by requiring that the integral

&H~ m

sf(

An explicit calculation of the sum in (3.5) would

be difficult but we drop 5Up compared to the first
term in (3.3) because of the large excitation energy
of He. That is, the denominator in (3.5) is large
even when n is the first excited state. The varia-
tion of (3.1) is then performed using only the first
term of (3.3) and keeping U, real. After the varia-
tion the integral is written in the new coordinates:

0= d d F~ *6Up Z —8p —Tg U

I= d7 *E-H (3.1)
+F~ *Ua(E —Wa —TI)5UOF +].

be stationary with respect to variations' of f sub-

ject to the boundary conditions [Eq. (2.42)]. For
simplicity, we shall use only a single adiabatic

(3.6)

We now exploit the Hermiticity of 7.'& and use the
equation of motion for Fo~" to get (to order 1/p)

0 d d $ F 5U CppUp 2 &( +pjf& g +p U F ++F +
5Up CppUp 2 Vg +p g +p. Up F

/

-F *5U P„——& U & F ' -F '5U P„——&g„U & F (3.7)

Consider the last two terms first. They may be combined to give



M. H. MITTLEMAN AND H. TAI

(3.8)

0= d d' 60, 0oxg 0

-5UO pq
——8( Uo sg (F('~F( ~ ),

so that the derivates of E~'~ which we mould expect
to be of order P(R) (the local momentum) suffer
strong cancellation. If the momentum is high
enough for the eikonal' theory to describe the
scattering then s ~-1/p in Eq. (8.8) rather than
s t- p. Thus, the first two terms of (8.V} can be
expected to dominate. At extremely low energies
s &-p in (3.8) and again the first terms in (3.V)

dominate. We therefore drop the last two terms
in (8.V) and write it

satisfies the boundary conditions provided that, in
the limit B-~,

s I-„=R)3 =0

-„( =0
Iy -„i eo.

(3.15)

and then in the limit R- ,

p(yp~)= ' dz 0 y — pz + Q y+

If we define a single-particle density, then

p(p "( fp=*p & p.p 'p ,I'(p.pi , p., p". I
'('(p, .((()

O(X ()]U F(-4F(+)

where we have written

0(x ])=- (I/2g)v '+ f% +y

(8.9)

(3.10)

(8.1V)

where p is the ground st-ate wave function of free
atomic helium. Then defining

p (y, 5)=p(y, R)- fp p —p(y*p, %), (3.1(0

c (g&=&olo(x, g)lo& (3.11)

Now we use Eqs. (3.8) and (3.4) and choose 5f, to
be an arbitrary variation

5f, (x, ~) =5„5(%-x)e($-g') (3.12)

O= d'x d'x, d'x —% V 0'

~[&0IO(x, 0lo& -O(x, ~)]U.i„. , m-r, (3.»)
where we have been arne to divide out S'-"S'".
Therefore, Eq. (3.13), which is the integro-dif-
ferential equation determining f(%', 7') is dependent
only on the properties of the bound state. That is,
even though we have used a scattering criterion to
specify the f, the result (for most energies} is an

equation which depends only on bound state prop-
erties. This says that if we could solve Eq. (3.13)
for f, we would optimize for scattering for a large
group of scattering conditions.

it is clear that we shall not be able to solve (8.13}.
Examination of p and y in Eqs. (2.10b) and (2.22),
show that Eq. (3.13) is a nonlinear integro-differ-
ential equation for f,. We can examine the be-
havior at large $ in the reference configuration
and find that f, approaches its asymptotic value,
+1, as $

' the coefficient is of the order of mag-
nitude of the van der %Rais interaction which is
very small for He, . Rather than try to solve (3.18}
we shall construct a function which depends only
on U~ (as would the exact solution). We note that
a form [in the coordinate system, Eq. (2.40)]

f(~ g) c,(yp R) —Qgyp 5)
(8 14)

u, (y, R)+a (y, R)

s,'(y») +N.*(y») —k[g '(y —kR) +g'(y+ 2&)1'

(8.19)

where g is the orbital of the helium atom and u, „
are the orbitals of the He, molecule.

The form (3.19) is, of course, only an approxi-
mate solution of (3.13) so that it does not seem
worthwhile to use accurate wave functions for g„
s„, and P. Instead we use the Hylleras function

(3.20)

for the atomic helium orbital and a linear-com-
bination-of-atomic-orbitals (LCAO) approximation
for g and u„with g as the atomic orbital

Mg (p= [ ( )pis[g(y+kR)+g(y 2R})p (8 21)

where the overlap integral 8 is given by

S&R}=8- s[l+(zE+-', ((zE)'].

With these approximations, we obtain

(3.22)

we see that this satisfies Eq. (3.15) and therefore
satisfies the boundary conditions on f. The form
(3.18}results in an f that approaches its asymptotic
value as g rathel thRn 8 Rs would R solution of
Eq. (8.13). This may be rectified by calling Eq.
(3.18) a, but in either case the error is proportion-
al to the small van der Waals interaction and prob-
ably negligible.

If we use a Slater determinant for g, and another
one for P we may write f in terms of these orbitals
RS
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TABLE I. A& and A2. In each case, the first column
is obtained from the wave functions of Gilbert and Wahl,
the second from LCAO wave functions.

Ag A2

1.5
2.0

2.5

3.0

0.325

0.259

0.191

0.129

0.419

0.257

0.162

0.097

0.178

0.059

0.014

0.005

0.171

0.056

0.016

0.003

where

(1 —S')(I —e "")
(1+S')(1+e ' ")—4Se (3.23)

n= Iy+lRI- Iy- lRI. (3.24)

With this definition of f the energy-dependent
part of the effective potential [Eq. (2.49)], which is

can be evaluated. o is given by Eqs. (2.32) and
(2.43). We choose a Hartree-Fock representation
of the ~vave function u, so that the single particle
density is given by

p(y, R) = —
2[m,'(y, R) +u'„(y, R)],

where g, „are the gerade and ungerade molecular
orbitals of He, . They can be obtained from the
analytic Hartree-Fock solutions of Gilbert and
Wahl. ' A double numerical integral must be per-
formed for each value of R to obtain 0. Note that
X enters 0 and C only as X' =~49 or 0 so that the
mass asymmetry effect is small. We therefore
set X =0 in all cases so that the only remaining

V =gR +C —W (~)
BW

eff gR 00 0 (3.25)

which is the energy-independent part of the m/p
correction to V,„. It is attractive for small R,
becomes repulsive for R & 1.14, peaks at about
R = 1.4 and then falls off almost exponentially.
Again the exponential falloff is due to the simple
choice of wave functions. It peaks where the zero
order potential W,'(R) —W0(~) is strongly repulsive

mass dependence in the energy-dependent potential
is the over-all factor m/p, .

We also obtain 0 by using the simpler, but less
accurate, approximation (3.21) for the molecular
orbitals. The results for the two calculations of

Ay and A2 are given in Table I for a few values of
We see that the two calculations for A, agree

well while those for A, do not disagree by more
than about 25%. We therefore perform all sub-
sequent calculations with the simple wave functions
[Eq. (3.21)]. In Fig. 1 we show the factor &r vs R.
It is positive and so results in a repulsive energy-
dependent potential for scattering but an attractive
potential for bound state problems. This will make
for greater binding and make the He, bound state
more likely. Clearly, this effect must be taken
into account when extrapolation of scattering data
(or virial coefficients) is made to negative ener-
gies. Note that our result for v is of order unity
around R -a, and falls off exponentially for large
R. This falloff is due to our simple choice of mo-
lecular wave functions [Eq. (3.21)] and will be
replaced by a power-law behavior when more ac-
curate wave functions are used.

In Fig. 2, we have shown

24—
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l.6—

I.2—

0.8—

FIG. 1. 0' vsR /Bohr
radii) .
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when the colliding particles have no relative ve-
locity. This means that we have transitions of
order m/(» among adiabatic states even with no
relative motion. This is not a property of our
formulation alone. In the conventional formulation
all the terms in Eq. (4.6) are absent except the v„'
term in C. This does not vanish for R -~. In
our formulation V,«does vanish in this limit.
Therefore, we may redefine our basis set u„(in
this case just two states) to diagonalize away the
off diagonal elements of the operator Z(y, R} whose
matrix element is Eq. (4.6). These new states will
still have the first property me require of adiabatic
states, that is, they dissociate into an antisym-
metric product of separated atomic wave functions,
since [V,(f (R)]„vanishes for R- ~. As we have
pointed out V,«does not vanish in the conventional
formulation and so the states which diagonalize
it do not have the correct dissociation property
and can not be properly called adiabatic functions.

The operator Z contains V„so that its treatment
for a complete set would in effect introduce V„
terms into H,~. This violates the second require-
ment for H~. Therefore, it is not possible to
construct a complete set which has no adiabatic
transitions in this order of m/p, .

The remaining coupling operator is B V~, where
Bt' is given by

usual Landau-Zener transition probability from
state 0 to state 1 can be written

P=e Lz

where

w Wjo
(0)

8 l&(ol R=~,

and where

(4.11)

(4.12)

W(o) W(o)(R) W(o)(R)

(4.13)

w W~o
(0)

8 I(),
'

I

"="o'

where (for parity preserving collisions)

~(, =~(R) &1 lv„ lo&+ ~ow,",'U &1 lz(y(f( Io&.

(4.14)

(4.15)

~„=%(R}(1lv„ lo&.

'U(R) is the local collision velocity and R, is the
nuclear separation at which W,o' is a minimum.
This result is obtained from a solution of equations
in which only the first term of 9,", is kept as a
coupling operator. Inclusion of the correct form
of B~j', modifies G in the Landau-Zener formula
giving

Bo = —(I/(»)&n Iv„+-,'z([v(*,y (of(] lm&

+()(R„/8(()&nlz, [v, ', f, ] Im). (4.8) (4.16)

If we estimate (1 Iva Io&
- »(,

' and &I Izy( f» Io& Ia
-R.

then the second term is small provided that

W(o & I/m(zoR, ,

and a similar one for the second term in (4.8),
allows the simplification

B„" = —(I/(()&nlv„+-', m[w(o'(R} -w("(R)]

x z,y, „f( Im) + (x/4 (»)R „m

x [w (R) —w„(R)]&n lz(f( Im& . (4.10)

The Landau-Zener formula is just the transition
rate obtained by an approximate solution of the
coupled equations'o [Eq. (4.4)] in the special cir-
cumstance in which there is a close avoided (lin-
ear) crossing of the two levels. An important
element in that formula is the coupling operator
which is (4.10) instead of just its first term. The

The first term survives when n and m are states
of similar parity, the second for states of opposite
parity. The usual formulation has only the V~
term of (4.8) as the coupling operator. This has
spurious long-range behavior which is canceled
by the inclusion of the remaining terms in (4.8).
The identity

Z, [V(', y, „f) =Z(»[V(', y, of, ] = —2™[Hg, Z(»y, f,]

(4 8)

which is frequently the case. In that case we ob-
tain

GLZ+ &G

where for Z states, for example,

w(o) (1 lz(y( Rf(lo)
Lz (o (1 l(s/sR) lo)

C

(4.17)

(4.18)

Even when the inequality (4.16) is satisfied, this
may be non-negligible since G« is frequently
large and 5G enters exponentially [Eq. (4.11)].

V. REARRANGEMENT COLLISIONS

We mill complete our formal development of the
subject by constructing the formalism describing
" collision in which an electron is exchanged. As
an example we use the collision

8+He-H +He+. (5.1}

The scattering coordinate g is constructed by a
method analogous to that used in Sec. II. We define
the new coordinates from the old ones by
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m I-f( 1~ =p ——Z,x, (5.2)

r, =p+x, ,

(5 3)

F =Z(f( ~

The boundary conditions are

(5.4}

where the subscript 1(2) on B and M refers to the
hydrogen (helium) nucleus, the function n is

+( for(-(( '
)

- M, +2m

-I for x--$
M,

M~ +m (5.5}

where M, M, +M, +3m. The terms -', (1+F) oc-
curring in 6 are, in the $- ~ limit, projection
operators onto the final and initial states of the
reaction [Eq. (5.1)]. We see then that n ' changes
from the reduced mass of the neutral atoms to the
reduced mass of the ions as F changes from -1 to
+ 1 and so in each case, (5.2) goes over into the
form of (2.3).

The implicit inverse of (5.2) is

p =(M,R, +M,R, +mZ, r(}/M„x( =r, —p,

1 1+@ 1 1-F 1
— m 1 —,

1 1+F 1 1+/
1 m 3+F m 1+

g (5.6)

In the appropriate limit [see (5.5)], $ goes over
into the coordinate between the centers of mass
of the separated atoms or ions. We may now de-
fine an adiabatic Hamiltonian with the aid of the
"projection operators" -', (1+F) which has the cor-
rect dissociation properties in either channel of
(5.1}. We shall not do so here since the definition
will not affect the only result which we will quote
here which is the coupling operator which connects
the channels of (5.1). This is

—(I/g)(1 ~V~ —,'Z, [V,', (f, ——X,)(x( —X,$)]~2) V(,
where the states have been numbered 1,2 and
where X, has the same meaning as in Sec. II. The
remarks made at the end of Sec. IV apply equally
well here.

The switching function in this case involves the
mass ratio, m/M„ through the boundary condi-
tions (5.5). It is quite easy to construct a function
similar to (3.19) which will satisfy these boundary
conditions but it will contain the mass ratio. Since
we are always interested in the lowest-order terms
in m/M„where f, enters we will eventually set
m/M, =0 in f, in which case f, will return to ex-
actly the form (3.19).

VI. SUMMARY

We have generalized and simplified a previous
treatment of atom-atom scattering to allow for

dissimilar atoms. We made an expansion of the
total wave function in adiabatic states and obtained
a set of coupled equations describing scattering in
the various channels. We found thai the definition
of an appropriate scattering coordinate which is
symmetric in all electrons requires a nonlinear
coordinate transformation which requires the
introduction of the switching function. The same
function is required for the definition of the adia-
batic Hamiltonian. The criteria for H~ are (i)
in the limit of well-separated atoms H,~ becomes
just the sum of two noninteracting atomic Hamilton-
ians; H~ is symmetric in all electrons; (ii) the
scattering coordinate appears only parametrically
in 8,&. With these restrictions we found that it
is impossible to construct a complete set of adia-
batic states since there are transitions between
states even when the atoms are not moving. How-
ever we did find that a limited set could be found
which had no such transitions.

We found that the elastic-scattering potential
was energy dependent in order m/(u and that it
depended on the switching function. Since the
switching function is not uniquely determined this
means that the potential is also not uniquely de-
termined. We can also view the switching function
as an additional variational parameter. In that
case it can be used to optimize some scattering
property. We did this and roughly determined the
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switching function and the scattering potential.
The coupling operator between channels is also

determined. It is found to depend on the switching
function and to contain additional terms of the same
order in m/p, as the one usually kept. This mod-
ifies formulas such as the Landau-Zener transi-
tion formula. It also allows coupling between
states such as states of opposite parity in H+D
scattering. This will be investigated subsequently.

APPENDIX

The switching function is introduced in two ways
here. The first is through the coordinate trans-
formation [Eq. (2.7}]and the second through the
definition of the adiabatic Hamiltonian which is
basically just a prescription for breaking the total
Hamiltonian into two different parts [Eq. (2.20)].

Neither of these can affect any of the physical
observables, in particular, the scattering ampli-
tude.

If there is some parameter e in which the am-
plitude is expandable and if we choose the switching
functions to be independen'. of this parameter then
the amplitude must be independent of the details
of the switching function in each order of e. We
have expanded the effective potential (which is
not an observable) in powers of m/p so it is tempt-
ing to also expand the amplitude in this parameter
to exploit this invariance. However, the appear-
ance of p.

' as a coefficient of the highest deriva-
tive in (2.24} immediately indicates that the am-
plitude will not be expandable in m/p. We have
not yet been able to exploit this invariance in any
other way.
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