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Several calculational procedures for generating approximate solutions to the time-depen-
dent Schrodinger equation of the impact-parameter model are discussed in this work. It is
emphasized that in these calculational procedures a trial wave function is selected from a
definite class of functions the class of functions which have the asymptotic form of the exact
wave function and then some property satisfied by the exact wave function is used to fix the
trial wave function. The customary set of coupled equations can be obtained by requiring
that the Schrodinger equation be satisfied in the subspace defined by the basis set used to ex-
press the trial wave function. Recently, it has been popular to show that these coupled equa-
tions follow by making certain functionals stationary. It is shown, however, that these func-
tionals are not stationary about the exact solution for the variations represented by avaQable
trial wave functions which, as they must, reflect our ignorance of the exact nature of the true
wave function. In this work, a functional related to the norm of the exact wave function is
given, and this functional is shown to be stationary about the exact wave function for the vari-
ations represented by avaQable trial wave functions. A calculational procedure based upon
the stationary property of this functional is given by which variational parameters in a trial
wave function can be determined. If these parameters are taken to be time-varying nuclear
charges in the basis functions, one obtains the equations given by Cheshire. Finally, the ques-
tion of convergence of the two-centered traveling hydrogenic orbital expansion is considered.
We conclude that the two-centered expansion does not provide a scheme by which a sequence
of approximate wave functions can be generated that converges to the exact wave function.
However, it appears from the comparison of the approximate cross sections obtained in two-,
four-, eight-, and 14-state calculations that the cross sections for the 1s exchange reaction
and possibly for the 2s transitions may be tending to limiting values.

I. INTRODUCTION

The time dependent impact-parameter model
used to study high-energy proton-hydrogen-atom
scattering has been examined in the first paper
of this series. ' Specifically, it is found that there
are two equivalent Schrodinger time representa-
tions in which to describe the model system of a
hydrogen atom being perturbed by a moving point
charge. ' Since the boundary conditions associated
with the second Schrodinger equation would be
difficult to apply, we shall consider in this work
only the first equation [Eq. (23) of paper I], which
ls

The boundary conditions associated with Eq. (1)
are from Eq. (23a) of paper I':

Q„e "«-' as t--~

e-+ x'

=—Z snx~Ane
Ni

where g, is an eigenvector of h„ with eigenvalue
e„„Q„is the initial state of the system, and

is the amplitude for the transition from the
state Q, to the state g, induced by the perturba-
tion V, . The index denoting the identity of the
proton which is the nucleus of the hydrogen atom
will be suppressed in what follows when the mean-
ing is clear.

Equation (1) is customarily written in the coordi-
nate system with origin at the midpoint of R~;
transforming Eq. (1), we obtained'

The vectors r, and R,(t) denote the positions of the
electron and proton 2 with respect to proton 1.
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and where r is the position of the electron with
x'espect to the midpoint of R~. The oyex'atox' T is
the unitary translation operator associated with the
transformation of coordinates. ' The boundary
conditions associated with E1I. (3) are'

yr-gree "&'++A.„,pre a" as t-~,

and it was shown that the discxete transformed
orbitals &g approach the spacial part of the famil-
iar traveling atomic orbitals' as l f l

-~'.
0'. ™4.(r,)e '-~*. (6)

It has not been possible to obtain the exact solu-
tion of Eg. (I) or (3). Instead, several calculation-
al procedures have been developed by which approx-
imate solutions can be obtained. By construction,
these methods correspond to generating ayyroxj. -
mate wave functions in a subspace of the complete
Hilbert space, and therefore only approximations
to the set of exact transition amplitudes, shown
in Eq. (2) or (4), can be obtained. In this work, we
talm the point of view that it is inconsistent not to
recognize this fact, and caleulational procedures
based upon the tant assumption that the error be-
tween the exact and trial wave function vanishes
as l t l

-~ are inconsistent and arbitrary.
Since one must necessarily deal with the continu-

um, an e~1ansion in the basis jg} or QF} is real. -
ly a formal expansion; and since an account of
the continuum is necessary, the approximation
obtained by neglecting the contribution from the
continuum would not be expected to be good. Con-
sequently, one must turn to other approximation
schemes. %'e consider the very successful scheme
provided by the two-centered traveling-orbital
expansion. e 9 Wilets and Gallahers concluded that
the two-centered traveling hydrogenie orbital ex-
pansion is converging very slowly, while Rapp
and Dinwiddie' concluded that the convergence, at
least for the 1s exchange and 2s cross sections,
appears fairly rapid. The question of convergence
is considered in this work. There has been an at-

tempt to show that this approximation scheme is
variational in nature by showing that the coupled
equations follow by requirj. ng that a certain func-
tional be stationary. 4'~~~4 This variational nature
has then been cited as the justification for using as
a trial wave function a time -dependent linear com-
bination of (i) arbitrary exponentials, ' (ii) traveling
Sturmian functions, ~'" (iii) traveling hydrogenic
functions with time-varying nuclear charges, ""'~
and (iv) a combination of atomic and molecular
traveling orbitals. " However, in some of this
work, it is possible to obtain transition amplitudes
which do not have limits as I;-~,"and in one case
it is not possible to obtain an unique solution be-
cause the coupled equations become redundant. "
Obviously, these defects suggest that the variation-
al justification for this approximation scheme is
more restrictive than previously realized. In this
work, we examine the variational nature of the
calculation, and conclude that the justification is
not variational in the impjied sense. '" '4 That
is, in the sense that one determines that a func-
tional is stationary about the exact wave function
for variations in unknown quantities, in this ease
not only the shape of the wave function in the
strong-interaction region, but also the transition
amplitudes; and then uses the stationary property
of the functional to fix the unknown parameters in
the trial function. We show that the functional
assumed to be stationary in previous work~'~~~~

is not in fact stationary about the true solution
for the type of variation repxesented by ava, ilable
trial functions which, as they must, reflect our
ignorance of the exact nature of the true wave
function. A functional is given in this work which
is stationary about the true wave function for all
variations that maintain the asymptotic form of
the exact wave function, and the relationship be-
tween a calculational procedure based upon the
stationary property of this functional and the Euler-
Lagrange" '4 procedure is demonstrated.

II. APPROXIMATION METHODS

A. Variation Methods

Consider the functional

which is defilled oil tile class of fullctlolls [)(]. Fol'
X to belong to the class [y] it must have the asymp-
totic behavior
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where Q„and ~„are, respectively, eigenvectors
and eigenvalues of A,, the hydrogen-atom Hamilto-
nian, and c„are arbitrary coefficients. The first-
order variation of I due to a variation in X about P
ls

5p-P 5a„ge ~~' as t-~, (io)

51(y)= ~!!dt(y ja+ V-f —j5y} .
Bt

The variation is subject to Eq. (8), but is otherwise
arbitrary; therefore from Eqs. (2) and (8),

&(0)=~~(x)+Ejc.I'=&(x)=1,

and hs the functional N(X) is not only stationary
about the value of one, but all higher-order vari-
ations also vanish.

Consider an approximate or trial vector X = g»
located in a selected subspaee H„spanned by the
basis set (QJ". We take H» to be the closed linear
envelope of the set of vectors Q„, a=1, 2. . . , ¹

The basis set may include continuum eigenvectors,
but we will not distinguish these vectors from the
discrete vectors. The trial vector can be ex-
pressed as follows":

where, of course, 5a„ is the error in the approxi-
mate transition amplitude c„. Using the fact that
h and V are Hermitean operators, and integrating
Eil. (9) by parts, we find

5f(tt) = -i+a*„5s„.

Note that the functional I, shown in Ec[. (7), is the
functional" assumed by others ' to be station-
ai y. As showil by Eil. (11},this functional is sta-
tionary only if it is defined on the class of functions
which have the exact form of the true wave function
as t ; in this case 6a„-0 as t -. Such a class
of functions is very abstract, and available trial
functions, which reflect our ignorance of the exact
nature of the true wave function, do not belong to
this class.

We define the functional

ON=0,

J=0,
I=o,

(15)

(i8)

for some vector in the form of Eil. (14}, and the
problem is to determine this vector. However,
since each function c„(t) is expected to represent
in the limit t- ~ a possible transition amplitude,
Eil. (15) is trivially satisfied and thus of no use in
fixing the set of functions (c„(f)j. If we reiluire
that"

and the problem is to determine the set of func-
tions c„(t) such that P» approximates P. In essence,
we assume the subspace II„that @re have selected
is a good choice"; if so then tj! is contained in it,
and

(18)

«W= -»'»(Zl». I'),

and hence the functional

&(x) = -~(x)+Zc*.(x)c.(x) (12)

is stationary for a variation in X about P subject
to Eq. (10). For X=/,

since

z(y) =o,

and therefore &(X) is a functional which in some
w'ay expresses the fact that the norm of g is sta-
tionary for the types of variations implied by Eq.
(10}. In addition, it can also be shown that

then both Eqs. (16) and (17) are satisfied in the
subspace H» Equation (1.8) is the usual set of
close -coupled equations one attempts to solve. "
The particular set of functions (c„(t))determined
by solving Eil. (18) will be denoted as jb„(t)$ in
order to distinguish them from other sets deter-
mined by some other method.

Suppose that in addition to the N-linear param-
eters c„(t), the trial function also depends on one
or several additional parameters g (for example,
the parameters $ could be nuclear charges in the
basis functions which are allomed to vary with
time, subject to the condition that they approach
unity as j t j~~ "); then from Eq. (12},



DA VID STORM

d =-i —d + — c„d =O.

Il.y.(t)l =o. (21)

Equation (21) coupled with Eq. (20) forms an iso-
perimetric problem; we find from Eq. (20),

(20)

Equations (19)and (20) are rigorously true, and
can be viewed as constraints upon any calculational
procedure.

A calculation procedure could be as follows:
One requires that the Schrodinger equation be sat-
isfied in the subspace H„, then

since from Eq. (13)""
lje. II= ilail=i. (23)

However, it is interesting to note that Eq. (28) also
shows that «j«» is not necessarily the best approxi-
mation to «j« in the subspace H». 3« If «j« is decom-
posed as follows:

4=4"+ f0",
where g» is the projection of g in H», and 5P is
a vector in the orthogonal complement to H&, then

II &-All= jl iit, lj+ll w "II .

The error vector in H», II 5«jI»ll, is not necessarily
Eel oy since

where A, is a Lagrange multiplier. Since A. is ar-
bitrary, we obtain

II&"-4.ll- II & ll-ll 4"II-0,
since

which yields an Euler-Lagrange equation for $:

while

Il& II- Z Is. l'-I

C. Tvm-Centered Expansion

(22)

As previously discussed, Eq. (21) yields the N
coupled equations for the N-linear parameters
c„(t). Equation (22) yields equations for the param-
eters $. It should be noted that Eqs. (21) and (22)
are the equations obtained by Cheshire" and by
McCarroll, Piacentini, and Salin' in the calcula-
tional procedure based upon the assumption that
the functional I is the stationary about the exact
solutions for variations belonging to the class
lx)

Finally it should be noted that the functionals
I,J, and N are invariant under the transformation
which moves the origin of the coordinate system
from proton 1 to the midpoint of %,(t) as long as the
functionals are defined on the transformed class

= Tx, where T is the unitary translation oper-
ator.

8. One-Centered Expansion

It is well known that the one-centered. approxi-
mation method of Eqs. (14)—(18) provides a meth-
od for constructing a convergent sequence of ap-
proximate wave functions g». The sequence con-
verges not only in the weak sense, '9 but also in
the strong sense, "i.e.,

jl e-e.ll-0,

In the first payer of this series it was shown
that although it is sufficient to solve Eq. (1) in
order to obtain the amplitudes for both excitation
and charge exchange, it is necessary in any expm-
sion in terms of the eigenvectors of the unperturbed
Hamiltonian h, to explicitly account for the contin-
uum of h„since the information needed to obtain
the amplitudes for charge exchange is contained
in the continuum. ' Therefore, one cannot con-
struct a good approximate vector P» in the sub-
space H& which is spanned by a set of discrete
eigenvectors of h„and so the one-centered ap-
proximation scheme is not a practical approxima-
tion method.

Consider the approximate vector

k»=b««(fN «. e "««'+ I (f)4~e ""'
where «j««« is the eigenvector of I«, which describes
the initial state, and «j«~ ls an elgenvector of II«2«

the Hamiltonian for the hydrogen atom for which
proton 2 is the nucleus. The approximate vector
can be written as

+Z& 4. IA &
"'" ' "f«(f) P„,

=+B„,(t)«j«„,e "~««,



so if the functions B„,(t) approach a limiting value
as t-~, (I)»8[y],and the subspace If» is defined s,s
the closed linear envelope formed by the set (j)„
and Q„I such that ( (t)„,l Q~ ) 40. Therefore, by
including a discrete eigenvector of A„ the subsyace
has been increased from H, (spanned by (t)„) to H»,
where H„contains a continuum. If we write JI& as

then initially the vector P» is located in H, ; as the
perturbation acts, projections build up in all of
H»; and finally as t -~, P» is located in the sub-
spRce of +g:

eigenvectox of a different representation, and in
that representation it is a possible final state of
the system}. However, it has been possible to
solve the coupled equations, and the absolute
square of b~ has a limit, Rnd it has been inter-
px'eted Rs the tx'Rnsltion pxobability fox charge
exchange. If me attempted to continue to Rdd more
basis functions to E(l. (24), then not only would the
functions b~ not have limits, but also the absolute
squax es mould not have limits; and hence it mould
be impossible to interpret these quantities as tran-
sition probabilities. '~ A similar problem is en-
countered in a pseudostate or Sturmian calculation,
and vrill be discussed in the third payer of this
series.

which is just the subsyace of H (the complete
space) in which the rearranged state Q~ and Q,
are located.

How'ever, one should note that this approxima-
tion scheme is very different from the procedure
based upon the one-centered expansion. Consider
the I'atio of tile projections of $ lIIto the two sllb-
spaces H„and H„., where n and e axe continuum
indices; we have:

The same ratio for the approximate vrave function
determined from the one -centered approximation
scheme 1s

D. Two-Centered Travehnl-Orbital Expansion

Consider the transformed functional

)( ")=f f(t{x h +v"-i(—) x ) l()l).

The set (P „) forms a basis for the system. Trans-
forming the set (Q~], we obtain

and the set ($„2] also forms a basis for the system.
In addition, the basis functions from eithex' set
have the same origin of the coordinate system;
hence in the two-centered expansion

while from the two-centered approximation scheme
it is

Now, the absolute value of a„(b„}is independent of
the absolute value of a„.(b„), except for the rela-
tionship expressing yrobability conservation;
while E(l. (25) shows that in the two-centered ap-
proximation scheme these amplitudes are depend-
ent. The two-centered expansion has provided the
continuum needed to descx1be the xeRx x Rnged stRte,
but a certain amount of flexibility in this subsyace
has been lost; and hence, there is an error in
the calculated charge -exchange amplitudes besides
the usual truncation errox' incurred by the use of
the one-centered approximation scheme.

This process cannot be continued. 22 A tacit
assumption in E(l. (24) is that Q~ describes a re-
arranged state so that b has a limit as t-
This is of course not true; the electron in a re-
Rx ranged state in this representation must have a
linear momentum which is not accounted for by the
second term of E(l. (24) (remember that (j)~ is an

k=1 n=l

the functions b~(t) determined from the coupled
equations Wll have limits as t -, and ean be
interyreted as transition probabilities. In addition,
since the transformed basis functions approach the
syacial part of the traveling atomic orbitals, a
possible trial function could be written as follows:

which 1s t118 customary 4%0-centered tx'Rvellng-
orbital expRnslon.

The above discussion concerning the tmo-state
ayyx'oximation in the two-centered method would
of course be unchanged for the ease of the tmo-
eentered traveling-orbital expansion. Noir con-
sider the vector'.

k= j.

It couM be that the subspaee selected by the above
expansion, H~.,
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{If» '. Q,*„Q„,and all Q„, such that

&e.', I e,'. & - & e.', Ie.'. & «}
is really not different from H&,

not likely different from the number that overlap
with $22. However, the set of functions (b~; n = l,
Ã} determined by requiring that

e„x, h +V -i — ~ =0,

%here +g is of course

[If„:P„andall Q„, s ch that (g, [P ) e0}.
For example, suppose that Q„and $22 are the
transformed 18 and 2s orbitals, then the number
of eigenvectors of h, which overlap with Q~ is

4~k+V -i — g, =O,

mould in general yield different values for the tfansi
tion probabilities for N =2 than for N =1; for con-
sider the ratio of the absolute value of the projec-
tions in H„and 0„".

Therefore, even if the addition of two more states
has not increased the size of the subspace, it has
provided for incxeased flexibility in the subspace.
Consequently, for a trial vector of the form of
Eq. (26), an increase in N provides in general for
an increase in the size of the subspace, and for
an increase in flexibility in the subspace needed to
describe rearrangement.

One could ask if this approximation scheme pro-
vides a procedure for obtaining a converging se-

quence of transition probabilities or cross sec:-
tions. More precisely, one could ask if the cross
sections determined from this process converge
to the exact value of the cross section, or if this
is not true do the numerical values of the cross
sections determined in this process converge to
a definite value V Consider the first question. 8
we proceed to the limit N- ~ (again this is meant

I I I I I I I I
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FIG. 1. Cross sections for the 1s-exchange reaction
vs the number of states used in coupled-state calcula-
tions. Points have been calculated by linear interpo-
lation in Tables II, III, and IV of Ref. (9).

2 4 6 8 IO l2
Number of States

FIG. 2. Cross sections for the 28 reactions vs the
number of states used in coupled-state calculations.
The solid curve is for the 2s-exchange process, while
the dashed curve is for the 28-excitation process. The
left vertical scale is to be used for points 0 and S;
points S have been calculated by linear interpolation in
Tables II, III, and IV of Ref. 9; while right vertical
scale is to be used for points ~.
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symbolically), we are constructing setiuence of
subspaces which cover the complete space H; i.e.

and thus we are assured that g is located in the
space that we have constructed. However, as we

pass to the limit, the set of coupled equations
become redundant, and cannot be solved uniquely.
Therefore, this approximation scheme does not
provide a procedure for constructing a sequence
of vectors P„ that converges to g.

Further, we expect that this is more than just
an "in-principle" argument. The set of coupled
equations can be written in matrix form as fol-
lows.

iS —b=Gb,d
—dt ——' (27)

where b is a vector of elements 5„,, S is an over-
lap matrix and G is a matrix of interaction ele-
ments. To solve Etl. (27) one must invert ~S and
since only numbers of finite length can be used in
most numerical computations, we would expect
that as the size of the basis set is increased, the
S matrix would tend to become singular, and
Etl. (27) could not be solved unitiuely.

The second question can only be investigated
heuristically: One attempts to determine from
the various calculations the convergence of the
cross sections, and consequently there cannot be
an unequivocal answer. In Fig. 1, the cross sec-
tions for the 1s-exchange reaction obtained in the
two state approximation, ' the eight-state approx-
imation, ' and the 14-state approximation' are com-
pared graphically. Obviously, either the 1s-ex-
change cross section has converged within a rea-
sonable tolerance to a definite value, or the values
are converging so slowly that it would probably be
impossible to calculate the limiting value by this
procedure. In Fig. 2, the cross sections for the
2s transitions obtained in a two-state approxima-
tion, ' a four -state approximation, ' an eight-state
approximation, ' and the 14-state approximation
are compared graphically. We note that the con-
vergence is not uniform. For the cross section
at 100 keV, we again note that either the value has
converged for all practical purposes, or it would
be virtually impossible to calculate the limiting
value by this procedure.
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