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The impact-parameter method used to ea1culate cross sections in high-energy proton-
hydrogen-atom collisions is considered. By making use of the observation that the scatter-
ing is almost completely in the forward direction, a complete time-dependent impact-param-
eter model is obtained from. the Lippmann-Schwingex' equation. As a direct consequence of
the proper treatment of the continuum, bvo equivalent Schrodinger time representations are
found in which to describe the model system of a point charge moving along a specified tra-
jectory, and thereby perturbing a hydrogen atom. The unambiguous identification of the
dynamical states of this model system, and the unambiguous definition of transition proba-
bilities are obtained. The specification of the dynamica1 states of the time-dependent model
system can be conveniently incorporated into the customary impact-parameter method by
associating an additional boundary condition with the usual time-dependent Schrodinger equa-
tion. The famQiar trave1ing atomic orbitals are not dynamical states of the system, but the
discrete dynamical states approach the traveling orbitals as [t( —~; and hence, the set of
tx'aveling atomic orbitals provides a description of the system which becomes correct asymp-
totically. One Schrodinger representation is the natural repxesentation in which to obtain the
amplitudes for electronic excitation. The other representation is the natuxal representation
in which to obtain the amplitudes for charge exchange. A noniterative technique is used to
solve the integra1 equations which describe the evolution of the state vector in the two time
representations, and expxessions are derived for the amplitudes for excitation and charge
exchange. The amplitudes for excitation ean be expressed in terms of the usual Coulomb
integrals, and the amplitudes for charge exchange can be expressed in terms of usual ex-
change integra1s.

I. INTRODUCTION

A. Perspective

The impact-parametex' method, especially as
formulated by Bates and MeCarroll' and Bates, l

has been a most fruitful, approach for the study
of inelastic and rearrangement scattering in high-
energy proton-hydrogen-atom collisions (the keV
energy range). Approximate cross sections for
electronic excitation and charge exchange deter-
mined in extensive calculations have been re-
ported recently. ' ' This approach has crys-
tallized into a definite model, which has been
introduced by a series of postulates. a 9 Some
impbcations of recent work, .

s' ' however,
stimulated us to examine the fundamental basis
of this model and the calculational procedure used
to determine the approximate cross sections. This
paper is the first in a series in which ere hope to
establish from first principles the time-dependent
impact-parameter model, and to elucidate certain
aspects of the ealculational procedure. The model
and its evolution has been clearly described by
McDowell and Coleman. ' However, to establish
a perspective for this work, we shall briefly
summarize some of the important elements of

their review, and illustrate what appears to us to
be fundamental inconsistencies raised by recent
w'ox'k.

In the impact-parameter model, one assumes
that the nuclear motion can be considered sepa-
rately from the electronic motion; usually the
Born-Oppenheimer separation is given as the
justification for this assumption. ' The px'otons

are assumed to be distinguishable and to move
along rectilinear trajectories separated by the
impact parameter. " More precisely, let the
vectox R denote the position of proton 2 with re-
spect to proton 1, and 1et the vectors r„r„and
r, respectively, denote the positions of the elec-
tron with respect to proton 1, proton 2, and the
midpoint of R. The origin of a stationary coor-
dinate system is chosen at the midpoint of R with

axes aligned so that the relative motion takes
place in the F-g plane; then the protons move
according to

R(t) =b + ctZ,
where b is the impact-pax'ameter vector in the
F Zplane, and-c is the velocity of the incident
proton. It is assumed that the electronic motion
is governed by the Schr5dinger equation
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with the initial condition

limy=y,
a

and with the model Hamiltonian

(2)

(2a)

where p, = —,'mu, and where Q„and e„are, respec-
tively, discrete hydrogenic eigenfunctions and
eigenvalues. The upper sign applies if k =1 while
the lower sign applies if k =2. The set of unknown

functions (5„»(t)} are determined from the system
of equation

4~ II —iw g =0,

gl2 +2I

Ir+»K(f)I ft(t) ' (2b)

y» = Z [&.1(f )4'. 1+&.»(f )@.»l

where 4„~ is a traveling hydrogenic orbital cen-
tered on proton k:

x exp [-(i/g) (e„+—,
' mu')f],

where m is the electronic mass, and g the elec-
tronic charge. Transition probabilities are to
be determined from Eq. (2) for constant values
of the impact parameter and velocity, and cross
sections are determined by integrating the transi-
tion probabilities over all values of b.

There have been attempts to justify this model
u postezioris: one attempts to show that certain
quantities, such as transition probabilities or
cross sections, obtained in this model correspond
to the same quantities obtained from the complete
quantum-mechanical treatment. In the limit of
high energy, the equivalence of the approximate
cross sections for excitation given by arbitrary
orders of the Born approximation in the two treat-
ments has been established ~4 Mc{ arroll and
Salin~' have generalized the justification by allow-
ing for the possibility of rearrangement; and have
shown that in the limit of infinite nuclear mass
the transition amplitudes obtained in the two treat-
ments also correspond (apart from a phase factor),
if one accepts the assumption of the uniform con-
vergence of the expansion coefficients of one
formal expansion to the expansion coefficients of
another formal expansion. Although this assump-
tion seems impossible to justify, ' especially for
rearrangement scattering, the work of McCarroll
and Salin" does indicate that it is formally possi-
ble to define an equivalent impact-parameter
model. '

It has not been possible to obtain an exact solu-
'tioll to Eq. (2)' illstead, approximate solll'tlolls
are generated by expressing a wave function as
a two-centered linear combination of a finite
number of traveling hydrogenic orbitalsm':

m=1, . . .N, k=1, 2

with the initial condition

&.»(-")=5.1 5»1,

(5a)

where it has been assumed that the traveling or-
bital 4&, describes the initial state of the system.
The quantity

I&.»( )I'

is interpreted as the probability of the transition
from state 4&, to state 4„.

Equation (2) is commonly referred to as an ex-
pansion, the set [O„»}as a basis set, and the
fllllctlolls (5„»(t )} as expalls loll coefflclellf8. ln
recent years much research has been directed
towards determining the rate of convergence of
Eq. (3) as the basis set is enlarged, '» ' ""
and searching for new basis sets (nonhydrogenic
traveling orbitals) with improved convergence
characteristics. ' ~ ' %'ilets and Qallaher' used an
eight-state basis set in their calculation, and for
a few energies repeated their calculations using
a 14-state basis. From their results and other
arguments, %'ilets and Gallaher' concluded that
the hydrogenic expansion was converging slowly.
However, numerical problems caused some of
Vfilets and Gallaher's' results to be inaccurate,
and Rapp and Dinwiddie' repeated these calcula-
tions, and concluded that the expansion, at least
as far as the cross sections for 1s exchange and
the transitions to the 2s states are concerned,
is converging fairly rapidly. In an attempt to use
a basis set with improved convergence character-
istics, Gallaher and %'ilets6 used a traveling
Sturmian basis set. The Sturmian functions form
a discrete complete set, and thus in principle
one could account for the hydrogenic continuum.
However, Gallaher and Wilets' demonstrated that
the Stux mian basis has poor convergence proper-
ties. Part of the argument leading VVilets and
Gallaher' to the conclusion that the hydrogenic
expansion was slowly convergent was that the
approximate wave function, Eq. (3), does not ade-
quately represent the system in the middle of the
collision. This observation led Cheshire,
Gallaher, and Taylor' to use a pseudostate expan-
s&on. Certain members of the basis set were ar-
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bitrary functions constructed to provide a large
overlap with the lower bound state of He'. No
attempt has been made to determine the conver-
gence of such an expansion.

The work of Gallaher and%'ilets' with the
Sturmian basis set, and that of Cheshire, Gallaher,
and Taylor' with the pseudostate basis set, raises
a fundamental question concerning the impact-
yarameter model, and the calculational procedure
of Eq. (5). In these approaches it is possible to
obtain transition probabilities which do not have
limits as t-~. For large t, the expression for a
transition probability can be written as the sum oi'

a constant term and a time-varying term. In the
Sturmian calculation the time-varying term has
been ignored. ' '9 Apparently there are also at-
tempts being made to show that the time average
of such a transition probability is a constant, and
this average should be interpreted as a transition
probability. Now the language of the impact-pa-
rameter model is that of time-dependent perturba-
tion theorym: 'She eigenvectors of some unper-
turbed Hamiltonian form the basis of dynamical
states available to the system. Initially (t--~)
the system is described by one of these eigenvec-
tors (a, for example). Subsequently, a time-
dependent perturbation acts upon the system, and
the state vector evolves according to the Schrb-
dinger equation [or equivalently transforms under
the unitary time-evolution operator U(t, f ' = -~)].
The probability that the system has made a transi-
tion to another dynamical state (P, for example)
is

which is a constant. Part of the reason that one
can obtain transition probabilities that do not have
a limit as t -~ is that the impact-parameter
model as postulated is incomplete. Qne needs an
unambiguous identification of the dynamical states
available to the model system, and an unambigu-
ous definition of a transition probability such as
Eq. (6). Equivalently, as we will show, one needs
to specify the boundary conditions associated with
Eq. (2} in greater detail. "

Finally, the expansion shown in Eq. (8) is not an
expansion in the normal sense, and one should not
expect it to converge to the solution of Eq. (2).
The reason for this is clear: 4„, and 4 are mem-
bers of two different complete sets, and as one
proceeds to the limit, the basis set becomes lin-
early dependent. Qf course, in principle, any
finite set of these functions forms a linearly inde-
pendent set; however, in practice, since only
numbers of a finite length can be considered in
most computations, the problem of redundancy
might be encountered long before the limit is

approached. Equation (5) would not be sufficient
to determine the set of unknown expansion coef-
ficients. Qne must thexefore question the nature
of the calculational procedure provided by the
two-centered expansion, and the meaning of the
numerical convergence, or lack of convergence,
of the cross sections for the various processes."

B. Objective

Starting with either time-dependent collision
theory22 ' ~ or time-independent collision the-
ory, "-"some aspects of the impact parameter
model have been justified a panion. However, this
work has not been in sufficient detail to provide
a complete time-dependent impact-parameter
model in which transition probabilities are un-
ambiguously defined, or in sufficient depth to
deal with the special problems introduced by the
possibility of rearrangement. In this work, we
start with time-independent scattering theory, "
and by making use of the observation that the scat-
tering is almost completely in the forward di-
rection, obtain the impact-parameter model: i.e.,
obtain Eq. (2}, the missing boundary condition,
and, in general, the Sehr5dinger time represen-
tation (the identification of the dynamical states,
the time evolution operator, and the definition of
transition probabilities). A noniterative technique
is used to formally solve the integral equations
of evolution that are obtained, and expressions
for "exact" transition amplitudes are derived.
These expressions yield "exact" amplitudes in
the sense that as standard numerical procedures
are refined the calculated amplitudes approach
the exact amplitudes.

In the second paper in this series, we consider
the caleulational procedure provided by the two-
centered expansion. It has been attempted to
justify the two-centered expansion and the Sturmi-
an or pseudostate expansions as being possible
trial functions in a variational calculation. '"'
Equation (5) follows by requiring that a certain
functional be stationary. ' "'"" However, in
the second paper of this series we show that this
functional is not stationary about the exact wave
function for the variations represented by these
trial wave functions. The convergence of the two-
centered traveling hydrogenic orbital expansion is
also discussed. Variational methods based upon
functionals which are stationary about the exact
wave function for the types of variations repre-
sented by available trial wave functions are given
in the second and fourth papers of this series.
In the third paper, the use of nonhydrogenic ex-
pansion functions, such as pseudofunctions, is
discussed.
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Since we are interested in obtaining not only the
impact-parameter equation, but also the definition
of transition probabilities, which implies that the
missing boundary condition associated with Eg. (2)
must be found, we begin with the Lippmann-
Schwinger equation written in a form to describe
electronic excitation. %'e choose the relative
linear momentum as one of the quantum numbers
characterizing the abstract vector representing
the three-particle system. Since the scattering
is observed to be almost completely confined to
the forward direction, we treat the relative linear
momentum as an "almost good" quantum number,
and thereby obtain, from the Lipymann-Schwinger
equation, a reduced equation. The time-dependent
theory is obtained by making the correspondence
with time-dependent collision theory through the
8 matrix. " '4 The reduced equation is by deriva-
tion the equation fx'om which the amplitudes for
electronic excitation are to be extracted. Trans-
forming the Lippmann-Schwinger equation to a
form which desex ibes rearrangement scattering, "
we obtain a second reduced equation. By deriva-
tion, this second equation is the equation from
which the amplitudes fox charge exchange are to
be extracted, and the fact that there are two equa-
tions in this model is a direct consequence of the
proper treatment of the continuum. We show that
it is sufficient to solve either equation to obtain
the amplitudes for excitation and charge exchange;
however, in the solution it is necessary to account
for the hydrogenic continuum. Finally, we trans-
form the simplest reduced equation into the coor-
dinate system in which Eg. (2} is written, and
find that the set of traveling hydrogenic orbitals
are not the basis of dynamical states of the unper-
turbed Hamiltonian. It is shown, however, that
the discrete eigenvectors of the unperturbed
Hamiltonian approach the traveling orbitals as
( t [-~; hence the traveling orbitals provide a
description of the system which becomes asymp-
totically valid.

II. IMPACT-PARAMETER MODEL

The observation that the scattering is a1most
completely in the forward direction indicates that
the incident proton travels in essentially a straight
line, and so, to a good approximation, the protons
can be assumed to be distinguishable. Thus we

define the following arrangement channels to
classify the possible modes of fragmentation of
the three-particle collision:

arrangement channel 1: proton 2 is moving free
with respect to hydrogen atom 1;

arrangement channel 2: proton l is moving free
with respect to hydrogen atom 2;

arrangement channel 3: proton 2 is moving free
with respect to the ionized hydrogen atom 1.
Assuming that proton 2 is the incident proton, the
states of axrangement channel 1 correspond to
excitation of the hydrogen atom; those of arxange-
ment channel 2 to charge exchange; and those of'

arrangement channel 3 to ionization. The following
arrangement channel Hamiltonians are defined

5 ~,2 S2 ~ s e
Rl 2 r&

+k~
2M'

where for arrangement channel i, R& is the rela-
tive coordinate vector, rq is the internal coordi-
nate vector for the hydrogen-atom Hamiltonian

h&, I& is the relative mass, andm& is the re-
duced mass. As is customary, we will assume
that the electronic mass is negligible compared
to the mass of the proton, and so the reduced
mass becomes the electronic mass, and R& be-
comes an interproton coordinate. The arrange-
ment channel interactions are

V, =e'/fl, —e'/[ r, -R, ),
V, =e'/8, —e'/ ( r, —R, ( .

Note that the ax x angement-channel interactions
vanish faster than 1/ft, as 8& ~. The Hamil-
tonian for the complete system ean be written as
follows:

The discrete eigenveetors of H, and H, form
sets of vectors which respectively span the sub-
spaces subtended by arrangement channels 1 and

2; these sets of vectors will be denoted as follows:

(e„(K „,sa)j,
where a is an arrangement-channel index, RK
the relative linear momentum, and ne the set
of quantum numbers needed to specify a bound
state of the hydrogen atom in which proton a is
the nucleus. These vectors are normalized as
follows:

(e (K„'„,, n'o)[c (K„„,aa})=s(K„'„,-K „)5„,„„„,
and thus in the coordinate representation,
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(I/2s)s/2skx~„~ R~p P~ )

where P„„is a discrete eigenvector of the hydro-
gen atom Hamiltonian II: . The magnitude of the
linear momentum is, of course,

gunn = 42M) (E -e„)]'/',
where e„ is the discrete eigenvalue of h cor-
responding to eigenvector P„„. The continuum
eigenvectors of H, andH, belong to the space of
arrangement channel 3, and they are written as
follows:

C+ =(1/2s)'/'e'~~' "~y'(r k )

where P„' is a continuum eigenvector of h which
satisfies outgoing boundary conditions. These
vectors are normalized as follows:

( e„'(K„',R„')[ C„'(K„,lF }& = 8(K.' —K„)8(R„' -K. ),

suppressed, and the continuous indices for the
eigenvectors of h are not distinguished from the
discrete indices.

The complete state vector for the system is the
solution to the Lippmann-Schwinger equation:

@+(K«, il) =C,{K,g, i1)+ G~+(E)V,%"(K,(, il), (8)

where the Green's function is

G~+(E) = lim
1

Q+ g + 2g

and it is understood that the limiting process is
to be taken in a particular representation. In the
coordinate representation,

G,'(R„r,;R,', r,';E) = —„
2m@

/ATE/ )R -R Ixz (g g (
0'1{ri)4*1( l)

g f d'Z„e„Ct=1, (7)

and a set of these vectors forms the orthogonal
complement to the corresponding set of discrete
eigenvectors spanning the space of arrangement
channel 1 or 2. The total set is complete:

and

g+ (R„r,) = 4~(R„r~)

+ f d'R,' fd'r,' G+, (R„r„R,', r,')

x V,(R,', r,')4+(Rf, r,') .

where the arrangement-channel index has been Consequently, as R, -~,

M ~4E'~~ R~

4, + Q —2, J d'H,' f d'r,' e '~&" ' ~& p*„,(r,')V,4+ p„(r,)
n3, 1

+ (other terms which decrease faster than I/R, ), (9)

where the sum is only over the open-channel in-
dices. The amplitude for the transition from the
state 4, to another state of arrangement channel 1
is from Eq. (9}:

A.,(K,„,nl;K«, il}= —(I/2sg') f d'R',

xf d'r,'e "is' (Q*„(r,')V,4+.

The state vector also contains the information
from which the amplitudes for charge exchange
or ionization could be obtained. However, this
information cannot be obtained from Eq. (8) be-
cause it is contained in those terms of Eq. (9)
which are decreasing faster than I/R, (in particu-
lar those terms corresponding to P„, in the con-
tinuum). "'" To obtain this information, the
Lippmann-Schwinger equation must be transformed
into a more convenient form. " Consequently,
each arrangement channel will be considered
separately, and when the meaning is clear, the
arrangement-channel index will be suppressed.

A. Arrangement Channel 1

From the observation that the scattering is
almost completely in the forward direction, it
is to be expected that the transition amplitude
is a strongly peaked function of K„about K&,
1.e.,

A, (K,„,nl;K«, il)'=5(K,„—K«)A, (nl, il;K„),
or in other words, K,&

is an "almost good" quan-
tum number. Therefore we write"

4'+(K«, il)=( K«) X(i1;K„),
and from the Lippman-Schwinger equation,

IK„)q=C, + G~+(E)V, I K„&q. (10)

Inserting the complete set of states of H, [Eq. (7)]
and changing to a full equals to sign, Eq. (10)
becomes (suppressing the arrangement-channel
index)
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IKg)x=)Kg)pg+gf d K„

4. l K. &&K. l e'.
x(R2/2M) (K'2-N) . v»l K») x ~ (11)

where

K»'=K', +(2M/g') (e» -e„).

In a partial coordinate representation, where"

(R,I(l K»&x) =-(1/2»»)' '
)( e»lf» ~ R»X(R }

and

V, (R,) =-( R» I V» I R» & .
Equation (11}becomes

(12)

Since
% g f

3 ~«Kg ~ (R~-Rj) ~ ~«E«)Ry-R~t

2m g2 2M ~I2 ~ +iq 2~2 H HI

Equation (12) becomes

e [«+3[Rl Rgl «~) (Rl Rl)j
x(R,)= 4g+ E A. — . &'&l )»)»), )

0'. &)Rl)x)Rl)),2' S 1 1

where

K=K 1 ~'»-"}"'
+ gg gg

which since the incident kinetic energy is large, we approximate as

K» =K»+(M/g') [(e» -e„)/K» ] .
This is, of course, a good approximation for the bound-state contribution to the sum in Eq. (13), since

e„& 13.6 eV, fi'FP, /2M & 1 keV .

(13)

The approximation begins to fail when the kinetic energy of the ejected electron approaches i keV. How-

ever, it is expected that these terms in the sum of Eq. (13) are negligibly small. Making this approxima-
tion, we obtain from Eq. (13}

M», exp[iK»l R, -R, I -iK» '(R -R')] .
M (&» -e„)I R, -R',

I

II 1

or after removing the complete set of states of h,

M, , exp[iK, I R, -R,'I -iK» (R, -R,')] i (e» -h&}IR»-R(lx("'=4'» -2~ "'"' 'ln '
g I

' ' '~g (14)

where the velocity is defined as v =IK, /M. We assume that the direction of K, is Z, and by following
Glauber, »9 we obtain a high-energy approximation to the integral operator of Eq. (14) (See Appendix A for
details)40; Eq. (14) then becomes

g gf
X(R,) =4)»-g—e g(e»-h, )— dZ' exp g (e» -h, )—V,(X, Y, Z')X(X, Y, Z').

Note that the values of X and Y are constants of the motion. Reinserting the complete set of state of h„
and letting Z become large, we obtain

X(R,)- )i)»+ Q~ 4)„-— dZ'exp
&

(e» -h, ) V,(Z')—X(Z') ~4)„exp —(e» -&„)—

Consequently, we see from Eq (9) that the. transition probability for electronic excitation is given in this
approximation by
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In time-independent collision theory, the wave packet representing the incident particles is replaced by a
plane wave for which a point of constant phase moves according to Z =et. Therefore Eq. (1V) can be writ-
ten equally as well as

t„,= t„. (t/-tt)f at=etett' ' t~ "V(vt)e(vt))
Note that because of the established correspondence between time-independent collision theory and time-
dependent collision theory, "the time t is "real time, " and not just a convenient parameter. '

Equation (15) can be written as follows:

V(vt)=tt (/ t)I"-te" t'It ft-"ttt e "t'"-t "tt "-('t( t')X(vt'). (19)

Defining a new vector by the unitary transformation g =e (' " '&')(, Eq. 19 becomes

I et
(i)(~t ) (g)

e-(e /h) &gt e-(f /h)h~t" , (it re(k /h} h~t' V (()tt )(()(~t t )k

which by iteration can be written
VC

)g)
= (t)) e -('/h} '}' — (ft t e-« /") hy«-~'} V ((}tt)e -('/» h g' ~

(20)

fPt ot'
dt 0 -( /h)hg(t-fe}V ( t ) -(i/h) () '-t ) V (gt t )e-(k/h) h kN

y + ~ ~ ~

~ he

or

(i) (()t ) = U, (t, t ' = -~)Q;,

v, (t, t'=- )=v', (t, t'=- ),+Qv",(t, t'=- ), (21)

Uo(t t t ~) e ((/h) h~t (21a)

n ot et "~n-j.
v",(t, t'=- )= -- dt, dt, . . . dt„v', (t, t,)v, (~t,)v', (t„t,)

~ oe ~ 4CI

v', (t„„t„}v,((t„}v,'(t„,t'=- ).

It shouM be noted that the series defining U„Eqs.
(21), is the usual expansion in powers of V, for
the unitary time-evolution operator obtained in
time-dependent perturbation theory. ~o Therefore
we have obtained the Schrodinger time represen-
tation for the model system of a point charge
moving along a prescribed path and perturbing
a hydrogen atom. The eigenvectors of h, form
the basis of dynamical. states available to the
model system. The system is initially described
by a particular state (g), . Subsequently, the per-
turbation of the moving point charge V, acts upon
the system, and the state vector for the system
g transforms under the unitary time-evolution
operator U, . The probability that the system has
made a transition to the state (g)„ is

with the boundary conditions"

e-(f/h)cg ~t as g (22a)

xe "t""' (vt) t(v)t))t

Equivalently, one can describe the evolution of
the state vector according to a Schr5dinger equa-
tion; taking the derivative of Eq. (20), one obtains

~ 8
igt (() =[/}, + —v, (et)] ((),
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Wn I

where the arrangement-channel index has been
explicitly indicated, and where the amplitude for
the i -n, transition is

+ng41 n J,

(22b}xx(')" &" 'X (x))( (x) ))
Note that the boundary condition, or an equivalent
restriction, "at t -~ is not specified in the pos-
tulated impact-parameter model.

(24)

Following a procedure entirely analogous to that
above, we reduce Eq. (24) and obtain

tl 2

-«/gg t ~ -(k /h) 0 t

ed from the second term of Eq. (23). Again it is
assumed that K~& is an "almost good" quantum

number; therefore"

q"(K„,il) = lK„}l((il;K„),
fg

I K11}X E ff + @1

+ G+(E)V, l K„}g .

8. Arrangement Channe1 2

As discussed, Eq. (8) is not in the form to ex-
tract the amplitudes for charge exchange, and as
shown by Lippmann, "Eq. (8) must be transformed
to a more suitable form. With a few algebraic
manipulations, Eq. (8) can be written in the form
convenient to describe rearrangement:

q+(K„, il) = " . 4,(K„,il)S -a, + sq

x f" d g
) e((/h) hht' V (~ti )y (~tg ) (25)

e -((/h)h h
1

y vo(g t) ~)y (26)

The transition probabilities are obtained from the
second term of Eq. (25); hence by this approxima-
tion the probability for charge exchange is

The first term in Eq. (25) follows from the source
term in the Lippmann-Schwinger equation, and

obviously corresponds to

+ Gh (E) Vh@'+ (K,1, i l), (28)

G~+(E) = lim
1

q~+ E -H2+ t'q

and the limiting process (q -0) is to be taken in
a particular representation. The first term of Eq.
(24) is a source term; it is orthogonal to any state
of arrangement channel 2 in the limit g, -~."
Consequently, the ampbtudes for transitions to the
states of arrangement channel 2 are to be extract-

(i/I}—f dt'e('/h&"h'

2
x v, (ut ')y (~t')

which can be written as follows:

where the evolution operator is defined by the
series

(27)

v, (t, g'=- )=v,'(t, g'=- ) +g v( ,tt'=- ), (28)

v,"(t,t'=- )=( i/fg}" f"dt, — f""-1dt„v,'{t,t,)v, (vt, )vo(t„t,)

(28a)

The SchrMinger equation is easily obtained:

ii f=[I1,+—v, (vt)] g.8

The boundary conditions are~'

y(t)-Q y„h( ((('„hl P„)

(29)

where

-« /5) g+2t + ~~nafl,

g ~ ~-«~» ~nm~ as g -'F52

A.„m)~= „~ — i 8 dt

xxx)")' 'V, (x))))(x)))
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Therefore, for the derived impact-parameter
model there are two time-evolution operators,
and hence bvo Schr5dinger equations. The two
Schr5dinger equations differ in the identity of the
protons and the boundary conditions that are to
be applied to the solutions. The initial boundary
condition associated with Eq. (22) is simple to

apply; while the initial boundary condition asso-
ciated with Eqs. (29) is in terms of the continuum
eigenvectors of h„and hence difficult to apply.
The fact that there are two time-evolution opera-
tors is a consequence of the fact that there are
two S operators~ [V(t =~, t' =-~)] for the com-
plete three-particle system.

By derivation, the amplitudes for excitation are
to be obtained from the solution of Eq. (22), while
the amplitudes for charge exchange are to be ob-
tained from the solution of Eqs. (29). However, we
note that in Eq. (22) or (29) there are the quantities

A„, &, or A~ &, which correspond in a mathemati-
cal sense to transitions from Q„ to the continuum
states Q„, or Q„, of the operators Ii, or h, . Fur-
ther, we note that in the mathematical sense,

that the kinetic-energy operator is an infinite
perturbation rather than a small perturbation.

Finally it should be noted that Eq. (22), for
instance, is written in a different set of coordi-
nates than Eq. (2) of the impact-parameter model.
Let &(t) be the transformation which at time t
translates the origin of the electronic coordinate
vector to the point 2R,(t). Associated with the
transformation 1'is the unitary operator T

2 (t ) &
(i jh)P ~ Rett)/a (32)

where p is the electronic linear momentum opera-
tor. Applying the translation operator to Eq. (20)
and with obvious manipulations, we obtain Eq. (2)
with the boundary conditions:

j(r, t)-p (rir)e &'/" ~'i' as t --~

~p t) ~r p)e-fi/h} ei i

as t -. (32a)

hence

The transformed basis vectors are related to the
old basis vectors by

or

(+ml, il + ~lil)

y, g&(&e2-&gag~ & (3o)

where

(34)

are the elements of the translation matrix. One
can demonstrate heuristically that as I t I-~,

pr p (rr' ) e (i/h) p(p

and thus it is sufficient to solve either Eq. (22) or
(29) to obtain both the amplitudes for excitation and

charge exchange. However, since the only over-
lap elements in Eq. (30) or (31) that are not zero
in the limit t -~ are those with continuous in-
dices, it is necessary to account for the hydro-
genic continuum. Note that in addition to the
perturbations V, or V, there must also be an
infinitely large perturbation, since transitions
to all states of h, or h, are possible. This of
course follows from the assumption that the in-
cident kinetic energy is very large [infinite in
Eq. (14)]. Consequently, we can see no connec-
tion between the separation of nuclear and elec-
tronic motion that we have obtained and the Born-
Oppenheimer separation, ' since we have assumed

which is the spatial part of the traveling orbitals
[Eq. (4)]. One should note, however, that the set
(g) forms a basis of dynamical states in which
the system is described for aQ times, while the
traveling orbitals provide a description which is
only asymptotically correct.

%'e will now consider other formal solutions
to the integral equations of evolution which might
be more useful for calculational purposes than
Eqs. (21) and (2&). In contrast to the iterative
procedure used to derive Eq. (21) or (2&), the
procedure is noniterative, and is based upon
replacing the integrals in Eqs. (20) and (25) by
quadratures: Riemann sums in this case. A cal-
culational procedure based upon this technique
has been used to "solve" the Lippmann-Schwinger
equation and thereby obtain "exact" scattering
amplitudes for some time-independent-scattering
problems, '~' The amplitudes are "exact" in the
sense that as standard numerical procedures are
refined the calculated amplitudes approach the
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exact amplitudes. It is hoped that the formal ex-
pressions given below, or similar expressions
obtained by replacing the integrals by other quad-
ratures, will also be useful for obtaining accurate
values for the excitation and charge exchange
amplitudes.

Equations (20) and (25) can be conveniently writ-
ten in atomic units as follows

Eq. (35) becomes

%(T) =pi —(i/v) f dT'e'"(" 'o-)
0

xV(T') e '+"-'o) q(T'), (36)

and according to Eqs. (22b) and (29b), the transi-
tion amplitudes (apart from an unimportant phase
factor) are given by

e-II'(r ro) -~ (2/ ) e- il'( -
o

&xi (t) =& AI l @(T)& -& 4t l 4(& (37)

(35)

where the index denoting the particular time rep-
resentation has been suppressed, and we have
defined

I'=i)/v, T =vt .
The limiting process TO -~ is understood; note
that by definition

lim e -' "2 o(tr«„, = I,
~en

0

where k denotes a particular time representation.
In practice l T l will be a large but finite number,

0
and will be chosen by the requirement that the
calculated transition probabilities be invariant
to further increases in l Tol. With the unitary
transformation, defined as follows:

Equation (36) will be used to "step out" the
solution @ from the initial state p, at To to the
state at 7, and this result will be used in Eq.
(37) to obtain an expression for the transition
amplitudes. Consider a time t, =to+ ~t, where
b.t is infinitesimal; from Eq. (36),

&0'~
q(T, ) =y, -(i/v) dT'e' I" 'o}

6

X V(T i) e-I r(r'-ro) @(Ti)

and from Eq. (3V),

Obviously this process can be continued; at
I'P =Pl ++4,

@(T ) ~ (i/v) idTi eiI'(r' ro}V(Ts)e--ir(r' ro) @(T~) -2 fr2 dTieir(r' ro) V(T-s)e-iI(r' ro}@(T'i)-
0 tl

=[I —iti t [V(T) +8'"( ' V(T) 8 '"+r }]+ (- t &t )2 8'"( ' }V(T)8-' "~"V(T)j y;,

and so at time t„
A~, (t,) =(y~l-i&t[v(T )+ e'"(~) v(T )e ' "(~')]lpi&+( peal( —it)t)'e' I~) v(T, ) e '+~}v[T )I pi&.

In general at the eth step, we find

+ ( y l( Igt)2[ I I'( )Vi)r( )
-41'(iir) V(T )+ ~, , sir(o I)iirV( )-~

I'( -2) Ii«Vr(T -)

+ e'"(" '}I«rV(T ) e I r(ar V&T )e - ri(n-2)6 ]ryl&

(38)

where the Nth contribution to the transition ampli-
tude is defined as follows. ' (int )2eir(oor)

j =0 k~Qyl"

)e-ir(2-I)or V(T )e-ir(toe)'
and where Vtr„ is the Nth-type interaction at time
t„; for example,

The various interactions appearing in Eq. (38) are
shown in diagrammatic form in Fig. 1. At time



t„, the number of interactions of type lt is

and the total number of interactions is 2". Ac-
cording to Eq. (SB) the amplitude for the transition
from P, to Pz is the matrix element of the sum of
diagrams shown in Fig. 1 between P, and PI. The
diagrams are, of course, a direct result of the
procedure used to approximate the integral opera-
tor in Eq. (S6) and in general other sets of dia-
grams mould be obtained by using other approxi-
mation methods. Finally, it should be noted that
the integrals appearing in the interaction matrix
elements can be performed analytically; for
example,

(40)

Essentially me assume that since E is large, the
product

exp
i (e, -a)dl

v(R -sl) q(R -st)

varies slowly within an interval 1/K and so most
of the contribution to the integral comes when the
exponential

4(gtR-K 4)

that is, for g parallel to K.
Let the direction of K define the positive s axis;

then in spherical polar coordinates the integral
can be written

l

�au
.-" -'' -"'a)

0 5

where Q~, (vo) is either a Coulomb or exchange
integral depending upon whether time representa-
tion 1 or 2 is being used.

We consider the high-energy approximation to
the integral operator in Eq. (14)".

g(f'ft'exp[i'(R-8'I -iK (R-R')1

fE4g

0 1
(AS)

where ]=cos 8 and E(6t, ], P) = V(R -0) g (R -4) .
%'e shall suppose that E is sufficiently smooth so
that the g integral can be integrated by parts
n times; the result is

&exp — ' IR —R'I)('(R'1(((R').

We le't 0 = R —R, and so the integral becomes

Since g is large only the first term vriB be taken,
and So

(A2)

[y(g 1)e kre y (g-1)e+kre jKS

and thus E(l. (A3) becomes

0
N-Interoctions

Sing(e
lnteroctions

Double
interactions

N-type
lnte r octions

FIG. 1. Sum of the interactions appearing in Eq. {38}in diagr~matic form.
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da, exP — 8 d E g=l — = -1 ex o

Since I).' is large, the second term is small compared to the first, and so E(l. (A4} becomes

mw~ i (a, -a)g *~, i (eg-a),
) ~(z, ) (g, )g 5 e

where in the last step we have used the fact that Z' =Z -z.
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