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The generalized oscillator strengths (GOS), which are essential factors in the Born cross sections, have

been calculated for the lowest 'P transitions in Mg, Ca, Sr, and Ba from the multiconfiguration
Hartree-Pock wave functions with two or three configurations each in the ground and the excited states.
The optical limits (f values) of the GOS agree with experimental values to within 12%. Theoretical data on
zero minima and subsequent maxima in the GOS are presented. Our data show that the resonance
transition in Ba is the most favorable one for experimental study of the extrema. Since the Born cross
sections vanish at the minima, the experimental study of the minima would reveal valuable information on

the validity of the first Born approximation, as well as on the magnitudes of higher-order effects not
included in the theory. Data for the integrated Born cross sections are presented also. Recent
electron-impact data on the resonance transition of Ca agree with the integrated cross section to within S k
for incident energies of 250 eV and higher. Our data show that the relativistic effects in the cross section for
Ba are minor compared to the correlation effect between the two valence electrons.

I. INTRODUCTION

The Born cross sections for the helium atom
have been evaluated mith a variety of w'ave func-
tions. ' ' These studies indicate that the Hartree-
Fock (HF) wave functions lead to the Born cross
sections within 10 to 20% of those obtained from
accurate mave functions for discrete dipole-
allomed transitions. Homever, for alkaline-earth
atoms, the HF mave functions produce poor optical
oscillator strengths (f values) for the resonance
transitions [(ns)"S- (nsnp)'Pj. ' ' For instance,
the f value for Ba from the HF wave functions is
-70% larger than the experimental value adopted
by Miles and Wiese. 9 Since the f value is closely
related to the generalized oscillator strength
(GOS), which in turn is the essential factor in the
(first) Born cross section, "'"we expect that the
HF mave functions mould give poor Born cross
sections also.

In this paper me present the result of a study
on the effectiveness of the multiconfiguration
Hartree-Fock (MCHF} wave functions of modest
sizes in calculating f values and Born cross sec-
tions for the resonance transitions in the alkaline-
earth atoms (Mg, Ca, Sr, and Ba).

The MCHF mave functions are mave functions
mith electron correlation included through the
configuration-interaction (CI) method. The con-
ventional CI method preselects a number of con-
figurations to mix, and then determines mixing
coefficients by the variational principle, mhile
keeping the mave functions for the selected con-
figurations fixed. The MCHF method" varies

both the mixing coefficients and the mave functions
for the selected configurations, thus alloming for
more flexibility in the variational procedure. The
MCHF calculations mere first carried out using
tmo configurations for 0, 0', and 0" by Hartree,
Hartree, and Swirles. '3 Recently, several MCHF
calculations have been performed on the first-rom
atoms and their isoeleetronic sequences, '4'" and
using relativistic mave functions for considerably
heavier atoms as mell. '6

As usual, me have chosen the wave functions to
be of the HF type, i.e., a linear combination of
the Slater determinants, and each determinant is
built from nonrelativistic orbitals. The radial
part of each orbital is determined numerically
by solving coupled integro-differential equations
similar to those in the restricted HF method. "
The angular part is the usual spherical harmonies.

The numerical procedure for the MCHF method
is somewhat more involved than that for the (one-
configuration} HF method; however, the reward
is morthmhile because the MCHF mave functions
are only slightly more complicated than the HF
mave functions. Indeed, me find that the addition
of one more configuration beyond the HF configura-
tion in both the ground ('S) and the excited ('P)
states is sufficient to obtain f values for the reso-
nance transitions mhich agree mith known experi-
mental data within V%.'

The effective charge for the valence shells is
a small fraction of the nuclear charge. Therefore,
direct relativistic effects on the valence orbitals
of heavy atoms are expected to be small. Hom-
ever, relativistic effects mill change the charge



distribution in the core aad this in turn may sig-
nificantly change the potenbal seen by the valence
electrons. We have estimated relativistic effects
for the resonance transition in Ba and found them
to be small. Thus it appears that for the other
atoms considered in this paper they are likely to
be small as well.

The GOS and therefore the Born erose sections
for these resonance transitions show zero minima.
The zero minima appear whenever the transition
matrix element changes sign at certain values of
the momentum transfer. The positions of the
minima and the magnitude of the subsequent maxi-
ma are sensitive to the details of the wave func-
tions. ' We present theoretical data on the first
minimum and its subsequent maximum. Other
extrema occur at larger momentum transfers,
and are too difficult to study experimentally.

In the neighborhood of a minimum, the effects
not included in the first Born approximation (such
as the distortion of the plane waves) dominate.
Hence, a careful experimental study of the minima
in the GOS mould provide a powerful test for more
advanced collision theories.

When the incident particle is much faster than
the orbital velocities of the atomic electrons, the
integrated (over the angles of the scattered elec-
tron} Born cross section can be expressed in
terms of a fem parameters, which are indepen-
dent of incident energy. "" These parameters
for the Born cross sections evaluated from the
theoretical GOS are presented, and the resulting
cross section for Ca is compared with recent
experimental data.

H. O'AVE FUNCTIONS

Our goal in the choice of configurations for the
MCHF wave functions has been to include, in
addition to the HF configuration, the most im-
portant leading terms in a complete CI expansion
for the mave function. By most important we
mean those configurations which enter with large
mixing coefficients in the CI expansion. The pre-
cise meaning of large is determined, in part, by
the properties which will be calculated with the
MCHF wave functions; in the present case, oscil-
lator strengths. Thus, any one of the configura-
tions not included will make a small contribution
to the property under consideration. This is not
to say that the cumulative effect of omitted con-
figurations may not be significant. However, me

do expect to obtain significant quantitative im-
provement to the HF wave functions by this choice
of configurations. At the same time, me retain
mave functions of simple and eompaet form and
those for which physical interpretation of key

4 „=(ns)' =HF wave function,

e„=a(ns)'+ b(nP)',

e„=a(ns)'+ y(nP)'+ c(n'd)',

(1a)

(1b)

(1c)

where a, 5, and c are configuration-mixing co-
efficients, and (ns), (np)', and (n'd)' stand for the
Slater determinants. The determinants are the
'8 components of the indicated configurations for

correlation effects is straightforward. "
We have chosen to correlate only the two elec-

trons in the valence shells of the atoms even though
the correlation-energy contributions from core
orbitals mill be larger. We have done this because
the valence orbitals overwhelmingly determine the
oscillator strengths. Core correlation effects will
be indirect, and me expect them to be less sig-
nificant. We have, for both the initial and final
states, constructed all possible symmetry allowed
configurations by distributing the two valence
electrons into a set of one s, one p, and one d
orbital. (For the 'P state of Ba, we also added
a 4f orbital. } Configurations constructed in this
way have been described as "internal" configura-
tions 2' These configurations will have large off
diagonal matrix elements of the Hamiltonian among
each other. Further, the diagonal elements are
likely to be close i,n value. Thus, these configura-
tions, as me shall see belom, mix strongly with
the HF configuration.

The MCHF method is ideally suited to determine
wave functions for this choice of configurations.
The fact that only a few orbitals are used, in
addition to the occupied HF orbitals, means that
the MCHF equations do not become much more
complicated than the HF equations. To have the
maximum benefit from these orbitals it is worth-
while to have them determined by the most reliable
method, namely, by the variational method. Our
MCHF wave functions mere obtained by direct
numerical integration of the radial orbital equa-
tions that result from the variational method. "
In this may, me have avoided the problem of the
choice of nonlinear parameters of basis functions
inherent in analytic expansion self-consistent-
field methods. " This is of particular advantage
for heavy atoms where the optimization of these
nonlinear parameters becomes quite tedious.

The nonrelativistic HF mave functions for the
ground state of alkaline-earth atoms have the
configuration (ns)"S, where we have suppressed
the notations for the core orbitals for brevity. For
the ground state, we expect (np)"8 to be the most
important configuration to add. The next config-
uration to add is (n'd)~ '3, where n' =n —1 (except
for Mg, where n' =n =3). The three wave functions
we used are



GENERALIZED OSCILLATOR STRENGTHS. . .

the valence electrons. Since both the atomic
orbitals and the mixing coefficients are allowed to
vaxy in the MCHF method, the ns and the a, for
instance, in%„and 4„are not identical, though
we have used the same symbols for simplicity.

In Table I we present results for the 'S wave
functions of Eqs. (I); namely, total energies,
mixing coefficients (a, b, c) and expectation values
of y for the n~ orbitals. The energy improvements
obtained by adding np' and n'd' are small, of the
order of 1 eV. However, the mixing coefficients,
particularly b, axe rather large. Note that the

(x)„,are stable as additional configurations are
added.

For the lowest 'P state, the HF configuration
is (nsnp). In this case, we expect the (npn'd) 'P
configuration to be the most important one to add.
%e used only two wave functions for the excited
state, i.e.,

4 „=(n&np) =HF wave function,

4„=a'(nsnp) + b'(spy'd),

(»)
(2b)

TABLE I. Vfave-function data for the ground states of
alkaline-earth atoms (atomic units). See Eqs. (1) and

(3a).
Atom and

wave
function

Mixing coefficients
a b C

(r) of the
Total energy valence ns

(-&t t) orbital

where a' and b' are configuration-mixing coef-
ficients, and (nssp) and (npn'd) denote the Slater
determinants which are the 'P components of the
indicated configurations for the valence shells.
Again, the MCHF method produces, for instance,
different ns and np in 4„and 4„. Also, orbitals
in Egs. (2) are different from those in the ground
state, as is usual. For Ba, we considered also
the configuration (5d4f}as well; i.e.,

@„=a'(6s6p) + b'(6p5d) + c'(5d4 f). (2c)

This was done first because the 4f shell is next
to fill in the Periodic Table. Thus, if this con-
figuration is to be important at all, it should be
most important in Ba. Second, the value of b'

& „=a'(nsnp }+b'(nsnp}, (3b}

where a' and b' are relativistic configuration-
mixing coefficients. If we allow free variation
of a' and 5' as well as the orbitals ns, np, and

np, then Egs. (3b) will represent a relativistic
MCHF wave function with 4=1, but the orbital
and the spin angular momenta are left unspecified.
However, we have fixed the mixing coefficients

TABLE II. Wave-function data for the lowest ~P states
of alkaline-earth atoms (atomic units). See Eqs. (2) and
(3b).

Atom and
wave

function

Mg

Mixing coefficients
a' b' c'

Total energy
{-&fg

(r) of
the valence
np orbital

is so large (-0.64) that we felt that the next term
in the CI expansion should be examined.

In Table II we present the data for the 'P wave
functions. Note here that the expectation value

(r)„, changes significantly as the second configura-
tion is added, contrary to the results for the (r)„,
in the ground state. Further, the (5d4f) configura-
tion for Ba has extremely small weight.

For Ba, we also computed relativistic HF wave
functions. The relativistic wave functions are
basically the same as the nonrelativistic ones
except that the orbitals are four-component spin-
ors, whose radial parts are determined from
coupled integro-differential equations. " The
ground-state wave function is

(3a)

where n+ =-n+y/2 stands for the relativistic orbital
here, in contrast to the nonrelativistic ones in
Eqs. (I) and (3).

In the jj-coupling scheme, the (nsnp) 'P, and
(nsnp) 'P, states cannot be distinguished. More-
over, since 4=1 can be obtained by combining
s,&, with either p, &, =p or with p,~, =-p, the P, state
in the relativistic HF scheme must be represented
by a linear combination of (nsygp) and (nsnp) rela-
tivistic configurations, i.e.,

Mg

43

1
0.961 0.275
0.964 0„264 -0.030

199.6146
199.6461
199.6469

3.25
3.20
3.19

4f 1
4p c 0.976 0.219

4f 1
42 c 0.898 -0.441

199.4712
199.4821

676.6564
676.6779

6.51
5.24

7.72
5.62

1
0.953 0.301
0.957 0.283 —0.056

676.7582
676.7851
676 ~ 7862

4.22
4.15
4.15

Sr

Ba

4'I c 1
42 c 0.878 -0.479

3131.455
3131.478

8.34
6.09

Ba
+ic

~r

1
0.953 0.302
0.958 0.279 -0.071

1
0,947 0.320
0.952 0,288 -0.101
1

3131.546
3131.570
3131.571

7883.545
7883.569
7883.569
8128.337

4.63
4.57
4.56

5.26
5.19
5.17
5.08

4f
4 2 c 0.772 -0.636
4 3 c 0.752 -0.659 -0.036

4 -0 577 0 816 a

7883.468
7883.501
7883.502

8128.256

9.10
6.66
6.63

6p 8.40
6p 9.30

a The coefficients a' and b' for the relativistic wave
function are those for the 6s6P&&& and 6s6p3&2 configura-
tions, respectively, See Eq. (3b}.
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at a'=-W and O'=W, so that the relativistic
wave function reduces to the (single configuration)
'P nonrelativistic case when np =np. %'ith this
choice, the comparison with the nonrelativistic
HF results become straightforward. Data from
the relativistic wave functions for Ba are in-
cluded in Tables I and II. Note that the weighted
average of (r) for the relativistic 6p and 6p or-
bitals [', ((r—),~+2(r),~)] is almost the same as that
from the nonrelativistic 6p orbital. All wave
functions and Slater determinants in Eqs. (1)-(3)
are normalized to unity.

The program for the nonrelativistic wave func-
tions is that by Froese-Fischer" modified by
one of us (P.S.B.). The program for the rela-
tivistic wave functions was provided by Desclaux. "

III. GENERALIZED OSCILLATOR STRENGTHS

The generalized oscillator strength is an es-
sential factor in the first Born cross section for
inelastic scattering of charged particles in which
the target atom is left in an excited state n:

4wa,'s' f„(K}
2/6t E /dt

d ln(Kao) (4)

where a, is the Bohr radius, I, is the Rydberg
energy, ze is the charge of the incident particle,
T =-,'mv', m being the electron mass (regardless
of the type of the incident particle), and v the
speed of the incident particle, E„ is the excitation
energy, and KS is the momentum transfer. The
GOS, f„(K}, for the excitation of the atom from
the initial state ~0) to the final state ~n) is defined
as

(5)

where r, is the position vector of the jth atomic
electron, and the summation is over all atomic
electrons. Equation (5}reduces to the length
form of the dipole oscillator strength in the limit
K- 0.

The relativistic expression for the GOS consists
of two terms. " The first one is due to the Coulomb

TABLE III. Data for the GOS of the resonance transitions in alkaline-earth atoms.

Atoms and
wave functions

f f'
gEq. (6)j

First
minimum at

(Ea,)' =

Second
maximum at

(Za,)'=
f„(Z) at

second maximum

Mg
1c/1c ~

2c/2c
2c/3c
Weiss
Zare
Expt ~

Ca
1c/1c
2c/2c
2c/3c
Expt

Sr
Ic/1c
2c/2c
2c/3c
Expt ~

Ba
1c/1c
r/r

2c/2c
2c/3c
3c/3c
Expt

1.99
1.71
1.74 -9.08
1.77
1.72
1.81

2.26
1.82
1.88 -12.99
1.75

2.46
1.95
2.05 -16.41
1.84

2.64
2.39
1.70
1.86
1.78 -17.00
1.59

3.0
2.8
2.8

1.4
1.5
1.5

1.1
1.2
1.2

0.77
0.80
0.87
0.88
0.88

4.4
4.1
4.1

2.0
2.2
2.2

1.5
1.7
1.7

1.1
1.2
1.3
1.3
1.3

7.9(-6) '
1.5(-5)
1.5(-5)

4.7(-5)
1.1(-4)
1.2(-4)

9.1(-5)
2.0(-4)
2.2(-4)

1.6(-4)
1.5(-4)
3.2(-4)
3.7(-4)
3.8(-4)

For example, 2c/2c stands for the 42~/4 2~ combination. The relativistic wave function
is denoted by r.

b 7.9(-6) =7.9x10, etc.
Uncertainties in the experimental values quoted in this table are estimated to be -5%

(Refs. 9 and 26).
The experimental f value of 1.92 for Sr by Lurio et al, . (Ref. 27) was reduced by 4% to

correct for the branching to the lower ~D state.
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intex action between the incident particle and
atomic electrons and has the same form as Eq.
(5}except that the wave functions are relativistic
and the exponential factor is now a 4X4 diagonal
matrix. It reduces to Eg. (5} in the nonrelativistic
limit. The second term is of a relativistic origin
and becomes significant only when v is com-
parable to the speed of light. Besides, the second
term explicitly depends on v and E„ in such a way
that the GOS is no longer a function of K alone.
For our purpose, the second term is immaterial
since it vanishes in the nonrelativistic limit; the
relativistic data on Ba given here represent the
Coulomb term alone.

To evaluate the GOS and the f values, we used
the valence orbitals only because the main effect
of the core orbitals is to reduce the cross section
by 1-2% at most through the overlap integrals
between the core orbitals of the initial and final
states. " Experimental values of the excitation
energies" were used throughout the present work.
(Both HF and MCHF excitation energies differ
from experimental values by less than 0.5 eV.)

In Table III, the f values obtained from various
wave functions are listed, along with the experi-
mental values. The results obtained using our
best wave functions, 4„/4„(for Ba 4„/4„), are
in reasonable agreement with experiment. '""
The differences range from 5'%%ug for Mg to -12%
for Ba. In contrast, , the HF values are consider-
ably poorer. The relativistic effects for Ba (com-
paring 1c/1c with r/r) appear to be of the order of
10$ and we expect them to be smaller for the
other atoms. %'e will discuss later the reliability
and accuracy of these calculations.

The GOS can be expanded in power series for
small momentum transfers, ' i.e.,

f.(K)=f+f'(«, )'+ ",
where f' =d f„(K)/d(Ka, p at K=0. The values of
f ' from the 4,./4'„combination are listed in
Table III. (The valises of f ' for the alkaline-earth
atoms are 20 to 30 times larger than that for the
resonance transition of He. '} The GOS changes
rapidly near the optical limit, and caution is
necessary in extrapolating the small-angle elec-
tron-impact data (which correspond to small K)
to obtain or compare with the optical f values.
Since the GOS of higher 'I' transitions in alkaline-
earth atoms are expected to have features similar
to those in the resonance transitions, the extrapo-
lation of electron-impact experimental data for
small angles to the optical limit (K-0}should
be done with great care.

The QOS for the resonance transitions of alka-
line-earth atoms all show a series of zero mini-
ma. These minima occur when the matrix ele-

Mg

I I l t 1

DETAILS NEAR
THE MINIMUM

0

0
QOI O. I

I l I I I t I I

~G- ~. 008 f„(Z) for t e 3'S-3'J tra sition of Mg as
a f~ction of momentum transfer Kk, obtained from the
42, /43, combination (Table II@.

I I I I I I I I I I I 0 I 0 I I I I I I

DETAILS NEAR
THE MINIMUM

Q
X

p
hC

(Kao

0
O.OI

{Kao)

FIG. 2. QOS for the 4 ~8 4 ~P transition of Ca, obtained
from the C~ /%3 combination (Table HQ.

ment in the GOS [Eq. (5)] vanishes at certain
values of the momentum txansfer resulting from
a delicate interference of the oscillations in the
initial- and final-state wave functions and also
in the spherical Bessel function (as a function of
Kr} that comes from the radial part of the ex-
ponential factor in Eq. (5}. Hence, the position
of a zero minimum is sensitive to details of the
wave functions used.

The calculated data on the first minimum and
the second maximum (the first maximum is at
the optical limit, i.e., at K =0}are given also
in Table III. The data there show practically no
difference between the 4„/4'„and the 4,J%„
combinations as far as the extrema are concerned.
Figures 1-4 show the GOS calculated from the
4„/4'„combination with details near the first
minima enlarged in the inserts.
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I I / I I / f I

Sr

I I I I I I

DETAILS NEAR
THE MINIMUM

6-e0

(Ka P

O.OI O. l

(Ka,)'

FIG. 3. GOS for the 5~S 5 ~P transition of Sr, obtained
from the 42, /03, combination g'able II/.

I I I I I I I I
I

Ba
8-

DETAILS NEAR
THE MINIMUM6-

0
X
Y 4-

(KaJg

0
O.OI O.I

(Kao)'

FIG. 4. GOS for the 6 S 6 P transition of Ba,
obtained from the 43 /4 3 combination (Table III).

Experimental data on the angular distribution
of fast electrons inelastically scattered from these
atoms would be very valuable in studying the va-
lidity of the first Born approximation. At a mini-
mum, all observed intensity must have come from
the non-Born effects such as the distortion of the
plane waves for the incident and the scattered
electron, the electron-exchange effects, distor-
tion of the target charge distributions, etc. Simi-
lar minima have been calculated and observed
for instance in Xe, Hg, and H,O already. """
The observed results so far show the first minima
at smaller E values than those predicted from the
first Born approximation, and also the observed
magnitudes of the second maxima are much larger
than the theoretical values. Furthermore, a recent
study on the resonance transition of Hg by electron

impact shows that details of the extrema in the
GOS change rapidly as a function of the incident
energy. ' '" The dependence on the incident energy
is understandable because it is only in the first
Born approximation that the cross section is a
function of the momentum transfer alone aside
from some trivial factors [see Eq. (4)], i.e., the
cross section depends on the incident energy, the
excitation energy, and the angle of deflection in a
particular combination such that K is the only
variable. The non-Born effects are expected to
depend on collision variables in a more com-
plicated manner.

It would be worthwhile to measure the electron-
impact cross section for the resonance transition
of Ba in particular because the first minimum of
the GOS occurs at a rather low K value (see Table
III), i.e., the minimum would occur for moderate
incident energies at small angles convenient for
experiment.

Now we shall discuss the reliability of the theo-
retical data presented so far. For Mg, we can
compare the f values calculated from the CI wave
functions which include more configurations than
ours. Weiss' used six configurations for the
ground state and four for the excited state, the
orbitals being chosen from the occupied and vir-
tual HF orbitals. On the other hand, Zare" used
the Herman-Skillman orbitals, ~ including eight
configurations for the ground state and nine for
the excited state. Our f value from the 4„/4'„
combination agrees very well with those by Weiss
and Zare (Table III).

To improve our results further, a substantial
number of configurations, including those exciting
the core electrons, must be included because
we expect that their combined effects would be
the same order of magnitude as that from the (n'd)'
configuration. For Ba, certainly the relativistic
effects should also be included at such a stage.
At this point, it could be worthwhile to consider
approaches alternative to our method; for in-
stance, the core polarization correction proposed
by Hameed in which the dipole operator for the
optical oscillator strength is modified instead of
improving the wave functions themselves. "

The drastic changes in the f values from the
4 „/4'„combination to the 4„/4„combination
(Table III) are caused by two facts. First, the

np orbital of the 'P state changes significantly
when the second configuration (~n'd) is intro-
duced (see (r)„~ in Table II). Second, the addi-
tional configuration np' of the ground state intro-
duces a new matrix element between the np or-
bital of the ground state and the ns orbital of the
excited state. This matrix element is not only
large in magnitude, but it also has a sign opposite



to the dominant matrix element that arises from
the HF configurations (between the ns of the ground
state and the np of the excited state}. Our data
in Table III indicate that the f values stabilize
more or less once the most important configura-
tions are included in both the initial- and final-
state wave functions. The same trend is observed
also in the study on the carbon atom by %'eiss."
The data in this section clearly demonstrate that,
for the resonance transitions in alkaline-earth
atoms, the Born cross sections computed from
the MCHF wave functions with two or three con-
figurations are fax superior to those from the
(single-configuration) HF wave functions.

IV. INTEGRATED BORN CROSS SECTIONS

The integrated cross section is obtained by
integrating Eq. (4) over the limits of the momen-
tum transfer, K and K~~, which are determined
from kinematics. " This leads to a table of cross
sections as a function of incident energies and type
of incident particles. Alternatively, the integrated
cross section can be expressed in terms of a few
parameters when the incident particle is fast' "":

(Emmao)
o„—=

J d&z„
(&III '0)

For electrons and positrons, y„"' is used, and for
heavy particles such as protons and mesons, y„'")
is appropriate.

Equation (I) should be a good representation of
the Born cross section so long as

The values of the constants in Table IV satisfy
the above condition even for rather low T (R20 eV).
However, the Born approximation may not be
reliable at all at such a low incident energy.

It is difficult to determine the absolute accuracy
of the Born-cross-section data presented in Table
IV. Nevertheless, we can estimate the uncer-
tainties introduced by the use of approximate wave
functions in the values of inc„and y„by comparing
those from the 4„/4'„and 4„/4'„(for Ba, also
4„/4 „)combinations. Based on such a com-
parison, we estimate that the uncertainties inc„

OOOO

TS [M„' I.n(4c„T/dt) +y„dt/T],

where M„'= fS/E„, and the constants c„and y„
are evaluated from the GOS according to Eqs. (12)
and (13}of Ref. 1. The constant c„depends es-
sentially on the shape of the GOB, while y„depends
on both the shape and the magnitude of the GOS.
The values of M'„, inc„, and y„evaluated from the
4„/4 „combination are given in Table IV. To
obtain more realistic Born cross section, theo-
retical M'„may be replaced by experimental values
also listed in Table IV. The use of experimental
M'„ is equivalent to a scaling of the magnitude of
the QOS so that its optical limit is given by the
experimental f values. Note that the values of
y„depend on the mass of the incident particle.

TABLE IV. Parameters for the integrated Born cross
section, Eq. {7).~

O

20—

lo
I

I

3
In {TIP)

Ba

M~, theory
]@2„, expt
lnCff
~(e)

()
Vs

5.45
5.67
0.0932

-0.146
0.725

8.74
8.12
0.582

-0.242
0.700

10.35
9.31
0.597

-0.212
0.811

10.84
9.66
0.784

-0.193
0.699

Theoretical data, for Mg, Ca, and Sr are from the
42~/43, combination. The data for Ba are from the
43 /4 3 combination.

FIG. 5. Fano plot (oT vs lnT) of the integrated Born
cross section (solid line) and the optical excitation func-
tion measured by Ehlers and Gallagher (circles, Ref. 37)
for the resonance transition of Ca. The Born cross sec-
tion uses gg„ tsee Table IV and Eq. (7)] determined from
the experimental f value. The error bars on the Born
cross section comes from the 5% uncertainty in the ex-
perimental f value. The relative experimental erose
section eras normalized to the Born cross section at
T=1100—1400 eV. Uncertainties of = 0.2% are quoted
in Ref. 37 for the relative cross section.
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and y„presented in Table IV should be of the order
of 10% or less. Hence, if one uses experimental
values of M'„along with theoretical inc„and y„
in Eq. ('l), the resulting Born cross section for
Ta100 eV should be accurate (within the limita-
tions of the Born approximation} to whatever the
accuracy with which the f values are known,
because In(4Tjdt) is one order of magnitude larger
than inc„and y„dt/T for large T.

Recently, Ehlers and Gallagher" measured the
optical excitation function for the resonance transi-
tion of Ca vapor. In their experiment, the intensity
of the light emission corresponding to the 4'P
-4'S transition is measured after the Ca atoms
are bombarded with incident electrons of T = 3-
1400 eV. Ehlers and Gallagher estimate that the
effect of cascades from higher states to the 4 'P
state is negligible, and hence the Born cross sec-
tion of Ca in Table IV can be compared directly
with the experiment. The experimental data are
relative, and we have normalized their data for
T =1100-1400 eV to the Born cross section. In
Fig. 5, we compare the normalized experimental
data with the Born cross section. The uncertainty
in the relative experimental data indicated in Ref.
37 is -0.2%. The departure of the experimental
data from the Born cross section below T=150 eV
exceeds 6%. We used the experimental M'„value
for the Born cross section, but the experimental

f value and therefore the M„' value is known only
to -5%." Hence, we conclude that the shape of
the experimental cross section differs from that
of the Born cross section for T&150 eV.

V. CONCLUSIONS

Our results demonstrate that a substantial im-
provement in the Born cross section for the reso-
nance transitions is achieved by using the MCHF
wave functions with one or two more configura-
tions than the HF configuration, both in the ground
and excited states. The magnitudes of the mixing
coefficients for the (np}' configuration for the
ground state are -0.3, and those for the (npn'd)
configuration for the excited state are -0.2-0.6
(Tables I and II}.

The GOS near the optical limit changes very
rapidly as a function of the momentum transfer
[see Eq. (6) and Table III], and this suggests that
great care must be taken when extrapolating ex-
perimental data on small-angle inelastic scat-

tering to the optical limit to deduce the f values
for the 'P transitions in alkaline-earth atoms.

The GOS for these resonance transitions show
zero minima and hence the (first) Born cross
sections vanish at certain values of the momentum
transfer. In reality, non-Born effects will domi-
nate in the vicinity of the minima, and therefore,
the experimental cross section is not expected
to vanish. Experimental study on the minima
(e.g. , angular distribution of inelastically scat-
tered electrons}, particularly their dependence
on the incident particle energy, will provide val-
uable information on the validity of the Born ap-
proximations as well as on the magnitudes of
higher-order collision effects such as the dis-
tortion of the incident plane wave and the charge
distribution in the target. Our calculation indi-
cates that the cross section for Ba would have the
first minimum near (Kao)' =0.9, or at the de-
flection angle of =9' for the incident electron of
500 eV. Judging from other known cases, we ex-
pect the experimental minima to occur at smaller
values of K than those listed in Table III for inci-
dent electrons of moderate energy.

The parameters for the integrated Born cross
sections are given in Table IV. With these param-
eters, the integrated cross section for arbitrary
incident energy (Ta 20 eV) may be calculated
from Eq. (7). The inherent limitations in the Born
approximation itself, however, restrict the appli-
cability of Eq. (7) to much higher T.

The excitation function for the resonance transi-
tion of Ca by Ehlers and Gallagher" is in excellent
agreement (within 5 or better) with our Born
cross section for T a 200 eV (Fig. 5). To reduce
the uncertainties in the theoretical f values and
the GOS to much less than 10%, it would be nec-
essary to include a large number of configurations
with excited valence orbitals as well as the core
orbitals. Also, relativistic effects should be
considered at this point. Such a calculation would
lead quickly to complicated numerical procedures,
and lose much of its advantages over the conven-
tional CI method.
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