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Stability of the Restricted Hartree-Fock-Roothaan Method
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Newly computed Hartree-Fock-Roothaan wave functions are reported for the atomic negative ions, 8,C, N, 0,Si,P, S . They are obtained as self'-consistently convergent solutions. The
implication with regard to the stability of the restricted Hartree-Fock-Roothan method is also discussed.

I. INTRODUCTION

The Hartree-Fock approximation is mell ac-
cepted in physics and chemistry. Sometimes it is
taken as something more than a mere approxima-
tion that is numerically feasible. It has become
a model world in which me tend to see some mean-
ingful reflections of phenomena that mould occux
in the real physical world. The concept of an elec-
tronic phase transition suggested by Mott' some
20 years ago may be regarded as one of the ear-
lier examples of this sort.

A more recent example is the paper by Kaplan
and Kleiner. ' Their argument is based on the use
of a single Slatex-determinantal wave function and
a theorem is proved to the effect that in Haxtree-
Fock theory an electron may always be added to
an N-electron system without raising the energy.
The theorem is applied to show that the conven-
tional Hartree-Foek wave function is unstable for
certain negative atomic ions (including B, &
0 ), and that the typical extent of the instability
i.s chemically significant.

The purpose of the present paper is not to dis-
cuss directly the points raised by Kaplan and
Kleiner' or by Prat, ' mho used an unsatisfactory
Hartree-Pock wave function of 0 as a computa-
tional starting point. Instead, a set of nem numer-
ical results from the restricted Hartree-Fock-
Roothaan calculations on negative atomic ions is
presented in the hope that it may have some rel-
evance to the subject matter or that it may be of
some use numerically. Among these results are
the Hartree-Fock-Roothaan wave functions for
8, C, N, and 0, which are much lower
in total energy than the ones reported earlier'
and cited by Kaplan and Kleiner' and also by Prat. '

A precise definition of what me eall here the
restricted Hartree-Fock-Roothaan method is in
order. The total wave function is, in general, a
linear combination of several Slater determinants
each of which contains (doubly occupied) closed-
shell cores Q~) and open shells {Q. The coef-
ficients of the linear combination of the determi-
nants are determined by the requirement that the

total wave function be a proper eigen&xnetion of
both $' and 5, spin operators. In Roothaan's ex-
pansion method, the orbital Q„or, to be more
precise, Q, „„

is expanded in terms of symmetry
basis functions x»~.

where X refers to the irreducible representation
or symmetry species and e refers to the subspe-
cies. In a simple atomic example„X stands for
l and z for m, , in the common notation. The
Hartree-Fock-Roothaan equation determines the
coefficients {C~~). It is important to remind our-
selves that the coefficients do not depend on e.
The implications are that in an atomic calculation
me mill obtain, inevitably, a set of symmetry or-
bitals and that the radial functions are identical
for all subspecies belonging to a particular sym-
metry. These restrictions are sometimes re-
ferred to as the symmetry restriction and the
equivalence restriction, respectively.

In Sec. II me report some nemly obtained re-
stricted Hartree-Foek-Roothaan solutions for
several negative ions. In See. III, an attempt to
drop the equivalence restriction in the case of the
'P, 'D, and '5 states of 8 wil1 be described.

II. NEGATIVE ATOMIC IONS

Not infrequently it occurs that an attempt to ob-
tain a Hartree-Fock solution is plagued by non-
convergence. Such is the case for the restricted
Hartree-Pock-Roothaan solutions of B ('S),

N ('P), and 0 ('S) as mentioned by Kaplan and
Kleiner. ' In Tables I-III the solutions of C ('P),
N ('P), and 0 ('S) are given which have appre-
ciably lower total energies than the ones hitherto
reported. ~ Also given in Tables IV-VI are the
solutions of Si ('P), P ('P), and S ('S). In
these tables the total energy and the oxbital en-
ergies are given in atomic units and the abbre-
viation such as STO (5s, 4P) implies that 5s-type
4P-type Slater-type orbitals are used as the basis
functions. The first column under the heading or-
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TABLE I. C 1s(2)2s(2)2P(4) P STO (Gs, 4p). Total
energy = -0.374 843 57 10(2).

TABLE III. 0 ls(2)2s(2)2p (6) S STO (5s, 4p). Total
energy = -0.745 071 27 10(2).

Orbital symmetry
Energy
exponent

1s 0.918 56507 10(1)
1s 0,52670090 10(1)
3s 0.631 618 60 10(1)
2s 0,19817727 10(1)
2s 0.11424069 10(1)

Orbital symmetry
Energy
exponent

2p 0.521 449 98 10(1)
2p 0.193942 85 10(1)
2p 0.78104046 10(0)
2p 0.98863961 10(-1)

1s
-0 ~ 110679 25 10(2)

0.950 545 00 10(-1)
0.926 507 75 10(0)

-0.182 10000 10(-1)
0.272 709 47 10(—2)

-0.464 456 83 10(-3)

2p
0.375 367 01 10(-1)

0.202 628 37 10(-1)
0.384 285 61 10(0)
0.517 19153 10(0)
0.521 265 31 10(0)

2S
-0.425 753 54 10(0)

0.207 383 73 10(-2)
-0.245 514 95 10(0)
-0.339 816 93 10(-1)

0.678 31933 10(0)
0.417 540 59 10(0)

Orbital symmetry
Energy
exponent

1s 0.12757721 10(2)
1s 0.70933082 10(1)
3s 0.89708141 10(1)
2s 0.27536019 10(1)
2s 0.15266549 10(1)

Orbital symmetry
Energy
exponent

2p 0.499 579 54 10(1)
2p 0.24493782 10(1)
2p 0.10421145 10(1)
2p 0 ~ 165 19658 10(0)

1s
-0.201 262 68 10(2)

0.779 085 83 10(-1)
0.954 842 41 10(0)

-0.335 775 30 10(-1)
0.280 79141 10(-2)

-0.109 128 17 10(-3)

2p
0.656 96439 10(-1)

0.847 542 97 10(-1)
0.481 274 30 10(0)
0.467 025 01 10(0)
0.341 91569 10(0)

2S
-0.704 452 59 10(0)

0.417 543 63 10(-2)
-0.263 500 17 10(0)
-0.265 078 68 10(-1)

0.693 431 47 10(0)
0.409 036 05 10(0)

bital indicates the individual characteristics. To
be more precise, the basis functions are primitive
Slater-type orbitals,

TABLE II. N 1s(2)2s(2)2p (5) 2P STO (5s, 4p). Total
energy = -0.540 620 11 10(2).

Orbital symmetry
Energy
exponent

1s
—0.152 600 36 10(2)

2s
—0.550 441 56 10(0)

1s 0.105 73624 10(2)
1s 0.618 72035 10(1)
3s 0.751 051 90 10(1)
2S 0.238 190 56 10(1)
2s 0.134 058 10 10(1)

0.962 356 99 10(-1)
0.926 767 42 10(0)

-0.209 724 88 10(—1)
0.302 591 92 10(-2)

-0.332 621 33 10(-3)

0.443 146 92 10(-2)
-0.257 457 93 10(0)
-0.308 407 74 )0(—1)

0.680 303 88 10(0)
0.421 059 10 10(0)

Orbital symmetry
Energy
exponent

2p
0.531 776 64 10(-1)

2p 0.651 366 75 10(1)
2p 0.244 153 99 10(1)
2p 0.985 26427 10(0)
2p 0.137 763 94 10(0)

0.196 74938 10(-1)
0.417 042 45 10(0)
0.543 373 83 10(0)
0.424 430 46 10(0)

It is to be noted that C, do not depend on the quan-
tum number m. The atomic self-consistent-field
program in use has been carefully coded so as to
be free as much as possible from instabilities
which could be removed by proper numerical pre-
cautions. Under careful input preparation and pa-
rameter variation, the program functions in an
orderly way in most circumstances but it is not
claimed that the present solutions are the best ob-
tainable within the framework of the present ap-
proximation.

It must be clearly understood that the instability
we are referring to here is the one which we en-

counter within the so-called symmetry and equiv-
alence restrictions. The solutions always remain
within the limits of these restrictions. Physically
speaking these atomic ions would certainly not
exist as free entities, but still it is interesting to
to observe that the restricted Hartree-Fock-
Roothaan equations yield solutions for them which

are self-consistently convergent within the frame-
work of the expansion method. In reality, one
outermost electron will move away to infinite dis-
tance but in the strange world of the restricted
Hartree-Fock-Roothaan approximation all the
electrons in the P shell are forced to stay togeth-
er on an equal footing because the identical ra-
dial functions are assigned to them by the very
setup of the approximation. This is reflected in
the fact that in all cases reported in the present
section the highest orbital energy is positive and

very close to zero.

III P 'D, AND 'SSTATESOF Q

A convergence difficulty has been reported in
the Hartree-Fock-Roothaan calculation of the
'$ state of B .4 In the present calculation we have
overcome this numerical difficulty and obtained
a new set of the wave functions for 'P, 'D, and '$
states of B, but the 2P orbital energy of the 'S
state remains slightly positive (+0.002164 a.u.).
The ('S -'D)/('D-'P) ratio turns out to be 1.209
while the "experimental" value is estimated to
be about 1.10 by extrapolation from the isoelec-
tronic sequence. The numerical data of the
Hartree-Fock-Roothaan wave functions are given
in Table VII.

The next step we have taken is the relaxation of
the equivalence restriction on the p-shell orbitals.
There is a wide range of possibility of splitting
the P shell. We have made the following simple
choice: For brevity, me shall write down only
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TABLE IV. Bi is(2)2s(2)2p(6)3s{2)3p(4) ~P STO (Ss, Sp). Total energy=-0. 288 73819 10(3).

Orbital symmetry
Energy
exponent

ls
-0.685 995 48 lo(2)

2s
-0.594 02 V 68 10(l)

Ss
-0.321 174 80 10(0)

ls 0.14000000 10(2)
Ss 0.15685403 10(2)
Ss 0.966 728 92 10(1)
Ss 0.87365151 10(1)
3s 0.6011981910(l)
Ss O.4291O12V 10(1)
3s 0.192 71099 10(1)
3s 0.11036379 10(1)

0.96921036 10(0)
0.346182 92 10(-1)
0.302 457 11 10(-1)

-0.194692 60 10(-1)
0.240 30922 10(-2)

-0.2os vsv so lo{-3)
-0.776 548 40 10{-5)
-0.372 831 87 10(-6)

-0.257 93184 10(0)
-0.113034 94 10(-3)

0.202 16820 10(0)
0.100 579 86 10(0)
o.svv 422 28 lo(o)
0.207 433 28 10{0}
0.307 985 46 10(-3)
0.299 002 35 10(-3)

0.647 183 78 10(-1)
0.171246 15 10(-2)

-o.loo ssS lo lo(o)
0.370 787 12 10(-l)

-0.208 31902 10(0)
-0.588 281 78 10(-l)

0.729357 14 10(0)
0.378 253 05 10(0)

2p
-0.404 052 96 10(1)

2p o.vooooooo lo(l)
4P 0.11448483 1Q(2)
4p 0.712 69473 10(1)
4p Q.487 436 58 1Q(1)
4p 0.25528944 10(1)
4p 0.14141108 10(1)
4p 0.673 70803 10(0)
4p 0.1192816110(0)

0.568 29185 10(0)
0.230 478 92 10(-1)
0.270 VVV 02 10(0)
0.262 550 65 10(0)
0.122 08937 10(-1)

-0.147 104 07 10(-2)
0.487 87422 10(-3)
0.961 735 41 10(-4)

-0.839 437 63
-0.307 406 78
-0.373 284 14
-0.179095 08

0.251 707 46
0.472 033 59
0.323 132 43
0.496 538 24

10(-1)
lo(-2)
lo(-1)
lo(-1)
10{0)
10(0)
lo(o)
10{0)

the relevant p-electron part of the total wave function:

('&): ([P, (&)P.'(2) -Pl(&)P, (2)] + [p,'(&)P.(2) —P.(&)P,'(2)])~(&)~(2),

('D): Ip, (&)e,'(2)+u,'(&)u, (2)l[~(&)c(2) —S(&)~(2)],

('~ ): ([u. (&)u'(2) ~'(&)u. (2)] [~ (~)u.'(2) u,'(&)~ (2)]-[u.(&)e.'(2) u.'(&).(2)]}[ (&)e(2) -e(&) (2)] .

TABLE V. P™~ls(2)2s(2)2p {6)3s(2)3p(5)2P STO (Ss, Sp). Total energy =-0.340 53455 10(3}.

Orbital symmetry
Energy
exponent

ls 0.15000000 10(2)
Ss 0.167858 64 10(2)
3s 0.105 98680 10(2)
Ss 0.90335362 10(l)
Ss 0.6276VV 70 10(1)
3s 0.43S 80538 10(l)
Ss O.216 VSV SS 1O(1)
3s 0.122 542 83 10(1)

Orbital symmetry
Energy
exponent

0.970 787 06 10(0}
0.326 452 63 10(-1)
0.216 378 42 10(-1)

-0.111444 69 10(-1)
O.244 OSV 96 1O(-2)

-0.369 063 78 10(-3)
0.120 730 51 10(-4)

-0.904 554 43 10(-5)

2p
-0.509 690 72 10(l)

2s
-0.720 590 76 10(l)

-0.263 575 27 lo(Q)
0.266 61383 10{-3)
o.lvs els 42 lo(o)
0.172 29530 10(0)
0.614804 98 lo(o)
0.123 29442 10(0)

-o.8sl oe2 94 lo(-3)
O.664366 SS 1O(-3)

3p
0.347 094 80 10{-l)

Ss
-0.392 759 05 10(0)

0.706 351 90 10(-1)
o.2o6 eev ls lo(-2)

-0.870 100 80 10(-1)
0.127 058 95 10(-l)

-0.261 277 72 10(0)
-0.154 642 67 10(-l)

0.759 071 60 10(0)
O.SS141342 1O(0)

2p Q.vso ooooo lo(l)
4p 0.124267 39 lo(2)
4p 0.775 90360 lo(l)
4p 0.542 v2e se lo{l)
4p 0.295120 91 10(1)
4p 0.166 69012 10(l)
4p 0.80945007 lo(0)
4p 0.154 847 91 10(0)

0.592 300 14
0.200 855 98
0.252 059 25
0.250 341 el
0.119592 75

-0.924 158 55
0.567 27462
0.266 361 54

lO{O)
10(-1)
lo(o)
1O(O)
lo(-1)
10(-3)
10(-3)
l.o(-3)

-Q.los 14s 02 10(o)
-0.322 287 98 10(-2)
-0.426 280 47 10(-l)
-O.2O611O O2 lO(-1)

0.294 228 38 10(0)
0.496 71188 lo(o)
0.313903 43 10{0)
o.Seo Sos 62 lo(o)
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TABLE VI. S 1s(2)2s(2)2p(6)3s(2)Sp(6) ~S STO (8s, 8p). Total energy=-0. 39736837 10(3).

Orbital symmetry
Energy
exponent

1s
-0.915 764 51 10(2)

2s
-0.857 215 50 10(1)

3s
-0.466 617 66 10(0)

1s 0.16000000 10{2)
3s 0.17752472 10(2)
3s 0.107453 76 10{2)
3s 0.99435032 10(1)
Ss 0.695 77090 10(1)
3s 0.486 720 98 10(1)
Ss 0.240 648 09 10(1)
Ss 0.13464308 10(1)

0.972 206 81
0.321 215 82
0.331600 23

-0.241 025 22
0.208 583 53

-0.153 826 52
-0.399 005 81

0.347 41107

10(0)
10(-1)
10(-1)
10(-1)
10(-2)
10(-3)
10(-4)
10{-5)

-0.268 51121 10{0)
0.17081725 10(-2)
0.356 340 96 10(0)

-0.587 587 06 10(-1)
0.649 417 50 10(0)
0.13601721 10(0)
0.273 089 24 10(-3)
0.608364 42 10(-3)

0.755 216 40 10(-1)
0.220 728 49 10(-2)

-0.231 407 37 10(0)
0.185 427 10 10{0)

-0.314 848 51 10(0)
-0.614 797 86 10(-2)

0.777 539 17 10(0)
0.335 509 16 10(0)

Orbital symmetry
Energy
exponent

2p
-0.625 214 80 10(1)

Sp
0.483 621 68 10(-1)

2p 0.800 000 00 10(1)
4p 0.127 93412 10(2)
4p 0.82014116 10(1)
4p 0.59010162 10(1)
4p 0.357 71167 10(1)
4p 0.20181992 10(1)
4p 0.979 82755 10(0)
4p 0.211002 66 10(0)

0.613 852 57
0.232 14144
0.249 723 42
0.218 879 47
0.119329 72

-0.331 122 68
0.141016 87

-0.768 777 04

10(0)
10(-1)
10(0)
10(0)
10(-1)
10(-3)
10(-3)
10(-5)

-0.127 11901 10(0)
-0.573 14953 10(-2)
-0.392 449 47 10(-1)
-0.393 750 60 10(-1)

0.281 053 97 10(0)
0.535 410 12 10(0)
0.332 10855 10(0)
0.303 10120 10(0)

In the above wave functions we have two different
radial functions indicated by "no prime" and
"prime" on the P's. The Hartree-Fock (ls) and

(2s) orbitals given in Table VH are used for the
s-electron core part of the total wave functions.
For P and P' we have tried the following two simple
ideas.

A. Primitive Slater-Type Orbitals

C(1s)
(»)
(Ss)
(2s)
(2s)

iD

-24.51918

6.773 559
3.472 672
4.414 845
1.639 735
0.903 310

-24.490 55

6.786 171
3.503 796
4.429 423
1.639 874
0.926 276

TABLE VII. B ( P, D ig)

's

-24.455 94

6.859 483
3.570 754
4.479 793
1.644 566
0.975 397

We first use the primitive Slater-type P orbitals
with separate exponent parameters f and g',

P~y g ~& Pl~y e~f T

For the ground 'P state we find a split-shell so-
lution as follows:

g=1.3172, 1'=0.5185 E('P)=-24.51342 a.u.

This compares well with the value -24.47375 a.u.
(K = f'=0.95 63.)This solution is stable in the
mathematical sense that the above set of g and f'
gives a deep minimum point in the total energy.
However, for both '0 and 'S states the split-shell
wave functions turn out to be unstable: The en-
ergies continue to get lower as the smaller ex-
ponent P' tends to zero; that is to say, the system
tends to release one electron. This is not an en-
tirely unexpected phenomenon.

B. Scaled Hartree-Fock-Roothaan Orbitals

S(2p)
{2p)
(2p)
(2p)

e "(1s)
C(1s)

e' b (2s)
C{2s)

c b(2p)
C(2p)

4.872 166
1.823 264
0.901 477
0.415 181

-7.424 928
0.275 284
0.860 216

-0.156 448
-0.002 873

0.001 022

-0.242 480
-0.027 615
-0.232 105
-0.001 753

0.603 822
0.507 496

-0.026 360
0.011304
0.239 213
0.542 720
0.360 819

4.502 706
1.695 529
0.787 265
0.306 307

-7.471 860
0.270 394
0.859 975

-0.150375
-0.002 563

0.000 949

-0.276 009
-0.027 015
-0.236 132
-0.004 291

0.619132
0.489 895

-0.007 982
0.014 114
0.287 506
0.542 852
0,359 199

3.552 350
1.436 116
0.584 709
0.156 195

-7.555 665
0.254 020
0.868 237

-0.140 495
-0.002 408

0.000 948

-0.341 738
-0.024 865
-0.242 158
-0.008 562

0.627 718
0.475 979

0.002 164
0.029 663
0,380 315
0.521 424
0.389 232

%'e shall apply a special kind of scaling to the
Hartree-Fock-Roothaan orbitals. The idea was

~ Total energy in atomic units.
Orbital energies in atomic units.
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TABLE VIE, Term energies of B (in atomic units)
arith scaled Hartree-Pock-Roothaan orbitals.

-24,51918 -24,523 01 1.0 1.294 02 0.668 849
ia -24.490 55 -24.496 26 1.0 1.345 42 0.598 314
i8 -24.455 94 -24.461 SS 1.0 1.374 36 0.578 685

me use a rather modest size of STO basis func-
tions, although the size has been knomn to be
large enough to produce a near-Hartree-Fock
solution for the ground state of the neutral boron
atom.

IV. SUMMARY

explained in detail elsewhere. ' The point is that
me may insert a sealing parameter into individual

Roothaan-type expansions without touching the
expansion eoeffieients C, . Thus we define a func-
tion generated from the expansion in Sec. II as

It(x(=pc, x(s„(„m,; x(, )

and regard the original Hartree-Foek-Roothaan
orbital as being given by putting A, =1.0. By the
use of the parameter X, me can contract or expand
the original orbital just as me have done mith the
primitive Slater-type orbital.

In contrast to the case of primitive Slater-type
orbitals in Sec. IIIA me managed to locate a
"local" energy minimum on the (A., X') parameter
surface even for the '$ state, but the minimum

region is very shallow around the parameter val-
ues given in Table VIG. Beyond A. '= 0.1 to smaller
values the total energy becomes lomer than the
local minimum value shown in Table VIII, indi-
cating that the system tends to release one outer-
most electron. It appears to be difficult to attach
any real physical significance to this shallom local
minimum. It may be connected with the fact that

We have presented some carefully computed
Hartree-Fock-Roothaan wave functions for sev-
eral double-negative free atomic ions. Since the
total wave functions are forced to have the sym-
metry presumed to be characteristic of the ground
states by imposing the symmetry and equivalence
restrictions on the orbitals, we do not learn much
about the instability of the solutions when the re-
strictions are removed. "On the other hand,
when one tends to regard the Hartree-Foek ap-
proximation as a kind of model world, it is in-
teresting to observe that the restricted Hartree-
Fock-Roothaan does have at least quasistable
solutions for these double-negative atomic ions.

In order to gain an insight into the problem of
the instability of the Hartree-Pock-Roothaan so-
lution me have chosen the case of B . %'e have
demonstrated that if one removes the equivalence
restriction on the p-shell orbitals both 'D and '8
solutions become numerically unstable within the
Roothaan-expansion approximation employed in
the present calculation. However, it mould be
hazardous to dram any general conclusion about
the stability or instability of the various solutions
from the results obtained in the present mork.

~¹ F. Mott, Proc. Phys. Soc. 62, 416 (1949).
2T. A. Kaplan and %. H. Kleiner, Phys. Rev. 156, 1

(1967).
3R. F. Prat, Phys. Rev. A 6, 1735 (1972).
4E. Clementi and A. D. McLean, Phys. Rev. 133, A419

(1964).
58. Huzinaga, Theor. Chim. Acta 15, 12 (1969).
8Important references may 'be found in J. Cizek and

J. Paldus, J. Chem. Phys. 47, 3976 (1967); J. Paldus
and J. Cizek, Chem. Phys. Lett. 3, 1 (1969).


