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In this erst article of work on radiation processes, a multiple-time-scale expansion method speci6cally
for these processes is developed, based on the two distinct time scales corresponding to the natured

frequency and the linewidth of the radiation. The method is then demonstrated by treating systems of
one and two two-level atoms. It is seen that the exponential-decay behavior of the excited-state
amplitude, assumed a priori by %eisskopf and Vhgner, follows naturally from the mathematical
procedure of e»~donating the secularity in each order of the expansion. The results of two-atom systems
also agree with those of previous workers.

I. INTRODUCTION

It is well known that owing to the coherence
effect, the radiation from a system of many par-
ticles may be quite different from that of an iso-
lated particle. Such a coherence effect was first
noticed and formulated by Dicke. '

The first experimental evidence of the coherence
effect appeared in 1964 as Kuhn and Vaughan' re-
ported a measurement on the oscillation strength
of the resonance transition M"-18' in helium.
Correspondingly, the radiation width of 2I" was
determined as 13.1+1.2x10 ' cm ', in contrast
to the theoretically calculated value 9.5~ 10 '
cm '.' A possible explanation of this deserepaney
of about 30-40%%uo has been suggested' in terms of
coherence enhancement. In the years following
1964, more experimental works have been carried
out by Kuhn and Lewis on Ne&, ' by Vaughan on He'
and on krypton. ' Similar anomalies have been
found in all these results. On the other hand, ex-
periments performed by Korolev, Odintsov, and
Fursova' on Ne, and by Williams and Fry' on the
2P'-lS' transition of helium atoms showed only
-a%%uo deviation from the theoretical results. This
makes it interesting to study this problem more
carefully.

Since 1964, the coherence effect and related
topics have received much attention from theorists.
Schwabl and Thirring" discussed a system effec-
tively containing countless atoms, with the atoms
replaced by a field coupled to the radiation field
in such a way as to lead to a soluble problem. Ali
and Griem" calculated the resonance broadening
of spectral lines by atom-atom impact. Stephen~
and Hutchinson and Hameka" calculated the co-
herence broadening for a stationary two-atom sys-
tem. In 1966, Omont" reviewed all the prior
theoretical predictions. Tavis and Cummings"
discussed N two-level systems interacting with

a single mode of quantized radiation field. Dia-
letis" discussed the spontaneous emission from a
set of N closely packed two-level identical atoms.
Ernst and Stehle" ' used the extended Wigner-
Weisskopf method to study the N-particle system
with all particles excited initially and found that
extreme coherence properties are associated with
this system. By using the result of Ref. 1V(a),
Ernst "&b~ studied the problem of the origin of las-
er coherence. Lee and Lin" studied the averaged
coherence broadening and also the effect of ran-
dom motion on it. More recently, they" also
studied the renormalized frequency shift. Lehm-
berg' and Eberly and Rehler, "studied the ray-
forming properties and superradiant systems.

Recently, Chang and Stehle" studied the system
using the two-particle Green's function; Haake
and Glauber" studied the statistical aspect of the
cooperative emission by a many-atom system;
Stroud, Eberly, Lama, and Mandel" discussed the
superradiant effects in two-level atom systems;
and Shoemaker and Bremer" reported on two-
photon super radiance.

In this series of articles, we apply the multiple-
time-scale perturbation theory (MTSPT) to the
analysis of spontaneous radiation processes. The
MTSPT was first introduced by Krylov and Bogo-
liubov" to solve problems in nonlinear mechanics.
Frieman" and Sandri" extended this method and
applied it to the kinetic theory of gases and plas-
mas.

In the conventional time-dependent perturbation
theory, an expansion is made in powers of the
coupling constant e. While & itse1f may be small,
it often happens that the nth-order term diverges
like c"t at large t, where a is generally a func-
tion of n. For example, this secular behavior at
large t occurs in the calculation of transition
rates in quantum mechanics. When t is small,
the first few terms in the expansion may suffice
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for the description of the behavior of the system;
but at large t, an appropriate sum over an infinite
number of terms must be carried out in order to
obtain a finite result. Since it is usually difficult
to sum an infinite number of terms, particularly
when it is not even known which terms should be
included or left out, it mould be advantageous if
some other perturbation series can be found such
that the first few orders will correctly describe
the behavior of the system at large t. In the ki-
netic theory of gases and plasmas, this was
achieved first by recognizing the existence of sev-
eral distinct time scales in that theory'9 and then
by constructing a multiple-time-scale perturba-
tion expansion (MTSPE) based on these distinct
time scales."~

In problems concerned with radiative processes,
we realize that there also exist two very different
time scales. One corresponds to the inverse of
the frequency of the radiative transition, +0', the
other is the inverse of the radiation linewidth, y
Physically, the detailed evolution of the system in
the fine time scale of +0' is not of much interest.
In the MTSPE constructed for radiation problems
essentially aeeording to these time scales, such
fine details will be averaged over in the rougher
time scale of y '. Mathematically, the MTSPE is
actually a rearrangement of the terms in the con-
ventional perturbation series to eliminate the
secular behavior in each order. This rearrange-
ment is facilitated by exploiting the extra degree
of freedom provided by the multiple time vari-
ables.

In the present paper, the method of analysis will
be demonstrated by deriving known results of
spontaneous radiation from one- and two-atom
systems. In the other papers of this series, the
same method is appIied to obtain new results of
radiation from many-atom systems and to a sys-
tem of particles with random motion.

Section II treats the single-atom system in con-
siderable detail. To make our works reasonably
self-contained, the method of MTSPT will be ex-
plained in detail in the present context of spontan-
eous radiation. Section III deals with a system of
two stationary atoms. Results in both Secs. II
and III are in agreement with those of previous
workers.

II. SPONTANEOUS EMISSION FROM
AN ISOLATED ATOM

Consider an atom with two nondegenerate levels,
separated by an energy Sao~. The radiation from
such an atom initially in the excited state

~
0 & was

first calculated by Weisskopf and Wigner~ by
assuming in the beginning an exponential decay of

the amplitude in the excited state, and then show-
ing that the resulting expression is consistent with
the assumption at large times. As we shaQ see,
our method of analysis will lead to this exponen-
tial decay behavior at large times naturally, with-
out having to assume it a Priori on intuitive ground.

The interaction Hamiltonian of a system of two-
level atoms with the traverse radiation field is
given, in the resonance approximation, by'9

If =gb(t)

[f87, exp(ik 'x(&

k

&& C-„R,(i)+&8-„exp(-ik x,)C-„R (i)],

where C, and C~~ denote, respectively, the photon
annihilation and creation operators; R,(i) and
R (i) represent, respectively, the raising and
lowering operators' for the ith atom; 8-k and 6-„
are essentially the atomic dipole matrix elements.
Specifically, for one-electron atoms, Ck ia given
by

where p is the momentum of the electron relative
to the center of mass of the atom.

The Schrodinger equation for the state vector,

+Q bv(t&l ~'X&

can be written in terms of the amplitudes a(t) and
b-„(t) as

a(t) = g e8-„e' »'bT, (t)
~ .d 4 km t (4

di —b-(t) = ea- e '"»'a(t)
k k

with the initial conditions that

a(0) = l, bg(0) =0,

where ~» =-(do- (d, . In the above equations, c is
the coupling parameter, introduced here to keep
track of the order of perturbation and is to be put
equal to unity at the end of the calculation.

As is well known, the ratio of the two time
scales ~0' and y

' in this problem is of the order
of e'(e'/Sc)(v'/c'), where v is roughly the elec-
tron velocity within the atom This rat.io is much
smaller than unity and it is this smallness param-
eter which renders here the successful application
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of the multiple-time-scale method. Although the
above smallness parameter is proportional to 2,
it is more systematic to intxoduce the multiple

me ical~~"" according to each power of e.
Thus we replace the original single time variable
i by r, which represents collectively the variables
ro~ ru ro~ ~ ~ s t e ~ i r= (ro) ru ro) ~ ~ ~ ) }
7„'s are defined by

8
qn

8t n

or

+

+ 6 +
y (8)

will enable us to look at the time evolution of the
amplitudes according to the different time scales.

We now try to solve Eqs. (4') and {6')by expand-
ing a(r) and b-„(r),

a(r}=Q e"a("~(ro, r„r„.. .), (~)

v„= e"t+ C„.

8
fQP Ta(r—) &ST, e' o) 'obT(r),

~2 0 ~ ~

(4')

~ 8
i —b-„(r) = ea-„e 'oo'o a(-r)

Cqe, " (5')

The initial conditions (6) are now replaced by

For convenience we specify that C0 —0 so that 70
All ~„'s are independent of each other because the
integration constants C„can be arbitrary. Corre-
spondingly, new functions a(r), b), (r) of the many
variables T„are introduced. They are required to
satisfy equations slmQar to Eqs. (4) and (5)~ nam-
ely,

bk(r) =Q e"bk (r„r„r„...). (10)

The derivatives (&/Sr„)a "~(r) and (8/Sr„)bg (r) for
n~ I and for any m are then completely at our
disposal. Note that even though the above expan-
sions are just series in powers of e, the coeffi-
cients depend not only on the variable r, (= t) but
also on the other variables v„. When we finally set
T„=c"t to get back to our original problem, these
expansions wi11 not be simple power series for
a(t), bk(t) since the coefficients a(")(ro=t, r, =et,
r, = e i, ...) and b-„" (ro = i, r, = ei, r, = e'i, ...) will
then also contain powers of e. Hence, the terms
in the conventional perturbation series for these
amplitudes will have been effectively rearranged
in these multiple-time-scale expansions.

Substituting (8)-(10}into (4') and (5') we obtain
the following equations:

a(ro =0, r, =0, r, =0, . . .) =1,

b), (ro=0, r, =0,'ro =0, ...) =0.
(6') e:i —a~ '(r) =0,0 ~ 8 0

870
(11a)

From Eqs. (4')-(V') it is clear that when all C„=O,
the new functions a(r, = i, r, = et, r, = e i, . . .) and
b-„(ro = t, r, = et, r, = e t, ...) become exactly equal
to the original amplitudes a(t) and b), (t), respec-
tively. However, owing to the additional variables
T„T„... introduced into these amplitudes, Eqs.
(4')-(6') alone will no longer be sufficient to de-
termine them uniquely when the C„'s axe not all
zeros. Additional conditions must then be imposed.
In the present case, the introduction of every new
variable r„(or equivalently, C„) must be accom-
panied by new conditions on the partial derivatives
[(S/Sr„)a], and [(s/Sr„)b-„], (or equivalently,
[(s/sC„)a], , ~d [(s/sr„}b~], , ] for the
unique determination of a(r} and bg(r). Mathemat-
ically, it is exactly these new conditions, which
are completely at our disposal, that are at the
heart of the method. After we obtain a(r) and
b-„(r) through the use of these conditions we set
aB C„=O to get back to a(i) and bk (t). Physically,
the partial derivatives on the left-hand side of
Eqs. {4') and (5'),

8 ~ 8a':( —a'"(a)+ —a"'(a))
8T0 8T

= p @k e' »'o b-„"(r), (11b}

a":) —aa '(a) + —a"(v') a —aa'(a) )870 8'p~ 872

= Q Sge' oa'ob-„(7), (11c)
{0)

(12a)

=@-„e ' o) 'oa (r), (12b)

e': i —bT, (r)+ —b-„(r)+—lrg (r)
8 {2) 8 (1) 8 {0)

0 8Tg 872

= a-„e-'"o),'o a"'(r) (12c)
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From (11a) and (12a), it is clear that a(') and b-„

do not vary in the time scale Tp. With this fact in
mind, an integration of (11b) over r, leads to

( 01» ~ ~ .) 0 8
a (r» rot ~ ~

(j) (0)

+ a (ro=Oi r» =. ..)
o )~ „(0)-i p (tg due o}("bT, (r„~ ~ .).

k

(13)

In the limit of large r„ the integral j, 'due' oo"

behaves like a & function, "i.e.,
{" TQ

lim dQ8 QA

f'O~ oo + Q

=I &((d„)

=i —iwi(ra )),
~pa

which is independent of T„while the term
r, (8/Br, )a("(r„...) diverges linearly as ro. Here
(I}/((}„)stands for the principle value of ((d»)-'.
The secular behavior of a(' due to the latter term
may now be eliminated by imposing the condition
(8/Br, )a"'(r» r». . .) =D. This simply means that
a"'(r) is not only independent of 7„but also inde-
pendent of T,.

(0)
Using a similar argument, it is clear that bk (r)

is also independent of To and T,. We may also
impose a first-order condition associated with T,
that (8/Br, )a" (ro=0, r„.. .) =0. Consequently, we
obtain with the help of (6') that

where the term a(o)(ro =0, r„r„.. .) has been set
to zero by imposing (8/Br, )a (ro=O, r» r». . .)
= (8/Br, )a"'(r, =0, r„r„...) =0 and by the use of
(6').

To investigate this equation, let us first consid-
er

Ivo, 'vp T, 1-e
dTp dQ8 py" =Z Z

dp (dg, okp

which behaves like irg(o}») at large ro. To elim-
inate the secular behavior, we have to require
that

—o"'(~, "&+( p l&i('((~.,}I
8

T2

a{0)(r ) e -{IU~ To r~ ('o
2

where
1

8k P —,
ok

(19)

(20)

y, =-}{Q )(t-„)'5({d„).

Note that the a'o'(r) thus obtained is finite and
valid for any T„showing no secular behavior.
Similar considerations in higher orders actually
show that

x a(')(r„...) = 0 . (18)

If we require further that (Ba(o)/Br„) (r, =0, r„.. .)
=0 for n& 2, the solution to (18) which also satis-
fies (6') is

a"'= i (t- due' oo b- (r )
0 (0)

Qk

(14)
~( 2)8+ 1)

bk =-i(tT, due ~ aoo(ro . . .).(~)
~ 0 ~ o

0
(z)

The above equations show that a("(r) and b-„(r)
are independent of r, . Substitution of (15) into
(llc) yields

(15)
a""'(r,-large, r, ) =0.

Hence we have

a(r, large, r-, ) = a")(r,),

(23)

which leads, upon putting ~ = 1 and al1. C„=O, to

—a" '(r) + —a"'(r )aT BT2

0
I@}(I I duel(oo(ro Li)a(o)(((r -)

k

(16)

An integration over Tp then gives

(o)
TQ

a("(r) = -7,—a ' (r„...) — dro

PV 0
C.k i dQe 0&" g(p)

T2

k (1V)

a(i-large)=e '~~' r c (25)

Substitution of (25) into (5) yields, after integra-
tion, ~

5 (~S-k f~)t
b-„(i)= e-„

Mo~+QP -Zy,

Equations (25) and (26) reproduce the Weisskopf-
Wigner solution. Several remarks are in order
here: (i) Although many time variables were in-
troduced in (V), only r, and ro appear in Eqs. (19)-
(24). After setting all C„equal to zero, it is ap-
parent from (25) and (26) that these two variables
T, = t and 7, = dt exactly correspond to the two
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physical time scales discussed in Sec. 1. (ii) Rath-
er than being assumed a Priori on intuitive ground,
the exponential decay behavior of the amplitude u
in (25) follows directly as a result of the mathema-
tical procedure of eliminating the secular behavior
in each order of the MTSPE. (iii) That the ampli-
tude a is independent of the finer time scale 7, in
Eqs. (18)-{24)results from the use of mathema-
tical identities such as

TQ

liln J~
tflte' ok"=i&((t)o,},

TO bafle

Eqs. (30)-(32), except that d/dt is replaced hy
(()/st)«, given in (8). These equations can
then be analyzed in each order. The amplitudes
bt' (r) will again be independent of r, and r,.
Similar to Eqs. (16)-(18), eliminating the secular
behavior in the second order leads to

b(o) f b(o) f b(o)
BT2

b(o) f b(o) f b(o)
2

where the right-hand side no longer depends on 7,
Here, the limit of large Tp actually means in our
context that t becomes so large that the variable
v, = e't may take on finite values. Physically what
happens is that the rapid fluctuations as seen in
the time scale of ~D' are averaged out in the time
scale of y '.

fu=+'~t+&tt t $3/13

CO) = Sk 8
(dDjh,

k

y„.=—7t' Qk e'

(38}

(39)

HI. SPONTANEOUS EMISSION FROM TWO

STATIONARY ATOMS

Consider two stationary atoms, each with two
nondegenerate levels as in Sec. II. If ee assume
that only one of the atoms is excited initially at
t =0, then the state of the system at any later
time may be written

and x„-=x,—x,. Note that: (d« = &o, of (20) and

y;I=)', of (21)~

It is a simple matter to solve the two simultan-
eous, linear, homogeneous differential equations
(35) and (36). Going through steps analogous to
Eqs. (22) (26) we finally ohtaln iI1 'tile llI111't of
large t,

~e(t)} = b, (t)~ ti; 0-„) +b, (t)~ i&; o-„)

+Z bk(t)l~~ lk), (28)

b, (0) = 1, b, (0) = bk(0) =0. (28)

The Schrodinger equation in the interaction repre-
sentation leads to the following equations for the
amplitudes:

8 ~ {fQ)D + 0] ) f
(t) tg (e tk xt e tk xx)-

(dD~+Z QZ

{4
GIDDY

+ f)t2 ) t
+ (e-tk.xt+e-tk xo)

~+SQ2
(42)

. di —b (t)=e
dt '

i —b (t)=e
d1

@*et oktetk xtb

k

@petwokteik xx b (t)k k

k

(30)

{31)

(I, =i g )@-k ('l((ook)(1-cosk x~),

etio+ Jag f'g(tdok)(1+coslr, x„).

b,(r}=gab(;)(r}, q=1, 2
ft=D

b-„(r) =Q e" bk (r) .{~)

e=O

(33)

Equations for bt(r) and b-„(r) are just the same as

2

ling(t) = eCQ e ok +e I b (t),dt ~=1

As in Sec. II, we introduce the multiple-time vari-
ables r of (7') and the multiple-time-scale per-
turbation expansions

These results, (40)-(44}, agree with those in Refs.
12, 13, 18, and19, and can be compared with those
obtazned by Ernst { ' and Chang and Stehle.

Comparing the present section with Sec. II we
see that although the physical results (26) and (42)
have different significance in that the radiation
(42) from a two-particle system shows the coher-
ence effect especially when kpx~ ~+ 1 the math-
ematics of the MTSPT leading to them is essen-
tially the same. We are therefore prompted to look
into more complicated systems. These wi11 be
discussed in the subsequent papers of this series.
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The multiple-time-scale expansion method has been used to study a system of N-two-level atoms with
one of them excited initially. It is found that, in the bmit of large time„ the Schrodinger equation for
the system reduces to a set of algebraic equations, and can thus be solved exactly. A detailed study of
a four-atom system is given. The analysis is then extended to a regular lattice of N atoms. It is found
that in a large lattice, the probability for the excitation energy to be trapped is very large, even when
the lattice spacing is comparable to the characteristic wavelength of the radiation.

I. INTRODUCTION

Since the pioneering work of Dicke' on the super-
radiant states of a system of atoms, there have
been numerous experimental and theoretical in-

vestlgations on the coherence effects in spon-
taneous radiation. A brief survey has been given
in the px eceding paper. '

It is well known that the coherence effect due
to the radiative coupling is especially important


