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Mter reviewing the properties of the photon considered as a quantized particle of zero mass, positive

energy, and unit spin, the expansion of the unquantized and quantized electromagnetic 6elds and vector

and scalar potentials in terms of the photon wave functions and creation and destruction operators is

reviewed and extended. The most general vector and scalar potentials are obtained through the use of
the eigenfunctions of the curl operator. The dichotomy between the photon and wave picture of
electromagnetic radiation is discussed and resolved. The results are applied to the calculation of the

exact electromagnetic matrix elements and transition probabilities (i.e., with retardation taken into

account exactly) for hydrogenic atoms. The exact matrix elements are very simple in form. The notion

of multipole radiation of the usual treatments is irrelevant. However, it is shown how multipoles appear

as an approximation.

I. INTRODUCTION AND SUMMARY

In previous papers Ntefs. 1-4) the autho»as
shown how electromagnetic fields and electromag-
netic potentials may be expanded in the wave func-
tions of the photon. In the present payer these
exy'msions are applied to obtain the e'&+c~ ~trix
elements and transition probabilities for the non-
relativistic, spinless hydrogen atom, taking re-
tardation into account completely. The notion of
multipoles of the usual treatments, which arises
because one expands the exponential which appears
in the matrix elements, plays no role whatever in
this approach, since such an expansion is not
necessary. Indeed the exact matrix elements will
be sufficiently simple to be used directly. The
matrix elements were given in a terse summary
in Ref. 5. The purpose of the present paper is to
provide the derivation.

The application illustrates the power of the use
of the expansions of electromagnetic fields and
potentials in terms of the photon wave functions.
For this reason we shall give a terse review of
the subject and then derive the exact matrix
elements of the electromagnetic interaction for
hydrogenle atoms.

The use of photon wave functions in the expan-
sions of fields and potentials is equivalent to the
exI@.nsion of these quantities in terms of the irre-
ducible representations of the Poincar@ group.
The usual treatments of electromagnetic theory
in quantum mechanics (or classical physics, for
that mater), even when "manifestly covariant" as
in Befs. 6-8, ignore the group-theoretical proyer-
ties of Maxwell's equations, and those who use the
traditional methods are obliged to put up with a
great deal of unnecessary awkwardness. Thus
calculations of the type of the present paper are

very difficult using the traditional theory, whereas,
by contrast the use of Polncarl gx'oup theory
leads very directly to the desired result. A very
close analogy to the ignoring of Poincarb group
theory for Maxwell's equations would be the ignor-
ing of the theory of the representations of the ro-
tation group in scattering theory, the lack of which
would be an extreme handicap indeed t

The present paper is divided into two parts: In
Sec. II we review the theory of the expansion of
electromagnetic fields and potentials in terms of
photon wave functions in both linear and angular-
momentum representations. In Sec. III we derive
the matrix elements of the electromagnetic inter-
action H, =i(ek/Mc)X 0 for hydrogenic atoms.

In previous treatments (see, e.g. , Itefs. 9-11)
they are calculated to an approximation corre-
sponding to an expansion of e'" ' " in powers of
k x or otherwise. Such approximations are called
dipole, quadrupole, etc., approximations. "Al-
lowed transltlons eorx'espond to dipole transitions.
%e shall now give the exact matrix elements.
They are seen to be very simple.

Let the vacuum state of the photon field be de-
noted by

~ V) and 1st the one-photon state with en-
ergy E=hv, total angular momentum j~1, mag-
netic quantum number m and flllally heliclty
A. = +1, be denoted by ~E,j,m, X). The kets satisfy
the orthonormality relations

&V~V) =I, &E,j,m, &~V) =O,
(1)

&E,j,m, A(E',j ', m', A') =E6(E-E'}6,.~,6,6~~, .

%'e denote state 1 as that state for which there is
no photon and for which the hydrogen atom is in
the eigenstate with the principal quantum number
n„and angular-momentum quantum numbers
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j„m,. State 2 is the state for which there is a
photon with the quantum numbers E,j, m, X and for
which the atom is in the eigenstate defined by the
quantum numbers n„j„m2. Though we are consid-
ering spinless hydrogenic atoms, the techniques
can easily be extended to the case of spin and to
the relativistic hydrogen atom. The atomic wave
functions for the atomic states will be denoted by

((), (x) =R,(r)F, „(8,(I)), where R, is the radial
wave function which depends on n, and j„and the

F~ are the usual surface harmonics in the nota-
tion, for example, of Ref. 12. Then our exact
result is the following: Let 6, =j, —j, and 8'=j, +j,.
Furthermore, let j&(kr) be the spherical Bessel
function of j'th order with k ~E/kc the wave num-
ber of the photon. Then for j+j,+j, even

y())/ (()((8+)(%+X(+)()(('(
wj(j+X~ m -m, m~ 0 0 0

8 Co 8x b(i+1)+&(&+1)] i&(kr}R,*(r) —R(r) «r+[-i(j+1)+t(W+1}] j~(kr) —R,*(r) R,(r)rdr
0 0

(2a)
For j+j,+j, odd we have

2'+1 2' +1 2' +1
(1~@,)2}= e'c(o/S)"t'"(-1) ~k . '. ' [(W -q)(W +q+2}(q+t +1)(j—t +1}]' '

~ 1 ~ ~

p
oo

j~(kr)R,*(r)R,(r)r (fr .
~0 '

In the above, u is the Bohr radius, o. is the fine-
structure constant, and the usual notation for the
signer 3-j symbol is used.

The transition probability (that is, transitions
per unit time) for the emission of a photon with
wave number 0, angular momentum given by j and
m, and helicity X is

T=( 2v/k)j(gc k) '[(1(Hg(2}P. (2)

The factor (kek) ' appears because of the photon
wave function normalization in E(I. (1). Since T is
independent of the helicity, the sum over both
helicities would give an additional factor of 2.

It is clear that the exact selection rules are ob-
tained by noting that only those photons can be
emitted for which m=m, —m, and for which j = ~4),
~t). ~+1, . . . , W-1, W. These exact selection rules
are, of course, a consequence of the conservation
of angular momentum.

The approximate selection rules for "permitted"
transitions are obtained by noting that the absolute
values of the matrix elements are greatest for
j=1. In this case the integrals contain j,(kr),
which gives a larger contribution near the origin
(r =0) than the Bessel functions for which j& 1.
Then, defining "permitted" transitions as those
for which j.= 1, we note that ~4

~
=1, or equivalent-

ly, j, =. j,+1, which together with m=m, —m,
=0, ~1 are the usual selection rules. The electro-
magnetic field of the emitted photon, whose ex-
pression will be derived in the body of the paper
from ideas in Ref. 1-4, can also be given. The
wave function of the photon is proportional to

Let k be the propagation
vector with the spherical coordinates k, 8, (3)), i.e.,

k =k(sin8cosf, sln8 sin(t), cosf) .
For m =0 the 8 and Q components of the electric
field propagating in the k direction are

Ez(x, t) =0, Ee(x, t) =Acos(k x- ckt) sine, (4)

while for m =+1

E&(x, t) = —(2) '~'csin(k x —ckt+m(t)),

Ee(x, t) =(2) '~'icos(% x- ckt+m(I)) cos8.

For both m=0 and m =+1, the component of the
electric field in the direction of propagation is
zero, of course, because the wave is transverse.
The polarization rules are thus the same as for
the traditional treatments: For m =0, the wave is
plane polarized, while for m= ~1 the wave is ellip-
tically polarized, the degree of ellipticity depend-
ing on the angle which the direction of propagation
makes with the z axis. The amplitude A. is pro-
portional to the matrix element of Eq. (2a), with
j=1.

To obtain the permitted selection rule in the long-
wavelength limit, 'one replaces j,(kr) by its value
for which A is small, that is by 3 km. One obtains
formulas for the transition probabilities, which,
we shall shortly show, are identical to the dipole
approximations of Refs. 9-11. Then in the dipole
approximation,
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"0
for jj —j2 + 1 for example. The integral is essen-
tially the matrix element of the radial component
of the momentum operator.

It is an easy matter to calculate the exact matrix
elements in special cases. The matrix element
which is important for the emission of Lyman-e
radiation from hydrogen, where N, =2, j, =1,
m, =0, +1, n, =1, j, =0, m, =0, is

(1IH, I2) =-(-',)"2(v) -'"sin"'Mc'

0 E
[1+(y/If']2 1, 1 {{{,{{{&t

where M is the mass of the electron and ff'=2/2s.
To obtain the dipole approximation one ignores
)t/K in comparison to 1. It is seen that the dipole
approximation gives the wrong result for large k,
and one expects divergent results when going to
second-order processes. However, the exact re-
sult dies down very rapidly for large values of k,
and one expects convergent results in many cases
when the dipole approximation gives divergent
answers. In later papers we show that when the
two-level approximation is used, the expression
for the frequency shift of the emitted radiation
converges when the exact matrix elements are
used, but that the expression divexges when the
dipole approximation is used in the customary way.
In Ref. 13 we show that the ultraviolet divergences
in the contributions of each of the atomic states to
the self-energy of the ground state of hydrogen
are not present when the exact matrix elements
are used.

A matrix element which is important for the
calculation of the electromagnetic shift of the
ground state of hydrogen is characterized by the
atomic quantum numbers n, =1, j, =0, m, =0,
n, =2, j,=1, m2=0, +1:

&ll, j2& =(-')'"( ) '"
n/ff

[1+(u/if)']2 (

This matrix element differs from the previous one
only in phase. The similarity between the two ma-
trix elements illustrates the symmetry of the gen-
eral matrix elements of E{ls. (2a) and (2b) in the
atomic quantum numbers. This symmetry is quite
different from that due to the Hermiticity of the
operator H~.

The matrix element which corresponds to the
emission of Lyman-P radiation with a photon angu-
lar momentum of j= 1 has the atomic quantum num-
bers n, =3, j, =1, m, =0, +1, n, =l, j, =0, m =0.

The matrix element is

&1(ff,]2) =-(96v)-'"~fa'~'MS

„(~/W) [1+2(n/W}']
[1+({1/W)']' 5s. ~6~, ~, e (6)

where W = 4/3u. The related matrix element which
is important for the calculation of the electromag-
netic shift of the ground state has n, =1,' j, =0,
m, =0, n, =3, j,=l, m, =0, +1. The element is

&l~H ~2) =(96m) '~'Xia'~'Mc'

(k/W)[1 +2(k/W) ]( 1)~5 5 (9)
[1+(u/W)']'

The transition probability for Lyman-a radiation
using the matrix element E{luation (6) is (on sum-

ming over both hebcities and using the value of
k obtained from the usual hydrogen energy-level
formulas)

T =(-', )'(g) 'n'(Mc') [1+(-,'n}'] '.
The entire effect of retardation is in the factor
[1+ (4a}'] ', which is unity to the fourth significant
figure. Replacing this factor by unity gives the
transition probability when retardation is ignored.
When retardation is neglected, one obtains the
same result for T as would be obtained using the
dipole approximation in the traditional theory [use
Eqs. (59.11}and (59.14) of Ref. 14 and the formula
therein for the average oscillator strength on p. 268].

Our exact transition probability for Lyman-P
radiation is (summing over X)

T=(968} 'a'(Mc')[1+2( —'n} ]'[1+(—', n)'] '. (11}

The effect of retardation is in the factor
[1+2(-,'a)']'[1+ (-,'a)'] ', which is unity to four
significant figures. Replacing this factor by unity,
one again obtains the result for the dipole approxi-
mation using traditional methods.

Thus in two cases where permitted transitions
occur (that is, for which j= 1 for the photon),
neglect of retardation is equivalent to the use of
the dipole approximation in the standard derivation
of transition probabilities. It seems likely that
this result is general, though we have not had time
to prove the general result.

II. ELECTROMAGNETIC THEORY IN TERMS OF
IRREDUCIBLE REPRESENTATIONS OF THE

POINCARE GROUP AND THE %(AVE

FUNCTION OF THE PHOTON

A. Irreducible Representations of the Poincare'

Group and W'ave Functions of the Photon

In relativistic quantum mechanics a particle is
characterized by an irreducible representation of
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the dyIIRInlcR1 VR1'lRbles HpP)p J)pK)p wllich satisfy
the following commutation rules:

[P„P,]=0, [H, P,.]=0, [J„H]=O, [J„P,]=0,

[J„K,.]=0, [J„P,] = [P„J,]=im, (cyc ), .

[J„K,] = [K„J,]=imf, (cyc.), [J„J,]=ittJ, (cyc.},

[KIp H]=ittcP» [K/, Pl]=i55q (H/o).

The operator H is the Hamiltonian, J, (i =1,2, 3)
the components of the angular momentum, P, the
components of the linear momentum, and K, the
space-time components of the relativistic angular-
momentum tensor. In a covariant notation I'0= -I'o
=H/o, P' =P„P"is a four vector and J„,is the
relativistic angular-momentum tensor with J„„
--J,„, J„-J', (cyc.), Jo, K, . -

Wigner (Ref. 15) has found all the irreducible
representations of these dynamical variables. The
representations with which we are concerned are
the mass zero, p-ositive energ-y, fI'nite-spin repre-
sentations. Each representation is characterized
by a number A., which can be any integer or half-
odd integer of either sign. The number A. is called
the helicity of the representation, while ))() is the
spin of the representation. In Ref. 16 a form
especially useful for our purpose is given. In this
representation the carrier space is the Hilbert
space of complex wave functions Q(p, A.)], where

p = (p„p„p,) covers the entire three-dimensional
vector space and A, takes on only one value but is
indicated explicitly for convenience. The inner
product is chosen as

(f g) ff (p i)g(p, =&) &, p= (pl

and the dynamical variables are given by

Hg(p, )() = cPg(p, )(),

P g(p, )() =P,g(p, &),

, (,g)g= p( i(pg)+x(-)')i g(p, x),
P +P3

g, g(p, x)=g(-i(px()), + ' x g(p, x),
P +P3

J,g(p, )(}= tt[-i(pX 0),+)(]g(p, )(),

g, g(p, x)=g((p —+ ' I g(p, z),
P +P3

ii.g(pi)=g(ip —— ' x ,g(p, z),
P +P3

g,g(p, i ) = g(ip —(p, i ) .
3

We note that (H/c}' -P =0, which is the zero-
mass condition, the energy is positive, and that

(p ~ J)/P=SX, where P=(P )'/'. We shall now show

how the wave functions g(p, )(}transform under the
transformations of the Poincarb group. Define

x'=-x, =et, P =-P, =P. (16)

First consider the four-dimensional translation
T(a") in which the coordinates in the new frame
are given in terms of those of the old by

xP' =xP a

Denoting the wave function in the new frame by

g'(p, )()

gg(p )() el((p P~ )/))g(p )() (16b)

Consider a rotation of coordinates paxametrized
by 8 where 8=) 8) is the angle of rotation and 8/8
is the axis of rotation. Then

x' =x'
4

x'=xcos8+, (8 x)8 — (8xx).
8 8

(16c)

e&(s ~ ) )/))g(p )„) (16d)

Finally consider the pure Lorentz transformation
I.(P), where P=)P) is given by cosP=[1-(v/e)'] '/'

and where P/P points in the opposite direction to
that of the moving frame as observed in the origi-
nal frame. Then

z =s coshp + t) ' x (slllllp)/p p

q coshp 1 t(~ slnhp
(16e)

The quantity I [)g(p, )())'/cp] dp gives the relative
probability that a photon in a state given by g(p, )()

has its momentum in the volume V of momentum

space and has the helicity A,. The norm of the wave

function is defined as usual by

&(g) = [(g g)l". (16)

and

gi(p )()-e&((T K)/lg(p ),)

The explicit form of g'(p, )() for each of the trans-
formations is given in Ref. 1V.

%e shall define the dynamical system corre-
sponding to a photon as being the direct sum of the
representations for which A. =1 and A. =-1. The
Hilbert space thus consists of functions Ig(p, )()),
where p is defined over the entire vector space
and A. takes on the two values +1. The inner prod-
uct is now defined by
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8. Expansion of Electromagnetic Field and Potentials in

Irreducible Representations of Poincare Group

In terms of cgs Gaussian units, Maxwell's equa-
tions in free space without sources are

These vectors satisfy the following orthogonality
and completeness relations:

Qc),(p) Q„(p) =~g„,

1 ()5(x, t)
Z%~&~@/A~& 6(-/. (21)

-(-
)

1 ()B(x, t)E (19)

0 H(x, i)=0, '()' f(x, t)=0.
In Ref. 18 eigenfunctions of the curl operator

were introduced, and it was shown how the general
initial value problem can be solved in terms of
them. We first define the vector Q„(p) for X =0, +I
by

Q (p}=-(p/p),

Q (p} )((2)-&/2 P&(Pl Px}
p(p+p. )

P, (P, +ihP, ) P, +ilP
)

for X =+1. (20}

0x [Q~(p)e'(' " ] p)(Qi(p)e'v' " all X. (22)

Furthermore,

& ' [Qz(p}e'&'" ]= ipe'P -"5~, 'all )(.

We can now state the following important theo-
rems:

Theorem 1. The most general real solution in
the infinite domain of Maxwell's equations (19) is

where (L), ~(p) is the ith component of Q~(p).
It is seen that the vectors Q~(p)e'P' " and their

complex conjugates are eigenfunctions of the curl
operator

(x,)() („,=-r & Q (P)d(() &)~"'")"'**")d))-z i)l Q'(P)d'(0 &)~ "'"'"'"""dP}
2%8 /=a 1

X(+ i) Q (i (P)d(P X)Z(l / )(l - l ) dP + Q Q (Pld (P XX-((/ )/l —l )dc)

(24)

The two complex functions g(p, +I) are uniquely

given when I and H are prescribed at a time t=tp.
ZReorem 2. A necessary and sufficient condition

that E(x, t) and H(x, t) transform under the Poinca-
r6 group in the usual relativistic fashion is that
the amplitudes g(p, )() transform under the irre-
ducible representations of the Poincard group
corresponding to zero mass, . positive energy, and
helicity X, as in Eqs. (16a)-(16f}.

The effect of these theorems, which are proved
(with a somewhat different notation) in Ref. 2 and
4 is to state that the expansion equation (24) is the
only solution of Maxwell's equations without
sources that (within unitary transformations) trans-
form appropriately. No other relativistic solu-
tion is possible. [It should be mentioned that the
expansion equation (24) is actually invariant under
a larger group than the Poincarb group, namely,
the conformal group. We,will not go into this

matter further in the present paper, but we want
to indicate that this larger invariance follows
from Refs. 19-21.]

The expansion equation (24) is the same in all
frames of reference obtained from the original
frame by a transformation of the Poincard group.

Let us define the vector and scalar potentials
A(x, i) and 4(x, t) in the usual fashion as being the
solutions of the partial differential equations

H(x, t) =V)&A(x, t),
(26)

where E(xi t) and H(x, t) are solutions of Maxwell's
equations.

Theorem 3. The most general form for the vec-
tor and scalar potentials for the case that currents
and sources are not present is

A(X t) Q )( Q (P)g(P )()&((/X) (P x cct ) ~ + g )( -Qd((P)gd((p )(}(P (d/X) (P x cPt) + (()/F(~ i-)
2WS

P =+1 ~ N X=+1 CP
(26)

4( t)
1 &F(xl t)
c Bt
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where the functions g(p, l.) are the Poincard ampli-
tudes which occur in Eq. (24), E(x, f) is any real
funct1on of its arguments~ Rnd E 18 Rny 1eR1 num

ber.
Theorem 3 is extremely important because it

I'esolves 811'tll'ely 'tile ambiguity lll chooslllg po'tell-

tials corresponding to a radiation field. The func-
tion P(x, f) and the constant K set the gauge com-
pletely. If E(x, f) satisfies I aplace'8 equation, the
gauge is R radiation gauge, whereas if it satisfies
the wave equation, the gauge is a Lorentz gauge.
Radiation gauges are seen to be special cases of
Lorentz gauges. If one is given an electromagnet-
ic field E(x, t) and H(x, t}, one can readily find

g(p, X) and thus A(x, f) and 4 (x, f) when one sets
the gauge by choosing P(x, f) and E. Moreover, in
Ref. 4 and later in Ref. 22, it is shown tobe impos-
sible to set the gauge in such a way that vector and

scalar potentials satisfy the Lorentz condition and

at the same time transform as a four-vector. In
Ref. 4 it is shown that the closest approach is that
the potentials A and 4 transform as a foux-vectox
if the gauge is changed. The expansion equation
{26}is nevertheless relativistic in the sense that
this expansion is valid in all frames of reference.

Equation (26} is proved by expanding the vector
potential in the eigenfunctions of the curl operator
and taking the Fourier transform of the scalar
potential. Substituting into Eq. {25)gives the re-
sult immediatej. y.

Let us define the energy of the field E~, the ith
component of the linear momentum of the field Pf
and the ith component of the angular momentum of
the field J~~ in the usual way by

EI =(8w) ' f[E'(x, t}+H'(x, t)]dh,

P~ = (47rc) ' J [E(x, t) x H(x, f)],dx, (27)

Zf = (4 c) II' f [xx [E(x, t) xH(x, t}]],dx.

These quantities can be obtained in terms of the
Poincard amplitudes g(P, X):

E~ = Q g*(p, X)[Hg(p, X)]—,
cP

P&= Q g+(p, X}[Pg(p,X)]—, (28}
CP

sf= Q g*(P, &)[~lg(P, &)] —,
CP

where Hg gi, l,), P&g (p, l.}, and Z&g {p, X) are given by
the first six parts of Eq. (14).

We shall interpret g(p, l.) [with the inner product
Eq, (1V)] as being the wave fullctioll of tile plloioll
associated with the electromagnetic field given by
the expansion Eq. (26). That is, there will be a
one-to-one correspondence between the wave func-
tion of the photon and the electromagnetic fieM.

The norm of the wave function N(g} given by Eq.
(18) is a measure of the strength of the electro-
magnetic field. If E(x, f) and H(», t) of Eq. (26)
were each multiplied by a real positive number
k, N( g) would be replaced by kN(g). Furthermore,
N(g) is dimensionless and is invariant under
changes of frame of reference. Thus we call N(g)
the (invariant) magnitude of the electromagnetic
fleM.

We now have a relation between the field energy,
linear-momentum components, and angular-mo-
mentum components E~, P~„and P„respectively,
and the quantum-mechanical expectation values of
the dynamical variables 0, P, , and J,. From Eq.
(28)

Z~/W(g) =I7; P[/X(g) =P„P/X(g) =Z„(29)
where the bars mean the expectation value of the
photon variables.

Another relation between the quantum-mechan-
ical photon picture and the electromagnetic field
picture is provided as follows:

Let us assume that the photon state is such that
the wave function g(p, l.) vanishes for one value of
X (=-X„say) and is very sharply peaked at p =p.
One is then in a state in which the photon has the
momentum P and helicity Xo. Then from the ex-
pansion equation (26) it is seen that the electromag-
netic field is a circularly polarized electromagnet-
ic wave whose propagation vector is p/8; and
which is left circularly polarized if A,0=1 and is
right circulaxly polarized if 30=I. This can be
most simply seen by picking p =(0, 0,p).

We have thus shown how the photon or particle
picture of radiation and the wave picture are re-
lated. An oM dichotomy is thereby resolved. It
should be noted that we have used positive-energy
photons only. Furthermoxe, it is unnecessary and
even incorrect to introduce timelike or longitudi-
nal photons in a proper group-theoretical treat-
ment of the source-free electromagnetic field.

C. Energy-Angus -Momentum Basis for

Photons: Expansion of Vector Potential in

Energy-Angular -Momentum Basis

W'e shaQ now 1ntroduce the angular-momentum
basis for massless particles of finite spin and for
photon wave functions, in particular. This basis
is essential for obtaining the selection rules and
matrix elements for atoms, for these quantities
come from the conservation of total angular mo-
mentum. The angular-momentum basis for rela-
tivistic particles was derived in Ref. 23 from the
commutation rules for the infinitesimal generators
of the Poincarl group. The relRtion to the 11neR1'-

momentum basis is given in Refs. 24-26. This re-
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lation is most conveniently stated in tex'ms of the
generalized surface harmonics I'~~ "(8, Q), which
were introduced in Ref. 27. For the purposes of
the present paper, theix properties are summa-
rized in Appendix A of Ref. 28, which also has a
table of these functions for j=0, 1, 2 in terms of
trigonometric functions.

The functions I'~ "(8, p) are generalizations of
the usual surface harmonics Y~ (8, Q) in the sense
that for j an integer

Y, '(8, e)=&,.(8, 0),

where F& (8, Q) are the usual surface harmonics
in the notation, for example, of Ref. 12.

The Poincard amplitudes G(E,j,m, X) in the en-
ergy-angular-momentum basis are defined by

p/8
g(p, &)= P g r~'(8, y)G(4, q, m, &),

/=1 m=-j
(31a)

where j goes through integer values only. The
amplitude G(E,j,m, X) is found in terms of g(p, X)

as foQows:

»'1I » Il'

G(E» j»m, X)=,~, dy' d8sin8r~ l (8, p)g(y, X),
(31b)

y =(E/c)(sin8cosg, sin8sing, cos8).

The inner product in the new basis is (for the
irreducible representations)

(f, g) = „ f"(p, ~)g(y, ~) ~y

6K
i» s(E» j» m» g)G(E» j» m» y)

/=1 ift= j ~ 0

(3lc)

where E(E,j,m, A.) is obtained from f(p, X) through
Eg. (31a). Equation (31a) is the generalization of
the expansion of a scalar function of p into spheri-
cal harmonics. [It should be mentioned that the
function G(E,j,m, A) in the present paper differs
from the corresponding function of Ref. 4 and 24
in phase, but agrees in phase with the function of
Ref. 25].

One can obtain the dynamical variables in terms
of the energy-angular-momentum basis. Of par-
ticular interest

HG(E,j,m, X) =EG(E, j, m, X),

Z,G(E,j,m, A) =KG(E»j, m, A),

(4, +iJ«)G(Ej, m, X) =k[(j em+i)(jam)]'~'
(32)

x G(E,j,m+1, X),

Z'G(E, q, m, ~) =)I'j(q+ I)G(E, j, m, Z),

(P Z)G(E, q, m, Z) =PI(E/c)ZG(E, j,m, a).

oc» dE
(f,g)= g g Q E*(E,q, m, ~)G(E,q, m, ~) —,

A.=+1 j=1 m=-g

(3ld)

instead of Eq. (31c). In terms of the angular-mo-
mentum representation the vector potential takes
on the following form when E(x, t) =0:

A(x, t) =A, (x, t)+ Al»'(x, t), (33a)

Thus the new basis is an angular-momentum basis
in which H, J„J'are diagonal, as is also the helic-
ity.

The wave function of the photon in the energy-
angular-momentum representation is denoted by
G(E,j,m, X), where P. takes on the two values +1.
The inner product is

where

A, (x, &)=-(2)"' Q g p (i) (Y.«. .(8, $)A,.„,(r, i)-@[a/(2@+1)]"'Y,. . . (8, j)Z,.„„,(r, i)

+in[(k+ 1)/(2k+ 1)]'~'Y. . . (8, y)~.„..(r, i)],

8 and $ are the polal' angles of x
(not to be confused with 8 and p, which are the
polar angles of y), and Y~ «are the vector syher-
ical harmonics of Ref. 29 in the notation of Ref.
12. Finally

q «, (r, t)=(gc) '~' ) G(E, k, m, X)
0

x j (Er/ac)e-"'"&s'dE

where j«(r) is the usual spherical Bessel function
of order k.

The expression for the magnetic field H(x, t) in
terms of the angular-momentum basis is identical
to that of A(x, t), except that G(E,j,m, A.) in Eg.
(33c) is replaced by (E/kc)AG(E, j, m, X). The ex-
pression for the electric field E(x, t) is also the
same, except that G(E,j,m, X) is replaced by
i(E/ac)G(E, q, m, X).

The decomposition of A(x, t) and A, (x, t) as in
Egs. (33a) and (33b) also separates the vector po-
tential into toroidal and poloidal modes which, in
a sense, is complementary to the decomposition
into the eigenfunetions of the curl operator.
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Let us write

A, (x, t) =Ar(x, t) + A~(x, t),
where

(33d)

Ar(x t)=-(2)' ' Z 2 Z (i)'Y, , (8, 0)&, ~, , (i, t),

A (x, t)=(2)'t Q Q Q (i)"+'1 Y „, (8, (t))A z „(r,t)—
g=+ 1 /=1 m= -Q 20+1 f 0+1/ mt pm&, y+1y2y+

(33e)

x Y. . . (8, (j))A. . .(r, t)

Let us introduce the operator L = (L„L„L,) by

L = -i(x&&'0) . (3M)

Clearly the components of L are the components
of the "orbital angular momentum" with I set equal
to unity.

From the expressions on pp. 83-85 of Ref. 12

X (x, t) =Li(x, t), A (x, t) =VxLP(x, t), (33g)

where v(x, t) and (1)(x, t) are potentials given by

that is for j = 1 in the matrix element of Eq. (2a).
In Eq. (31a) we set G(Z, j,m, 1) =0 for all j&1.
Furthermore, from Eq. (2a)

G(E, l, m, 1)=KB, (34)

where J3 is independent of X when we take into ac-
count that the wave function of the photon in the
angular-momentum basis of the photon is propor-
tional to the complex conjugate of the matrix ele-
ment. Then

g(p, 1) =XBYi (8, y). (35)

~(x, t) =-(2)"* p p p (i)'[n(n+1)]-'"
h=kl A=1 m=-0

x A, „„„(r,t)Y), '(8, j),
(33h)

y(x, t) =-(2)"* p p p (i)'~[n(n+I)]-"*
k=41 A=1 m=-k

&B~.i(», t) Y. '(8, 4),
where

B, «(r, ))=(mc)" G(E, )«m, )j, (
—

«)e
0

(33i)

From Eq. (33g) it is seen that Xr is a toroidal vec-
tor and that X~ is a poloidal vector. For a discus-
sion of such vectors see, for example, Appendix
III of Ref. 30. As will be seen in the derivation of
the selection rules, the rules split the contribu-
tions from the vector potential into its poloidal and

toroidal parts.
From the earlier theorems it is seen that the

method of introducing the angular-momentum basis
for photons and the expansion of the vector poten-
tial in terms of the basis, which we have intro-
duced, is the only proper method in terms of the
Poincarb group. An example of an improper meth-
od is that of Ref. 31.

It is an easy matter to find the radiation pattern
associated with photons of a given angular momen-
tum. For example, let us derive the radiation pat-
tern of Eqs. (3) and (4) for "permitted transitions, "

When this g(p, 1) is substituted into Eq. (25), the
field equations (3) and (4) are obtained from the
contribution of one value of the propagation vector
p/5, where the explicit form of the surface har-
monic is taken from Ref. 28. When one goes into
the details of the calculation, one sees that a re-
definition of B is needed so that it is proportional
to the matrix element for all m. This is accom-
plished by replacing B by A in Eq. (4) and by
(2)-"'W in Eq. (5).

D. Quantization of Electromagnetic Field

l. Annihilation and Creation Operator s:
Dynamical Variables

It is seen that classical electromagnetic
theory of radiation is already first-quantized.
To second-quantize the theory we replace photon
wave functions by annihilation operators and
their complex conjugates by creation operators
in the usual way. We shall first work in the
linear -momentum basis. In the expansions
equations (24) and (26) the quantities g(p, A)

are now annihilation operators and the quantities
g~(p, Z) are creation operators which are the
Hermitian adjoints of g(p, A). The operators
satisfy the following commutation relations:

[g(p, ~) g(P', ~')] = [g'(P, ~), g*(p', ~')] =o,
(3&)

[g(p ~»g*(p' ~')]=cP5x, x 5(p-p').
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The second-quantized operators corresponding
to the dynamical variables H, P„J„and E,
will be designated by H, P„Z„and E„respec-
tively. Then

tf =Q ] g+(p, »[ag(p, »]—,
%=a CP

for the Hilbert space that is completely free of
the ambiguities of the usual treatments.

To obtain the second-quantized theory in an
angular-momentum basis, we replace G(E, j,m, A.)
by an annihilation operator and its complex
conjugate by a creation operator. The following
commutation rules are satisfied:

P(= Z g*(p»[P&g(p, »]—,
X=u cP

'l g*(p, )(,)[Z,g(p, »]—,
X=pa ~ P

(3V)
[G{E,j,m, ~), G(E,j,m, ) )]

= [G'(E j m )(.) G*(E' j' m )( )]=0
(4o)

e-((a~@Pg(»e&(e&i&)P e((a~ J „)/~g(p»
e-((s 3)/ag$ )()ec(e z)/& e((e'J)/&g(p»

e-((8'z)/hg(p g)e((8'z)/& —e((8'K)/&g(p )()

(39)

The foQowing theorem is seen to hold:
17seoyem 5. The set of annihilation and crea-

tion operators in tyro frames of reference related
by a Poincare transformation are unitarily
equivalent to each other. Furthermore, the
electromagnetic fields in the two frames are
unitarily equivalent.

%e now have a second-quantized Poincare
invariant theory with a positive definite metric

I g*(p, )(,)[K,g(p, )(.)]—.
~p

» E(l. (37), Hg(p, )(.), P,g(p, », Z,g(p, )(.), and

K,g(p, » are defined by the right-hand side of
E(l. (14).

The following theox em is easily proved:
Theorem 4. The second-quantized operations

&, P„J„and E, satisfy the commutation
relations, E(ls. (12).

A consequence of Theorem 4 is that the second-
quantized operators are dynamical variables of
a relativistic system.

The number operator is defined by

I g*(p, »g(p» —. (38I
x=&x ~

A

The operator 0 is the Hamiltonian of the second-
quantized field, and so on for the other second-
quantized variables.

The electromagnetic fields which are expanded
as ln E(l. (24) are now Hermitlan operators in
the Heisenberg picture. They satisfy Maxwell's
equations. The commutation rules for the
components of the field are identical to those
traditionally used. The vector potential is also
a Hermitian operator in the Heisenberg picture.

The annihilation operators g(p, A) transform
as the Poincare wave functions in order that
the quantized electromagnetic field transforms
appropriately. It is readily shown that

[G(E,j,m, X), G+(E', j', m', )(,')]
=Eh(E -E')6/

~
() ()q g .

jp„X,; p„X,;.. . ; p„, )(.„&=g g*(p„)(.,) j y&. (42)

The n-particle ket in the angular-momentum
basis is defined analogously using G~. In
particular, the one-photon state is given by

jE,j,m, Z& =G+(E,j,m, » ~
V). (43)

3. Quantized Electromagnetic Fields (eith

Infinite Numbers of Pt(otons

The Pock representation for the annihilation
and creation opex ators is characterized by the
existence of a vacuum state and by the fact that
the number operator N is defined. There are,
however, othex realizations in which the number
of particles is infinite. Such realizations have
been introduced by Friedrichs in Ref. 32 who
calls them "myriotic" because they correspond
to an infinite numbex' of pax'ticles. The occupa-
tion number operator is defined, however. The
possibility of stiU other realizations is discussed
in Ref. 33. More recently, Ref. 34 has introduced
"coherent states" (which we believe to be special
cases of Friedrichs' myriotic states) which also
correspond to an infinite number of particles.
Realizations other than the Pock representation
are useful in statistical mechanics where an
infinite number of photons are present (as in
black-body radiation) and in the description of
intense, coherent radiation. The introduction

2. Foes BePresentation

%e now give the usual realization for the an-
nihilation and creation operators —namely, the
Pock representation. This representation is
characterized by the existence of a vacuum
state j Yj such that

g(p )()ll'&=G(E j»»Iy'&=o (41)

In the linear-momentum basis the n-particle
ket is defined by
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of annihilation and creation operators in the
manner of the present paper allows us to attach
a relativistic photon interpretation to these in-
finite-particle quantizations of the electro-
magnetic fields. There is no difficulty whatever
in computing matrix elements for the emission
or absorption of photons by an atom when such
infinite-number representations are used. How-
ever, we shall not pursue the problem in the
present paper.

III. EVALUATION OF EXACT MATRIX

ELEMENTS

A. Hilbert Space: Separation of Radial and

Angular Integrations

The space in which the interaction

Hz =i(eS/Mc)X(x) - v (44)

(xln, j,m) =ft.,(r)I;" '(0, y), (45)

is defined, is the direct product of the Hilbert
spaces S~ and S„, where S~ is the Hilbert space
of the photons or second-quantized electromagnetic
theory in the Fock representation, and S„is the
Hilbert space of atomic wave functions. Since we
are working in the SchrMinger picture, the
interaction is taken at time t =0 and the time
variable is suppressed in the vector potential.
The vector potential X(x) is taken with F(x, t) -=0

and in the angular-momentum representa. tion,
as in Egs. (33a) and (33b), with G(E, j, m, X)

and G*(E,j,m, A) as annihilation and creation
operators, respectively.

In the space $~ we will be concerned primarily
with the vacuum state

l g and the one-photon
state lZ, j,m, X&. In the space S„we will be
interested in the wave functions that correspond
to the bound states of spinless hydrogenic atoms
that also correspond to angular momentum eigen-
states. Such states will be labeled by ln, j,m&,

where n is the principal quantum number, and

j and m are the quantum numbers describing
the total angular momentum and the z compo-
nent of the angular momentum, respectively.
In the x representation

where r, 8, and p are the polar coordinates of
x, and ft„,(r) is the atomic radial wave function
[see Eq. (30)]. In Eqs. (33b) and similar expres-
sions we will drop the carats, since the polar
coordinates of p will no longer play a role and
the polar angles will thus henceforth refer to
those of x.

In the direct-product Hilbert space the state
l 1) is that corresponding to the case where there
is no photon and where the atom is in the state
described by the quantum numbers ny jy m, . The
state l2) is that for which the atom is in the state
with quantum numbers n„j„m, and there is a
photon with energy E, angular momentum given
by j,m, and helicity given by A. . The energy E of
the photon is the difference of the energies of the
states, in the case that we are considering photon
emission or absorption; but it is arbitrary in
higher-order processes that do not conserve
energy in the intermediate states.

Then

II&=16ln j m & 12&= IE j m ~&l nj

Then
(46)

[x„)t„(e,y) V]r, (e, y)

operate on the r variable in the atomic radial
functions. Furthermore, for simplicity we have
written

(47b)

Z, (r)=H„, , ft, (r)„, . (47c)

B. Evaluation of Operators 0,. M,11~1J2 2

We will first give the results and then sketch the
derivations:

(I l Hi l 2& = -( 2a)~'e'a k(i)" '
f, r' Cr R, (r)

x{j)(kr)p~~', , ~, , —ix[j/(2j+1)]' '

xj &„(kr)p~&,",'./, +iA[(j+1)/(2j+1))~'

(47a)

where the operators

= -(—1) & — . '.
1

' [(W-j)(W+j+2)(j+n, +1)(j —~+1)]~'(2j+1)(2j,+1)(2j,+1) ' '

Pj f+, —
( 1)my — 2 I 2 j jl j2 2(

~ +1) +[+(W+I)
1 2'+1)2'+1) ~' ' ' ' ' ' '

a 1
J|~y:12~2 4 ~(j +1) m-m, ~ oo o e~ y

(48a)

(48b)
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OJJ l sl ( 1)nip ( Jl )( f2 ) j fl f2 f fl fR 2' [g(gP+1) ( +I)]«x"~:«2% 4 gj m -m, m 0 0 0 br r
We will now sketch the derivation of Eq. (4&). We use the notation and methods of Chap. 5 of Ref. 12.

Accordingly, we introduce the vectors e, for @=0, +1 by

e, =(0,0, 1), e, =-q(2) ~'(I, iq, 0) for q=+1.

For any vector X we define A, by

X,=e, X.
In particular

I' „,(8, Q) =e, Y „(8,Q) =(-1)'(I,M+q, 1, -qlI, l, Z, M)F „(8,Q),

which follows from the definition of the vector surface harmonics.
Then also,

V„„(8,4) V=+(-I)'r„„,(8, 4)V, .
The following rule for the product of two surface harmonics wiQ be used:

y;*„(8,y)r, „(8,y)=( I)"P-, j (j, m, Z,-Mlj, g, f,M m)(j-, O, Z, Olj, Z, I,O)r+. „(8,y). (52)

0»&., =p ( 1)" -(I„M-q, l, q-l I„I,Z, M)(j„-m„I„M-q lf„I„I,M-q m, )(-j„o,I„0~q„ I., j,o)

(2j, +l)(2I, +1) '~' .x ', .
) (j,m, -m+qlv, lj„m,),

4mjej +1

where the matrix elements defined by

(5 mal&, ljnsm'2) =f,

deaf,

d8sin8~g*, ,(8~ 4)&,F»~, (8& 0)

are given in Ref. 12. The only nonvanishing elements are

(j+l, m+qip', lj, m)= . (j,m, l, qlj, l, j+l, m+q)2j+3 Br

(j -I,m+qlv. l j,m) = . 1 -(f, m, l, qlj, l, f -l, m+q) —+

The expression (53a) can be simplified greatly by noting that the operator V~~„(8, p) ~ V acting
on the Hilbert space of atomic states is an irreducible tensor of rank J. Therefore we can use
the Wigner-Eckart theorem:

(53a)

(53b)

(53c)

(54)O»~g, »sl2 (2 2$ mRI~& M122P~t f19 ml) jg(fltfSP~) '

The function f~(j„j„j)is the reduced matrix element It is obtained by evaluating 0&~,,&.'»z» from
Eq. (53a). In this case the various Clebsch-Gordan coefficients are relatively easy to compute
explicitly and the reduced matrix elements can be found. Finally one replaces the Clebsch-Gordan
coefficients (j„m„J,Ml j„g,j„')mand (j„O,I„O lj„I.,j, 0) by the equivalent Wigner 3-j coefficients for
greater symmetry to obtain Eq. (4&).

C. Derivation of Matrix Elements

It is now a straightforward matter to evaluate
the matrix elements Eqs. (2a) and (2b). The
presence of the 3-j symbols

j jl, jQ

in the expression for 0«» «".«splits the
evaluation of the matrix elements into tyro cases,
since

fi.n the expression for 0««, «, , and
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vanishes unless j+j,+j, is even. Equation (2b)
follows immediately from the use of Eg. (48)
in ~. (47a), in the case that j+j,+j, is odd. It
is seen that only the toroidal component of the
vector potential contributes to the matrix element
in this case. For the case where j+j,+j~ is
even, the situation is somewhat more compli-
cated. The expression in curly brackets in Eg.
(4Va) contains the exyressions

[jq„(kr) +jq, (kr)]—

[j2„,(kr) —(j +1)j~,(kr)] .

[j„,(kr) +j~,(kr)] = j j~(kr),

(55)

[jj~„(kr)- (j + 1)j~,(kr)] = — —„[rj~(kr)] .2j+1 d

%'e then make the above substitutions into the
expressions for the matrix elements. Finally,
me integrate by parts to remove the derivative
from the Bessel function. It is to be noted that
only the poloidal part of the vector potential
contributes to the matrix element of Eq. (2a).
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