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The great utih*ty of the Thomas-Fermi (TF) theory of atoms lies in the fact that it gives a solution

of the TF equation that is valid for for all neutral atoms. In contrast to this situation, the TF
equation for positive ions has to be solved separately for each degree of ionization of each atom. Using
a previously obtained approximate analytical solution of the TF equation for neutral atoms (which is
based on a variational principle), and a sericswxpansion approach (which relates the parameters in the
ionic solution to those in the neutral-atom solution), the present paper derives a univered approximate
analytical solution of the TF equation for ions. This solution, in addition to. being valid for positive

ions, is also applicable for negative ions for which the original TF theory does not furnish a solution.
Furthermore, the approximate solution obtained here is not associated with finite ionic radii, and gives

an exponentially deceasing radial electron density, which is not the case in the original TF theory. For
this reason, the electron densities and potentials of ions that result from the present work are expected
to be in better agreement with the quantum-mech»ical data for these quantities than the electron
densities and potentials obtained with the original TF theory. To show that this is so, the accuracy of
the univend approximate analytical solution is investigated by calculating the diamagnetic

susceptibiTities of singly and doubly charged positive and negative ions of noble-gas electron
configurations. It is found that, in most cases, calculated and experimental values for ions of the Ar,
Kr, and Xe electron configurations agree to within a factor of 2, while for ions of the Ne electron
configuration the agreement is somewhat worse. This is about the same accuracy as that found using
the Lenz-Jensen approximation to the TF theory which, like the universal approximation, also makes

use of variational electron density but, unlike the universal approxirrietion, has to be separately obtained
for each particular ion. As a further check on the useAiiness of the univermd ionic solution, the
diamagnetic susceptibilities of the isoelectronic ions Ga'+, Ge'+, and As'+ are also calculated and
found to agree only slightly worse than within a factor of 2 with the experimental data. After fiirther

comparison with data obtained from more-refined statistical models, the conclusion is that the universal

solution for ions may be useful in a variety of problems where quantum-mechanical accuracy may be
traded for a simpler approach.

I. INTRODUCTION

In deabng with many physical problems, the
statistical theory of atomic structure' is often
used as an approximation to the more fundamental,
but usually considerably more involved, quantum-
mechanical description. In general, the approxi-
mate statistical theory is an attractive alternative
to the exact quantum theory either when the accu-
racy of the latter is not required, or when the
labor involved is not warranted. The basic, and
also the simplest, formulation of. the statistical
theory of a neutral atom is embodied in the Thom-
as-Fermi (TF) model. ' This is described by an
ordinary nonlinear differential equation of the
second ordex, the so-called TF equation, which
possesses a universal solution for all neutral
atoms. In terms of the universal solution, obtain-
able only in numerical form, ' important physical
quantities, such as the electric potential, and the
electron density within the atom, can be expressed.

For positive ions, the situation is less favorable
because for these the TF equation does not possess
a universal solution, but has to be solved separ-
ately for each degree of ionization of each atom. '

Solutions of the TF equation for positive ions
have been obtained by Fermi, ' by Sommerfeld, '
and more recently by Goudsmit and Richards. '
While the functional form of the Fermi and Som-
merfeM solutions is different, both types essen-
tially consist of the universal solution for the
neutral atom plus a correction function. The lat-
ter depends both on the atomic number Z, and the
number N of electrons of the ion considered, so
that it is specific to a given ion. As far as nega-
tive iona are concerned, they are not stable with-
in the framework of the TF model s chiefly be
cause this model involves the electrostatic self-
Coulomb interaction of the electrons.

In choosing the TF model as the basis of dis-
cussion of a particular physical problem, one
must assess its reliability in the light of quantum-
mechanical requirements. Dirace has investigated
the relationship between statistical theory and
quantum mechanics, and he has shown that the TF
model is the semiclassical equivalent of the Har-
tree approximation. ' As a consequence of this
relationship, they both share the same shortcom-
ing of ignoring exchange effects between electrons
of parallel spin.
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A more serious shortcoming of the TF theory
of a neutral atom lies in the fact that it leads to
a radial electron density which, at large distances
from the nucleus, decreases as the inverse fourth
power of the distance from the nucleus, "whereas
the Haxtree approximation gives an exponential
decrease. It has been possible to eliminate this
undesirable feature from the TF model by replac-
ing the TF equation by a variational principle. "
By making use of the flexibility in imposing bound-

ary conditions afforded by the variational approach,
it has been possible to obtain a universal approxi-
mate analytical solution of the TF equation for
neutral atoms which leads to an exponentially de-
creasing electron density. The variational ap-
proach is basically simple. Instead of merely re-
quiring the proper behavior of the solution of the
TF equation at large distances from the nucleus,
one can furthermore specify by what functional
form this limiting behavior of the solution is to be
reached. That the variational approach does, in-
deed, represent an improvement over the original
TF theory can be seen from the fact that physical
quantities, such as the total ionization energies
of neutral atoms, are in better agreement with the
experimental data when calculated using the varia-
tional solution of the TF equation, than when ob-
tained by using the numerical solution. " It there-
fore appeared advantageous to use the approximate
variational solution for the neutral atom for de-
riving Fermi-type and Sommerfeld-type approxi-
mate analytical solutions of the TF equation for
positive ions." A calculation of the second ioni-
zation energies for the noble-gas atoms, "for
instance, has shown that, with the exception of
Ne, the variational approach led again to better
agreement with the experimental data than the
original Fermi or Sommerfeld approach. This
improvement is due to the fact that, as a conse-
quence of the use of an improved electron density
for the neutral atom, the variational TF ion turns
out to be more "compact" than the original one.
In both of the above frameworks, however, the
appeal of the TF model of a positive ion is marred
by the fact that the theory associates a certain
finite radius with each ion. Consequently, beyond
the ionic radius the electron density abruptly drops
to zero and the potential of the ion becomes the
potential of a point charge. It appears, therefore,
desirable to eliminate this discontinuous feature
from the TF model and thereby to bring it into
better agreement with the quantum-mechanical
model of a positive ion. The present paper ad-
dresses itself to this task. It will be shown that
this goal is, indeed, attainable. The result is a
universal approximate analytical solution for both
positive and negative ions.

H. THEORY

Since the approach for obtaining an approximate
solution of the TF equation for ions makes use of
the variational solution of the TF equation for a
neutral atom, " some essentials of the latter so-
lution are recapitulated first.

2d 4o ~3/2/y/2
dx'

where ~ stands for the distance from the atomic
nucleus, measured in units of the Bohr radius a»
and Z for the atomic number.

For a neutral atom, the differential equation is
to be solved with the boundary conditions'

0,(0) =l, (4)

It is of interest to see the physical requirements
from which these boundary conditions arise. In
the TF model for a neutral atom, the total poten-
tial is expressed by"

(6}

where e, is the magnitude of the electronic charge.
From the picture of a point nucleus, surrounded

by a spatially extended electron cloud, it is ob-
vious that in the immediate neighborhood of the
nucleus, where there is no appreciable shielding
of the nuclear charge by the electrons, the poten-
tial should be

V(r =0) =Ze,/r .
But Eq. (7) can only be obtained from Eq. (6) if
$0(0) = 1, which explains the boundary condition
(4).

Now let us assume for a moment that a neutral
atom has a finite radius ro. Then, according to
Eq. (6), as r approaches r„ the potential becomes

V(r =r }=(ZeJr }Q (x ).
We know, however, that outside the sphere of ra-
dius r„ the potential is

A. Neutral Atom

In terms of the dimensionless variable x, defined

by

x =r/p,

where
1(+)1/ 3P / 3Z -1 / 3

the TF equation for a neutral atom is given by'
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(9)V(r& r$) ~0,
since in a neutral atom of finite radius there must
be complete shielding of the nuclear charge for
r & r0. The requirement that the electric potential
be continuous at the boundary now demands that
the potential in Eq. (8) be equal to the potential in
Eq. (9). This can only be achieved if Q,(«,}=0.
We do not, however, want an electron density that
terminates at r„but one that extends to infinity.
With the choice of r, =~ we must therefore have

Q$(~) =0, which explains the boundary condition
(5).

The boundary conditions themselves, Eqs. (4)
and (5), are not sufficient to obtain physically
realistic solutions of Eq. (3). They have to be
augmented by the subsidiary condition that the
electron density of the atom be normalized. In
the TF model, the electron (number) density is
given by"

p$ = (4«) '(~/~')(Ag«)"', (10)

so that the subsidiary condition becomes

L(y, ) = ~ F(/p~ y,', ») C», (12)

where

Jf ~ p2dV' =N, (11)

where N(=Z) stands for the number of electrons,
and the integration is over all space 7 whose vol-
ume element is dv. Now, instead of solving Eq.
(3) exactly with the boundary conditions (4) and

(5), and the subsidiary condition (11), we make use
of the variational principle'" "

8 $8 8
F(V/o, V/o, ») - s—s

~ F(/p„1p,', «) =0 .
8~ 8@0

(14)

When the operations indicated in Eq. (14) are per-
formed, one finds that the TF equation (3) resu]ts.

Since, at large distances from the nucleus, we

require an exponentially decreasing electron
density, the problem is now to select a trial func-
tion which assures this behavior. It is obvious
that the class of such functions is very large. In
a previous paper" the trial function was chosen as

1P $(a,e M+b, e 82*}', (15}

where a, b„e„p0are as yet undetermined pa-
rameters. It is easy to see that if the boundary
condition (4) is to be satisfied, then we must de-
mand that

a +50=1, (18)

which means that there are only three independent
parameters in y0.

Inspection of Eq. (15) also shows that with this
choice for /p„ the boundary condition (5) is also
satisfied.

Using y, given in Eq. (15), one now calculates F
by means of Eq. (13), and then evaluates the inte-
gral in Eq. (12). Using the notation

ntfy that y, is not an exact but an approximate
solution of Eq. (3).

That the variational principle in Eq. (12) is equiv-
alent to the differential equation (3) can be seen
by substituting (13) into the Euler-Lagrange equa, -
tion"

(13)F(S 2, 1p.', «) = 2(V/.')'+x/p'. "» '".
In Eqs. (12) and (13) p$ stands for dip J'd» and, in-
stead of Q, the symbol V1, has been chosen to sig-

L,(a, a$, P2) = 2 (/p$}' d»
0

l, (a„a„P,) I~I'~'x '~'dx
0

(17)

(18)

one finds" that

I,(a, a0, 21$)~a$ $g+4a$(1- a )~ +a2(1- a ) +4a (1-a )' 2 +,'-(1-a )4n$
(1+n 1 +4n0+ g~ 122+ Q
( 3+n0 1+n0 1+3n

(19)

a$ a$(l —a ) 2gP(1- a,} 2a2$(1- a,)' a,(l - a,)' (1-a,)'
'%$01 % 0 5$/2 (4+a )1/2 (3 +2s )1/2 (2 + 3s )1/2 (1 +4~ )1/2 5(52$ }1/2 (20)

where, te facilitate numerical calculations a new
variable defined by

~2=&J&$ (21)

has been introduced.
According to Eq. (12), we now form the quantity

L(a, a$, $22) = L,(a, a„$1,)+L2(a„n„n2), (22}

which has to be extremalized with respect to the
three independent parameters a» 0.0,and n0.

Furthermore, the extremalization is to be car-
ried out subject to the subsidiary condition (11).
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Substituting Eq. (10) into Eq. (11), and consider-
ing that in our spherically symmetric case
d7 =4nr'dr, the integration gives

a', 3a', (1 —a,) 3a,(l —a,} (1 —a,)'
0 33/2 (2 + s )3/2 (1 + 2~ )3/2 (3s )3/2

L, (a„no}=KX(a, n ) (24)

L2(a„no} =2m'/'K '/' Y(ao, no),

where the quantity

K = (2/v'/2)-2/~(N/Z)-2» =K (N/Z)-2/'

(25)

(26)

is a constant for a given ion. This step reduces by
one the number of variables in L, and L,. Further-
more, by substituting a, into L, and 12, we have
incorporated the normalization requirement for
the electron density into the considerations that
follow. Also, by this substitution, we have made
L(a„n,) a function of N/Z, which is important
when the ion problem will be discussed. The
quantities X and Y, appearing in Eqs. (24) and (25),
are defined by

X(a„s ) = [A(a„n,}]'/'B(a„so) (27)

=2w '/' —'
(23)Z

We see from Eq. (23) that o, is a function of the
parameters a, and n, . We also see from Eq. (23)
that ao is also a function of N/Z. For a neutral
atom N/Z=1, and, for simplicity of notation, this
dependence will not be shown explicitly at this
stage.

Expressing o.'0 from Eq. (23), and substituting
the proper powers of n, into Eqs. (19}and (20),
we can rewrite these equations as

ao = 0.1782559 . (33)

Finally, using Eqs. (16) and (21), one obtains"

5 =0.2781663, P =1.759339. (34)

B. Ionized Atom

When an atom loses (or gains) one (or more)
electron(s), then the resulting ion's electron den-
sity, as we know from quantum mechanics, still

TABLE I. (a) The quantity I (pp, np) as a function of the
parameter np at a fixed value of ap., (b) the quantity
L (ap, np) as a function of the parameter ap at a fixed value
of np. The asterisks refer to the values at the minimum
of L (ap np),

The expression for L(ao, no) in Eq. (22), is now to
be extremalized with respect to the parameters
a, and n, . It is emphasized that the extremaliza-
tion is carried out subject to the subsidiary con-
dition in Eq. (11). This point is stressed, since
previous attempts, '" '""which paid no attention
to the subsidiary condition, resulted in incorrect-
ly normalized electron densities. (A detailed dis-
cussion of this problem is published elsewhere. ")
The minimum of L(a, no), to sixteen significant
figures, is reached" when the parameters have
the values

0 721 8337 80 9 869 743

[It would be desirable to introduce special sym-
bols, such as a~ and n~, for those values of the
parameters a, and n, at which L(ao, n, ) is an

extremum. This, however, is not done here for
the sake of avoiding additional notational complex-
ities. ] It is found that L is a very slowly varying
function of a, and n„as illustrated in Table I.
With the parameter values in Eq. (32), one finds
from Eq. (23) that '

Y(so, so}= [A(a, no)] '/'C(ao, n, ), (28) (a) a, np L (ap, np)

a, (1 —a,)' (1 —ao)'
(1+4n )'/' 5(5N )'/' '

(31)

where

@so 3amo(1- g ) 3a (1-a } (1- so)'
( op+0) 3$/2 (2+ )3/2 (1 +2s )s/2 (3 )3/2 &

(29)

B(a,n, ) = —,'ao+4a', (1-a,) 3+go
1+4m + '

1+no
+Pl

1 + 3)go

cP, a', (1 —a,) 2a', (1 —a„)' 2a',(1- uo)'
( at 0) 58/2 (4+~ )1/2 (3 + 2s )1/2 + (2+3 )1/2

0.721 833 7
0.721 833 7
0.721 833 7
0.721 833 7*
0.721 833 7
0.721 833 7
0.721 833 7

(b) np

9.869 743
9.869 743
9.869 743
9.869 743*
9.869 743
9.869 743
9.869 743

9.869 740
9.869 741
9.869 742
9.869 743*
9.869 744
9.869 745
9.869 746

ap

0.721 833 4
0.721 833 5
0.721 833 6
0.721 833 7*
0.721 833 8
0.721 833 9
0.721 834 0

0.681 964 813 653 573 6
0.681 964 813 653 571 5
0.681 964 813653 570 3
0.681 964 813653 570 14
0.681 964 813653 570 7
0.681 964 813653 572 3
0.681 964 813653 574 8

L@p np)

0.681 964 813653 583 8
0.681 964 813653 576 4
0.681 964 813 653 571 9
0.681 964 813 653 570 1*
0.681 964 813 653 570 9
0.681 964 813 653 574 7
0.681 964 813 653 581 2
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decreases exponentially at large distances fxom
the nucleus. Furthermore, it seems reasonable
to assume that, apart from very low Z atoms, the
parameters describing the electron density dis-
tribution in a modexately ionized atom cannot
differ drastically from the parameters describing
the same in the neutral atom. This assumption is
central to this paper. In other words, it seems
reasonable to assume that the solution of the TF
equation for an ion might also be of the form

and the electron density p, Eqs. (6) and (1.0), is
expected to be of practical value in a variety of
physical problems. " Our task is now to obtain
analytical expressions for the correction terms.

We know that when L(a, n) is an extremum, then
the following conditions must be met:

(48)

Q( =(a)8 & +b)8 ~ ) (35) BL(a, n)

where, according to our assumption, the param-
eters for the ion should be related to the param-
eters for the neutral atom by

We can rewrite Eqs. (48) and (49), by making use
of Eqs. (36) and (41), as

Q) = 8= gg+AQ»

bq =- 5 = ho+ Lb»

A) = A= Co+Ear»

Pg
= P=Po-+&P.

(36)

(3V)

(38)

(39)

We can also write, in analogy with Eq. (21), that

BL(a„+n.a, n, +4n) Baa
Bg 8Q

BL(a,+b, a, n, +hn) B~n

0

(5o)

(51)

n, =-n =P/c. ,
and assume also that

n =no+An.

(4o)

(41)

It follows from Eq. (36}that

8~0

eQ

and from Eq. (41}that
In Eqs. (36}-(39)and (41), the magnitudes of the
corrections h, a, 4b, 4a, d P» and d n are assumed
to be small» so that we can write

(42)

(43)

so that the two conditions for the extremum of
L(a, n), Eqs. (48) and (49), reduce to

(53)

IaeI «c.„
In PI «P. ,

IanI «n, .

(44)

(45)

y, (pr/Z) ={[a,+La(N/Z)]exp[ [n, +ma(N/Z)]-x]

+ [5,+~5(Pr/Z)] exp[-[P, +n.P(Pr/Z)]x} P,
(4V)

where the subscript i refers to the word ion.
The approximate solution (4V), in conjunction

with the expressions for the electric potential V

Furthermore, we require that these corrections
depend on both Z and N, so that Eq. (35) describes
a particular degree of ionization of a particular
atom.

Should we be able to obtain analytical expres-
sions for the correction terms, Eqs. (36)-(39)
and (41), then we will have obtained a universal
approximate analytical solution of the TF equation
for a given ion. In detail, the universal solution
will still have the simple analytical form

BL(a, +b, a, n, +r n)
(54)

BL(a„n,)+h,n
0

(56)

We may say that Eq. (56) expresses the idea men-
tioned before that the quantity L(a, n), for an ion
(for which N-Z and Z» 1), is not too different
from the quantity L,(a, n, ) for a neutral atom.
Introducing the abbreviations

( )
BL(a„n,)

+0»+0 =
0 ao

(5V)

BL(a +ha, n, +En)
BPl0

We now want to rewrite the two conditions in Eqs.
(54) and (55) by making use of the Taylor-series
expansion of I,(a, n). Keeping only those terms
which are linear in 4a and ~, the desired Taylor
series is given by

L(a, +ma, n, +an) = L {a,n, ) +b a BI(a,n,)
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L„,(a„n,) = Sj(~,n, ) (58)

r, (N/Z)""+r (N/Z) ' '+r (N/Z)' '
q, (N/Z) '"+-q, (N/Z)-'" +q, (N/Z)" ' '

and substituting Eq. (56) into Eqs. (54) and (55),
we obtain

8—[L(a, no)+n, aL, (ao, no)+n, nj„(a»no)] =0,

(59)

—[L(a, no}+n,aj, (ao, no)+conj„(ao, no)] =0.8

0

(60)

where the coefficients P„q„r,, (i =1, 2, 3) of
the various powers of N/Z are constants. To a
limited number of figures, they are given by

P1 = 0 000 270 0475 P P2 = 0 000 600 1717p

ps =0.000330 1242, q, =0.0010474680,

q, = -0.000 344 7563, q, = -0.000 82V 4575, (70}

0 016 840 11 /2 0 034 227 46

r, = -0.017 387 35 .
With the further abbreviations

L (ao n)=
apap ~ 0 8Np

BL„(a„n,)L„(Qp Plp) =

L (a n)= "o ' =L (a n) — No' »sj (a, n ) eL
npap » ~ apnp & 0

Qp Sp

(61)

(62)

(63)

It should be mentioned here that the numerical
values of the above coefficients depend on the ex-
tent to which L(ao, a» no), Eq. (22), has been ex-
tremalized. With the parameter values displayed
in Eqs. (32)-(34), we find from Eqs. (66) and (6V)
that

nn(N/Z=1) =2.56X10 '

n.a(N/Z=l =1.46x10 '0,

we can express Eqs. (59) and (60) as

naj (an »)+onnj„, (a, no) =-L, (a»no) (64)

A aL, „(a,no) +b,nL„(ao, no) = -L„(a»no) .
(65}

and

L L -L L
ap nplhlp np npap

L2 -La a L
noao p p npnp

L L -L L
Qpg = "o apao 'o aono

npap apap npnp

(66)

(6V)

where the notation for the functional dependence of
the L's on ao and no has been dropped. Both of
these expressions contain various first and second
partial derivatives of L(a„n,). The detailed ex-
pressions for these quantities are somewhat in-
volved and are given in the Appendix. When the
various partial derivatives of L(a, n, ) are evalua-
ted, then Eqs. (66) and (67) assume the forms

P, (N/Z)-"'+P, (N/Z)-'*+P, K/Z)"'
q, (N/Z) '~'+q, (N/Z) '~'+q, (N/ZP~'

To first order in 4a and 6n, the above two equa-
tions satisfy the conditions for the extremum of
L(a, n) as displayed in Eqs. (48) and (49).

We can solve Eqs. (64) and (65) for n, a and An.
The results are

which, as it turns out for our purposes, is close
enough an approximation of the requirements
nn(N/Z =1)=0 and na(N/Z =1)=0.

It should also be mentioned here that in some
cases, depending on the values of N and Z, the
accuracy of the coefficients in Eq. (70) may not be
sufficient. This is so because there may be can-
cellation of significant figures in the numerators
and denominators of Eqs. (68) and (69) due to the
fact that the coefficients P„q,, r,. do not all have
the same sign. Should such a situation arise and
cut down on the accuracy on Ea and 4n, then one
has to further refine the parameters Qg bp Qp and

P, by extremalizing Eq. (22) to more than sixteen
figures and then recalculate the coefficients in
Eq. (70) also to more significant figures. This
can be done by making use of the expressions
given in the Appendix for the various partial de-
rivatives of L(a» no}.

As an example, anticipating some future use by
the author, the relevant parameter values for
three isoelectronic ions, Ge", Ga", As" have
been calculated. (The first ion is the core of the
Ge atom whose lattice forms a semiconductor.
The other two ions correspond to the cores of the
atoms Ga and As which, in the Ge lattice, corre-
spond to a shallow acceptor and a shallow donor,
respectively. ) All three of these ions have a
closed-shell electron configuration and, conse-
quently, a spherically symmetric electron density
as assumed in the TF model. All three of these
ions have sufficiently high Z values, so that we
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may also assume that the requirements embodied
in Eqs. (42)-(46) will be satisfied. Furthermore,
we may consider these ions as being moderately
ionized atoms.

At this point we can calculate the parameter a
from Eq. (36), and then the parameter b from Eq.
(16). For calculating the parameters a and P, we
have two possibilities. The first possibility is the
substitution of a and n into Eq. (23). This gives
us n. We can then calculate P from Eq. (40). This
procedure does not entail any further approxima-
tion beyond those already used in deriving 4a and
4n. It would, however, not lead to explicit ex-
pressions for the correction terms b, e and AP
appearing in Eq. (4V). The second possibility is
that of obtaining explicit analytical expressions
for these quantities, too, by making use of two
further expansions. We can rewrite Eq. (23) as

o(a, n) =K[A(a, n)]'/'

-Z, (N/Z)-2/'[A(a, n}]"' (71)

+ dna„(a„n, ), (72)

and consider that c/(ao+Aa, no+ En) can also be ex-
panded. To terms linear in 4a and &n, the Taylor
series of o.(a, n) is

a(ao+Aa, no+ &n) = a(ao, n, )+4aa,„(a,n, )

P =Pp+&P &

where

(V9)

III. DISCUSSION

We have obtained approximate analytical solu-
tions of the TF equation for the ions Ga", Ge ',
and As" of the form required by Eq. (4V}.

As a first and qualitative check of the correct-
ness of these approximate solutions, the following
consideration is suggested: Since all three ions
have the same number of electrons, it is reason-
able to assume that in an isoelectronic sequence
the radial electron density, defined by

D(r) =4wr'p(r), (81)

should reflect the increasing Coulomb attraction
between the nucleus and the electron cloud as one
goes from Ga" to Ge4', and then from Ge4' to
As". To simplify our considerations, let us look
at the radial electron density at a "large enough"
distance from the nucleus so that we can use the
approximation

dp=a (N/Z) / bn+n &a+p [(N/Z}-"'-1].
(80)

It is seen from Eq. (80) that nP(N =Z) =0, so
AP also shows the correct behavior.

where the abbreviations y, = (ae '+ be s )' = a'e '~ -=y (82)

u(a„n, ) = a,(N/Z} '/',

( )
sa(a„n, )

N apy np
p ap

so.(a„n,)n„( na, ) =
np

(74)

(75)

where the subscript "asy" stands for asymptotic.
Using Eqs. (1) and (82), it follows from Eq. (10)

that

Z(4w)-&a)~ -3/mr-s/2 (an/P )r- (83)

We expect that Ge~' is a "tighter structure" than
Ga", so that at large enough a distance from the
respective nuclei we should have

have been used. Detailed expressions for these
quantities are given in the Appendix.

Introducing the notation

b.e=6ao., +En'„,ap np &

we can rewrite Eq. (V2) as

a = o.,(N/Z) '/'+n. n.

(76)

(77)

Since we have found previously that both Aa(N = Z)
=0 and An(N = Z) =0, it follows from Eq. (V6) that
Aa(N=Z) =0, which is the correct behavior for
this quantity.
It remains now to calculate 4P. To first order,

we can represent Eq. (40) as

(84)5 =D~(Ga")/D~(Ge") & 1.
Using Eqs. (81) and (83), and considering Eq.

(2), we can rewrite Eq. (84) as

Z Ga" "' a Ga"

exp[12(—,
' 9w') ' 'a(Ge ')[Z(Ge")]'/'(r/a ))

exp{12(—,
' 9 w') '/'a(Ga")[Z(Ga")]'/'(r/as)) '

(85)

Choosing the "large enough" distance, some-
what arbitrarily, as r = 6as we find that Eq. (85)
gives

Po+AP =(n, b +)[na,(/ N)Z'/'+b, a.], (V8)
5=2.39, (86)

from which, by neglecting the second-order term
Ln4a, we obtain

as anticipated.
Similarly, one also expects that As" is a "tight-
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er structure" than Ge4', so that we should have

5'=D „(Ge")/D (As")&1. (87)

Indeed, making the proper changes in Eq. (85), one
finds at r =6a~ that

5'= 1.90, (88)

X = -L(eg6moc ) (r~), (89)

where L is Avogadro's number, m, is the electron
mass, c is the speed of light, and, for a spheri-
cally symmetric electron distribution,

(r', ) =4m Jl 'p(r)r'dr.
0

(90)

Using Eq. (10), and considering that in the uni-
versal model r, =~, one finds" from Eq. (90) that

as anticipated. While the results in Eqs. (86}and

(88) appear reasonable, one must resort to a more
sensitive test to obtain supportive evidence for the
correctness of the procedures used in establishing
our model of a positive (and negative) TF ion.

As a more significant test of the validity and use-
fulness of the universal solution, the diamagnetic
susceptibilities of singly and doubly charged posi-
tive and negative ions of noble-gas electron con-
figurations are calculated. The susceptibilities
are obtained from" the expression

p = p e d (92)

where N is again the number of electrons, A is a
normalization constant, the d, 's are parameters
obtainable from the minimization of the energy of
a TF atom (or ion), and the variable y is defined

y = X' Z' (r/ae)' (93)

with A. denoting another variational parameter.
In the first approximation, used to calculate the

susceptibilities y(LJ), the Lenz-Jensen electron
density is

calculated with Eq. (15), compare with the experi-
mental data, with quantum-mechanical data, and
with data calculated from the TF model and its
various modifications. For this reason, the sus-
ceptibilities for the noble-gas atoms Ne, Ar, Kr,
Xe, and Rn have been obtained, "from Eqs. (89)
and (91), and are listed in Table II(a) as y(Pr),
where Pr refers to the present work. Table II(a}
also lists, under the heading g(LJ), the suscep-
tibility values ' found by making use of the Lenz-
Jensen (LJ) approximation" to the TF theory. The
LJ approximation, "like the universal approxima-
tion, makes use of a variational electron density.
This has the form

(~2) ~lvl/2g~2[s3(3~)-7/2 i3s25(2~ ~P)-7/2

+3a5 (n+2P) +b (3P) i. (91)

While the present paper discusses ions, it is of
interest to see how neutral-atom susceptibilities,

p~ =(N/A '
)y 'e "(1+d,y)',

where

(1) 4 ~Q 2

k=0

(94)

(95)

TABLE II. (a) Diamagnetic susceptibilities per gram atom (in units of 1& 10 8 cm ) of the atoms listed as given by
experiment and calculated by the various theories discussed in the text. (b) The calculated to experimental susceptibili-
ty ratios obtained from the data of Table IIa. For Hn no experimental susceptibility value is available. To calculate
the ratios denoted by an asterisk, the experimental value for Rn has been "identified" with Clementi's calculated value
of -59.3x10 6 cm3 per gram atom.

(a) Atom. Z Z(Expt) X(Pr ) Z(LJ) X(TF) Z(TFD)M~ X(TFDG) M~

N(QM)
(Clementi)

q(QM)
(others)

Ne
Ar
Kr
Xe
Rn

10
18
36
54
86

-6.74
-19.6
-28.8
-43.9

-15.4
-18.8
-23.6
-27.1
-31.6

-20.3
-24.7
-31.1
-35.6
-41.6

-67.0
—81.0
-102.0
-117.0
-136.7

-13.7
-22.0
-36.4
-48.5

-12.9
-21.1
-35.8
-47.3

-5.77 to -5.86
-17.4 to -18.3
-26.8 to -27.9
—38.9 to -42.6
-55.7 to -59.3

-4.96 to -6.68
-16.6 to -22.6
-28.8 to -31.1
-43.9 to -72.2
-14.6 to -117.2

(b) Atom Z
X(I'r) X(LJ)

g(Expt) y(Expt)
g(TF)

g(Expt)
y(T F~i)M~ y(T FDG) M~

X(Expt) X(Expt)

g(QM)
g(Expt)

(C le menti)

g(QM)
y(Expt)
(others)

Ne
Ar
Kr
Xe
Hn

10
18
36
54
86

2.28
0.959
0.819
0.617
0.533*

3.01
1.26
1.08
0.811
0.702*

9.94
4.13
3.54
2.67
2.31+

2.03
1.12
1.26
1.10

1.91
1.08
1.24
1.08

0.856 to 0.869
0.888 to 0.934
0.931 to 0.969
0.886 to 0.970

0.736' to 0.991
0.847 to 1.15
1.00 to 1.08
1.00 to 1.64

0.246* to 1.98*
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For neutral atoms, the parameters d& and A. are
universal and have the values'

d, =0.265, A. =10.9i . (96)

For ions the Lenz-Jensen parameters are not
universal, but have to be obtained from the mini-
mization of the energy of each particular ion."
While Eq. (94) shows that in the LJ approximation
the radial electron density also goes to zero ex-
ponentially, as in the universal ionic approxima-
tion, the fact that for ions the LJ electron density
has to be obtained separately makes it less ad-
vantageous than the universal ionic approximation.

Table II(b) compares the calculated to experi-
mental susceptibility ratios. Inspection of the data
permits several conclusions: First, both the uni-
versal variational solution, "and the LJ approxi-
mation, "represent significant improvement over
the original TF theory, since the latter greatly
overestimates the magnitude of the diamagnetic
susceptibilities. This is attributed to the fact
that, in the TF model, the radial electron density
goes to zero as the inverse fourth power of the
distance from the nucleus, and, for this reason,
the TF model contributes too large an electron
density at large values of r to the integral in Eq.
(90). Consequently, (r',} and hence g comes out
too large. Second, the data in Table II(b) also
show that both the universal ionic solution and the LJ
approximation are of comparable accuracy, the
latter being somewhat worse for Ne and Ar, and
somewhat better for Kr, Xe, and Rn than the
former. Third, we see from Table II(b) that, with
the exception of Ne, the calculated and experimen-
tal susceptibility values agree to within a factor
of 2. Fourth, the comparison of the y(Pr)/X(Expt},
and }((QM)/y(Expt) ratios, where g(QM} refers to
quantum-mechanical data, also shows that, apart
from Ne, the data obtained with the universal so-
lution agree fairly well with the quantum-mechani-
cal data. " This is all the more gratifying since
the Clementi-type wave functions, ~ from which
some of the quantum-mechanical data of Table
II (a) have been obtained, are so constructed as to
give the best agreement with the diamagnetic sus-
ceptibilities. " Other quantum-mechanical calcula-
tions are also available, ~ which, in some cases,
show poorer agreement with the experimental data
than those obtained with the Clementi-type wave
functions. They are also included in Table II(a),
even though the point on the accuracy of the uni-
versal variational approximation has already been
made.

Before proceeding, it may be mentioned that, by
considering Eqs. (2) and (91), we see that g, Eq.
(89), has a Z'~' dependence. When Eq. (91) is
evaluated with the ionic parameters then, of course,

TABLE III. (a) Diamagnetic susceptibilities per gram
ion (in units of 1x 10 6 cm ) of the ions listed as given by
experiment and calculated by the various theories discus-
sed in the text. (b) Calculated-to-experimental suscepti-
bility ratios obtained from the data of Table HI (a).

(a) Ion Z X(Expt) X(Pr) X(LJ) X(TFD)M~ X(TFDG)M~

Na+ 11 -5 -14.2 -14.5
K 19 -13 -12.3 -20.3
Rb+ 37 -20 -20.4 -28.2
CH+ 55 -31 -24.5 -33.3

-7.9
-14.5
-27.5
-37.5

7+3
-14.4
-26.8

37 \2

X(Pr) X(LJ)
(b) Ion Z X(Expt) X(Expt)

X(TFD)M~ X(TFDG) Mod

x(Expt) x(Expt)

Na+
K+

Rb+
Cs+

11
19
37
55

2.84
0.946
1.02
0.790

2.90
1.56
1.41
1.07

1.58
1.12
1.35
1.21

1.46
1.11
1.34
1.20

(r 0} has a much more complicated Z dependence
but the dominant factor is still Z' '.

The diamagnetic susceptibilities, labeled
y(TFD) M~ and g(TFDG)„~ in Table 11(a}, were ob-
tained" by making use of the modified Thomas-
Fermi-Dirac (TFD)" and Thomas-Fermi-Dirac-
Gombds (TFDG}"models. In the TFD model the
exchange effect, and in the TFDG model. the ex-
change and correlation effects are included. In
the modified TFD and TFDG models the Fermi-
Amaldi correction" has been considered to cancel
the self-Coulomb interaction of the electrons by
the self-exchange interaction as best as possible
in the outer regions of an atom or ion. Without
this modification singly charged negative ions are
not stable either in the TFD or in the TFDG theory.
From the data in Table II(b) we see that, the suc-
cessive refinements of the TF model do, indeed,
lead to better and better agreement with the experi-
mental data than the TF model.

Finally, our fifth conclusion is that for all neu-
tral atoms considered the refined statistical mod-
els lead to susceptibilities which are in reasonable
agreement with those obtained by using the uni-
versal ionic solution.

It was considered worthwhile to dwell at some
length on the susceptibilities of the neutral atoms,
since the universal variational solution for atoms
is the backbone of the universal solution for ions.
We may anticipate, therefore, that we shall en-
counter a favorable comparison also between cal-
culated and experimental ionic susceptibilities.

Susceptibilities, calculated for the ions Na', K',
Rb', and Cs', from the various models, are listed
in Table III(a). Table III(b) shows the correspond-
ing calculated to experimental susceptibility ratios.
Inspection of the data in Table III(b) shows that,
apart from Na', the data from the universal ionic
solution are again in reasonable agreement with
the more exact modified TFD and TFDG data,
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TABLE IV. (a) Diamagnetic susceptibilities per gram
ion (in units of 1x 10 cm3) of the ions listed as given by
experiment and calculated by the various theories dis-
cussed in the text. (b) Calculated-to-experimental sus-
ceptibility ratios obtained from the data of Table IV(a).

(a) Ion Z X(Expt) X(Pr) X(LJ) X(TFD)Mw X(TFDG) M~

F
C1
Br
I

9 -11 -21.6
17 -26 -22.4
35 -36 -25.6
53 -52 -28.4

-30.1
-30.6
-34.6
-38.2

-26.5
-36.5
-54.0
-66.5

-24.4
-34.6
-51.2
-63.7

x(») x(LJ)
(b) Ion Z X(Expt) X(Expt)

X(TFD)M~ X(TFDG)M~
X(Expt) X(Expt)

F
C1
Br
I

9 1.96
17 0.862
35 0.711
53 0.546

2.74
1.18
0.961
0.735

2.41
1.40
1.50
1.28

2.22
1.33
1.42
1.23

TABLE V. (a) Diamagnetic susceptibilities per gram
ion (in units of 1x 10 cm ) of the ions listed as given by
experiment and calculated by the various theories dis-
cussed in the text. (b) Calculated-to-experimental sus-
ceptability ratios obtained from the data of Table V(a).

(a) Ion Z X(Expt) X(Pr) X(LJ) X(TFD)M~ X(TFDG)Mod

Mg++
Ca++
Sr++
Ba++

12 -3
20 -8
38 -15
56 —32

-9.79
-16.0
-15.6
-22.1

-10.9
-17.0
-25.6
-31.2

-5.2
-10.6
-21.5
—30.8

-5.2
—10.6
-21.5
-30.8

X(Pr) X(LJ)
(b) Ion Z X(Expt) X(Expt)

x(TFD)Mod

X(Expt)
X(TFDG)Mw

X(Expt)

Mg++
Ca++
Sr++
Ba++

12 3.26
20 2.00
38 1.04
56 0.691

3.63
2.13
1.71
0.975

1.73
1.33
1.43
0.963

1.73
1.33
1.43
0.963

which appear in lieu of quantum-mechanical data.
We also see that, with the exception of Cs', the
universal ionic solution leads to better agreement
with both the experimental data, and the data ob-
tained from the more-refined statistical models
than the LJ approximation.

Table IV(a) contains susceptibility data for the
singly charged negative ions F, Cl, Br, and
I . The calculated to experimental susceptibility
ratios are compared in Table IV(b). Inspection of
the susceptibility ratios shows that, with the ex-
ception of F, the data obtained from the universal
ionic solution agree with the experimental data to
within a factor of 2. This is a significant finding,
since the validity of the universal ionic solution
for singly charged negative ions could so far only
be viewed as formal. We also see from Table
IV(b) that, for the lighter ions F and Cl, the uni-
versal ionic solution leads to data in better agree-
ment with the experimental ones than the LJ ap-
proximation, while the opposite is true for the
heavier ions Br and I . Table IV(b) also shows
that the present calculation underestimates, while

TABLE VI. Diamagnetic susceptibilities per gram ion
(in units of 1x 10 6 cm ) of the ions listed as given by ex-
periment and by the present theory and the calculated-
to-experimental susceptibility ratios.

Ion g(Expt) X(pr)
X(pr)

g(Expt)

0
S
Se
Te

8
16
34
52

-12
-38(V)
-48(V)
-70

-31.6
-27.4
-28.3
-29.2

2.63
0.721
0.590
0.417

the more refined statistical models overestimate
the magnitude of the susceptibilities.

Table V(a) contains susceptibilities calculated
for the doubly charged positive ions Mg", Ca",
Sr", and Ba". The calculated to experimental
susceptibility ratios are listed in Table V(b). We
see again that, with the exception of Mg", the
agreement of the universal ionic data with the ex-
perimental data is still within a factor of 2. We
also see that, with the exception of Ba", the LJ
approximation leads to poorer agreement with the
experimental data than the universal ionic solution.
We also see that the X(Pr)/y(Expt) ratios agree
quite well with the ratios obtained from the more
refined statistical models.

It is of interest to see whether the universal ion-
ic solution could also be applied to the calculation
of the susceptibilities of the doubly charged nega-
tive ions 0, S, Se, and Te . These ions
are not stable, but in the present universal approx-
imation (and in the LJ approximation) we can still
formally obtain electron densities for them and
thus calculate susceptibilities. The susceptibilities,
together with the calculated to experimental ratios,
are listed in Table VI. Again, from the data we
see that, with the exceptions of 0 and Te, the
agreement between the calculated and experimental
susceptibility values is still within a factor of 2.
This is considered as further evidence that the
universal ionic model is applicable not only to
positive but also to negative ions.

In all cases considered so far, we have seen
that the agreement between calculated and experi-
mental susceptibility values was the poorest for
ions of Ne-like electron configuration. This is
probably due to the fact that for ions with so few
electrons the statistical theory is a poor approxi-
mation. This view is supported by the fact that
for the Ne-like ions the ratios g(TFD)M~/g(Expt),
and y(TFDG)M~/y(Expt) are also larger than for
the heavier ions. Another factor, which may con-
tribute to the relative poorness of the calculated
susceptibility data for Ne-like ions, might be the
fact that the magnitude of 4n, one of the basic
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correction terms, is much larger (about 2) for the
Ne-like ions than for the heavier ions. Conse-
quently, when compared with n~, the correction
term ~b, n~ may no longer be considered small.
This suggests that further improvement of the uni-
versal ionic solution for the light ions might be
attainable by generalizing the theory to include
higher than linear correction terms to s. (The
6a terms are small, a few % of a„so quadratic
terms in rh a are not needed. )

The magnitude of the correction term 4n turns
out to be also fairly large (somewhat smaller than

2) for the ions Ga", Ge", and As". Susceptibil-
ity values calculated for these ions, together with
the calculated to experimental ratios, are listed
in Table VII. The agreement between the theoret-
ical and experimental data is somewhat worse
than a factor of 2, but still quite reasonable.

In judging the agreement between theoretical and
experimental susceptibilities, we also have to con-
sider that the experimental data' are not the re-
sults of straightforward measurements on partic-
ular ions but are deduced from measurements on
compounds and resorting to more involved con-
siderations.

In judging the effect of the various refinements
of the statistical theory, it is also customary to
compare calculated and experimental polarizabili-
ties. Such data can be calculated by making use
either of second-order perturbation theory, formu-
lated within the statistical framework, "or of the
approximate Kirkwood-Vinti relation. The latter
states that the polarizability n~ can be related to
the diamagnetic susceptibility, y, by the equation

(9V)

TABLE VIII. Parameter values in the universal ap-
proximate analytical solutions for the isoelectronic ions
listed. For comparison the parameter values for the Ne,
Ar, Kr, and Xe atoms are also shown.

Ion Z

Mg++
Na+

Ne
F
0

12 0.7173 0.2827 0.2047 1.595
11 0.6674 0.3326 0.1717 1.339
10 0.7218 0.2782 0.1783 1.759
9 0.6917 0.3083 0.1535 1.643
8 0.6691 0.3309 0.1323 1.583

7.758
7.998
9.870

10.641
11.679

pate that the same situation prevails for ions also.
Calculation of a~ (not reproduced here), both
from second-order perturbation theory, and from
Eq. (9V), has, indeed, substantiated this conclu-
sion. The reason for this lies in the fact that the
exchange and correlation effects are not considered
in the TF model and in the various approximations
to it. When these effects are included, then the
calculated and experimental polarizabilities agree
quite well. ~ The parameters used, for the ions
considered, are listed in Table VIG.

One may ask at this stage what happens if one
deals with a low Z atom, or with an, atom so
strongly stripped that we no longer have N & Z. In
such cases one should go beyond the linear theory
used here, and include higher-order terms in the
Taylor-series expansion of L(a, +na, n, +An) in
Eq. (56). Such an extension of the present theory,
while increasingly laborious, should not present
unforeseen difficulties except that the resulting
extended system of equations, corresponding to
Eqs. (64) and (65), must then be solved by numeri-
cal techniques. Once higher-order terms, such
as (b, ap and (n,s)', are brought into the picture, the
required modifications of the expressions for the

TABLE VII. Diamagnetic susceptibilities per gram
ion (in units of 1x 10 8 cm ) of the ions listed as given
by experiment and by the present theory and the calcu-,
lated-to-experimental susceptibility ratios.

Ion g(Expt)
X(Pr)

g(Expt)

where N is again the number of electrons for a
neutral atom N =Z, and y has a Z' ' dependence.
Consequently, we find from Eq. (9V) that n~ has a
Z ' ' dependence, i.e., decreases with increasing
Z. This is in contradiction with the experimental
data, "which show that e~ increases with Z. In
view of the fact that for neutral atoms we do not
have the correct Z dependence, we might antici-

Ca++
K"
Ar
Cl
S

Sr++
ah+
Kr
Br
Se—

Ba++

cs+
Xe
I
Te

38 0.8250 0.1750
37 0.7412 0.2588
36 0.7218 0.2782
35 0.7110 0.2890
34 0.7028 0.2972

0.2247
0.1894
0.1783
0.1704
0.1636

2.381
1.864
1.759
1.710
1.679

56 0.7535 0.2465 0.1953 1.936
55 0.7329 0.2671 0.1850 1.817
54 0.7218 0.2782 0.1783 1.759
53 0.7141 0.2859 0.1728 1.724
52 0.7080 0.2 920 0.1680 1.699

20 0.6814 0.3186 0.1785 1.672
19 0.8250 0.1750 0.2247 2.381
18 0.7218 0.2782 O.I783 1.759
17 0.7028 0.2972 0.1636 1.679
16 0.6892 0.3108 0.1511 1.636

8.090
10.758
9.870

10.246
10.747

10.758
9.840
9.870

10.033
10.246

9.918
9.822
9.870
9.971

10.100

Ga'+
Ge4'
As"

31
32
33

-19.1
-15.0
-14.6

2.38
2.14
2.43

Ga3+ 31 0.6672 0.3228 0.1764 1.398 8.069
Ge4+ 32 0.7009 0.2991 0.1904 1.526 8.059
As5+ 33 0.7125 0.2877 0.1997 1.576 7.884
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parameters a, 5, n, and P canbe made without
difficulty on the basis of the material already
presented.

One may also ask the question of just how good
is the universal approximate solution cp, that we
have obtained here. Since the derivation of the
approximate solution for an ion makes use of the
approximate solution for a neutral atom, part of
the question is essentially reduced to answering
the problem of how good is qp, the solution for a
neutral atom. This problem is quite involved and
has been discussed e1sewhere. "'"It suffices to
say here that it is possible to formulate so-called
complementary variational principles" which
establish an upper bound and a lower bound for
the energy belonging to a particular approximate
solution of the TF equation for a neutral atom.
Thus, if we have a number of approximate solu-
tions y„, q~, q», .. . , each depending on more
than one parameter, 4' then the best approximate
solution should be the one for which the difference
between the bounds is the smallest. It goes with-
out saying that, eventually, practical considera-
tions, such as the labor involved in minimizing
I of Ell. (12) fol' R 111Rny-pRI'RIIleiel' fuIlctlo11 will
terminate the search for better and better approxi-
mate solutions. That this should be so is clear
from the fact that the TF model itself is just the
basic statistical model that still lacks effects such
as the exchange between electrons of parallel
spin, and correlation between electrons of anti-
parallel spin.

The fundamental constants used in the numerica'.
calculations are those listed by Kittel. 4'

IV. CONCLUSIONS

It is concluded that the universal approximate
analytical solution is physically realistic and may
be used in a variety of problems when Iluantum-
mechanical accuracy may be traded for a simpler
approach.

AcmOVm. EDGMENT

The author is indebted to A. Fuller and S. Khan
for programming some of the numerical calcula-
tions.
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-+BA, A„A~i'+A'i'8, „, (A14)

y =-3A~i'(A C +A C )- gCA i'A
apNp ap np np ap 0 0

+ CA A A ' '+A ' C (A15)9 ap ttp aptt0

The various partial derivatives of A(a, n, ),
$(oo, II,), and C(a„n,), obtained from EIls. (zQ)-
(31), are given by the following expressions:

APPENDIX' EXPLICIT EXPRESSIONS FOR
THE PARTIAL DERIVATIVES OF I.(ap P1p)

Considering EIls. (22}, (24), and (25) we can ex-
press the partial derivatives of I (a, n ) as

A,,=(Sa,)3 'i'+(6ao- Qa', )(2+no) 'i'+3(1-4ao+Sa', )(1+2n,) 'i'+3(-1+2a, —a', )( SI)I' '
&

A, , =(6g,)3 'i'+6{1—Sa,){2+n,) 'i'+ (-62 +aS,)(1 +n2) 'i'+6(1- a,)(3 ) I' ', {A1V)

B, =2a~o+4(3a2~-4a30)(1+no){3+IIO) '+2(ao-Samo+2ao~)(1+4IIO+no}(1+IIO} '

+4(1-6ao+Qa', -4ao')(II0+II20)(1+Sno) '+2(-1+So -Sa', +a~a)n, (A18}
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B, =6amo+24(1-2ao)(1+n }(3+n ) '+2(l-6ao+6ao)(1+4n +no)(1+n ) '

+24(-1+3a -2ao)(n+no}(1+3no} '+6(1-2a +ao)n

C, =(Sao)5 ' +(4ao-5ao)(4+no) '~'+2(3ao-8ao+Sao)(3+2n, ) ' '

+2(2a -9ao+12ao-5ao)(2+3no) '~ +(1-8ao+18ao-16ao+Sa40)(1+4n )
'~'

+ (-1+4@,—6ao+4ao- a40)(5n )-'~',

C, , =(20ao)5 ' '+4(3a20-Sao)(4+n )
' ~+4(3a -12ao+10ao)(3+2nD) ' '

+4(l-9ao+18amo-10a03)(2+3n ) '~ +4(-2+Qao-12ao+Saso)(l+4no} '~2

+4(1-3a,+3a', —ao)(Sno}
' ',

A„=(-~}[3a20(1-a}(2+n ) ' 2+6a (1-a } (1+2n ) ' ~+3(1-a )'(3n ) ' ~],

A„=(+)[3ao(l-ao)(2+n, ) ' '+12a (1-a } (1+2nD) '~ +9(1-ao)'(3n ) ' '],

(A19)

(A20)

(A21)

(A22)

(A23)

B„=8ao(1-ao)(3+no) '+ ao(1- ao) (3+2no+n 0)(1+no) '+4a (1-a )'(1+2no+3n 0)(1+2nD) 2+—,'(1- ao)',

(A24)

B„=(-4)[4ao(1-ao)(3+no) '+ao(1 —ao) (1+no) '+4a (1-a )'(1+3no} '],

C„=(-—,')[ao(1- a )(4+no) '~'+4a~o(1- a ) (3+2nD) '~'+6ao(1- a,)'(2+3n, ) '~'

(A25)

+4a (1-ao) (1+4no) 3 +(1-ao) (Sn ) ~ ] (A26)

C„=(~)[ao(1-a)(4+no) ' '+8ao(1-a } (3+2nD) ' +18ao(1-a ) (2+3no) ' 2

+16a (1 —a ) (1+4no) ' 2+5(1-a )'(Sno} '~'], (A2V)

=(-3)[3(2a —3ao)(2+no} '~2+6(l-4a +3ao)(1+2nD) ~~'+9(-1+2a —ao)(3no) '~'],

B, =8(3ao-4ao)(3+no) '+2(ao-3ao+2ao)(3+2no+n20)(1+no} '

+ 4 (1- 6ao+ 9a 0 -4a 0)(1 + 2nD+ 3n o)(l + 3no) + 2 (-1 + 3a - 3a 0+ a os),

C, „=(-—,')[(4ao-5a40)(4+no) '~'+4(3ao-8a~o+Sat)(3+2nD} '~'+6(2a -9ao+12ao-5a4}(2+2nD) '~*

+4(1-8a +18ao-16ao+5a,)(l+4no) '~'+5(-1+4a -Sao+4ao- ao}(Sno) '~'].

(A28)

(A29)

(A30)

The explicit expressions for the partial derivatives of a(ao, no) are obtained from Eq. (Vl) and are given

by

n = SKA A ' '=0.392 2V44(N/Z)
Np Cp

(A»)

o.„=eKA„A ' 3=-0.00226VV88(N/Z)
Ng

(A32)
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