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A general theory of wave propagation in helical structures is developed. It is shown that this problem

is quite similar to the well-known wave propagation in solid crystal lattices. If energy dissipation 18

neglected there are shown to exist frequency bands for wave propagation without attenuation separated

by frequency bands where waves are damped out and cannot propagate. Formally, the waves have the
form of Bloch waves e'" 'u {r), having the character of plane waves modulated by a function u{t)
which is periodic with the structure. Based on this theory, for reflection of light by homogeneously

ordered cholesteric liquid crystals the followmg results are obtained: For incident light parallel to the

helical axis there exists only one band of selective reflection. For obliquely incident light, however, an

infinite series of higher-order reflection bands occur. Each reflection band is split into two branches.

The angular dependence of the reflection bands and the sequence of the higher-order reflections on the

wavelength scale bear a certain analogy to Bragg reflection.

INTRODUCTION

In this paper, light-wave propagation in helicoi-
dal structures is theoretically investigated with
the special aim to interpret the selective reflec-
tion of light by eholesterie liquid crystals caused
by the serewlike or helicoidal arrangement of
their molecules. The results, however, are quite
general and may also be applied to completely
different systems.

A helicoidal struetuxe is primarily a periodic
structure. Therefore one would expect that the
wave propagation in this type of structure mould
be similar to that in solid crystal lattices. In
solid crystals, homever, the stxuetural periodic-
ity is of the order of magnitude of A units, where-
as in eholesterie liquid crystals the pitch of the
helix generally has values between 1000 A and
infinity. If one adopts the simple model of Bragg
reflection for the helicoidal liquid crystal, then
one should expect a selective reflection of light
to occur in the visible region and for longer wave-
lengths rather than in the x-ray region. This
visible reflection actually does occur and it is a
well-known feature of cholesteric liquid crystals.
In fact, Bragg's lam has been used in attempts to
explain the wavelength and angular dependence of
this selective reflection in eholesteric liquid
crystals. ' The model of a Bragg reflection, how-
ever, is far too simple and does not explain the
lack of higher-order reflections at normal inci-
dence and the width of the xeflection bands.

Rigorous theoretical treatments of the problem
for light propagating parallel to the helix were
made first by Oseen' and later by de Vries. ' In
addition, Oseen considered the more complicated
general case of light propagating obliquely to the

helix. More recently, Berreman and Scheffer4
and Taupin' treated this case by numerical pro-
cedures using the method of propagation matrices.

In this paper, a more complete analytical ap-
proach is developed which treats the wave propa-
gation in a helicoidal medium for arbitrary wave
vectors and which results in a diagram similar
to a zone scheme first introduced by Brillouin for
solid crystals. This diagram, referred to as the
chart of stability mill indicate the conditions for

which the structure acts as bandpass (transmission)
or bandstop (reflection) filter. It is the fundamen-
tal result of this work. This chart of stability
reveals many details concerning the wave propa-
gation, but gives no information about the inten-
sities of the waves.

%AVE EQUATION AND SOI.UTIONS

We are considering a cholesteric liquid crystal
with a uniformly twisted structure. It is described
macroscopically by its dielectric tensor. Energy
dissipation by absorption is neglected. Assuming
the liquid crystal to be locally uniaxial me adopt
that the axis f of the dielectric tensor ellipsoid is
directed perpendicular to the helical axis at any
point. If the screw axis is taken to be parallel to
the z axis of a space-fixed coordinate system
x, y, z, f varies continuously with z:

f=(cosa, sinu, 0); a=(2m/p)&.

Here me have introduced the pitch p that is the
distance for a complete turn of the local optical
axis.

The dielectric tensor II&II of the cholesteric liq-
uid crystal which relates the electric field h to the
dielectric displacement vector D,
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I ike in other periodic structures, waves in a
twisted material are generally not simple plane
waves. %'8 therefore try solutions that have only
the plane wave form for the dependence on the di-
rection normal to the helical axis —say, the x
axis~ut with arbitrary dep8ndence 1n th8 8 d1rec-
tion:

F,0)
F (e) ei~tt (m)(c-)x].

F,(z)

m is a constant and will be determined later. If
we introduce new symbols X, =X/pWeand ng =m/We,
we obtain from E(ls. (S) and (S)

sg de
F, -ik~,

/ d
'= 0

FIG. 1. Definition of coordinate systems. In a space
fixed coordinate system (x, y, &) the local optical axis I
of a cholesteric liquid crystal describes a helix. A
variable coordinate system ($, q, f) may be chosen so
that the dielectric tensor is diagonal therein.

dl
2 + (si + 0m cos2(K}Fi+sm sin2(RF~ =0 )

,'+(b, —5~cos2a)F, + b, sin2nF, =0.
de

(Sa)

(Sb)

(e(1 +p cos2a).P sin2u
eP sin2o. 0)

e(1 —P cos2c.} 0
0 e, 3

&=lie(n)ll E

is a function of the twist angle a = (2m/P)z. It can
be wx'itten 1n the lRbox'Rtox'y coordinate system
(x, y, e) {see Fig. 1) as

(x =2«/p, and s„52, bi, and &, are constant~, de-
termined by the structure Parameters e, e „p, and

p and the experimental conditions given by the
frequency ~ and the parameter m, which is essen-
tially determined by the angle of incidence, as
will be shown later:

Here we have introduced an average dielectric con-
stant e = —,'(e, +e, ) and a dielectric anisotropy
p= (e, —e.)/(e, +e.).

It is convenient to define also a local Cartesian
coordinate system (g, ii, g} with gljf and ill e. In
this local coordinate system the dielectric tensor
is in a diagonal form having the principle values

e, =e{1+P), e, = e(1 -P),
In order to study wave propagation in the twisted
structure we have to solve MaxweB's equations or
the equivalent wave equation given by

8
=b,f -graddivf .+2 Q P

Here the magnetic susceptibility is neglected. 5
and 0 are connected by (2). In the first stey of our
calculations we assume that there is an electro-
magnetic field in the material. It can be produced,
e.g. , by light incident to a boundary which is nor-
mal to the twist axis. VFe seek waves that will not
propagate in the structure. This gives the reflec-
tion bands. In a second step we will then introduce
the boundary explicitly.

For the case that the waves do not propagate in the
xz plane of the twisted structure but in a plane
that is rotated by an angle P around the e axis, we
have

f,()' I

f (8) x exp it@ (- (xaos4+) 8)Ill))
f~(~)

and we again get the system (S) of differential e(lua-
tions.

As we will see later, this is the xeason why the
reflection bands of the twisted structure depend
only on the angle of incidence and not on the azi-
muthal directions. The azimuthal angle influences
the intensity of the wave but not the position of the
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reflection bands.
The system (7) of differential equations is equiv-

alent to an ordinary fourth-order differential equa-
tion:

+4 . y + 4+8 . 2 +A, +A, cos2n+B, -B,cos2a P + -4A, . 2
-4(4) cos2 c (3 )

' co82 Qt cos2n AI
sin2e sin2a 81Q2c sin2cR

CO82A
+ 4A, +8(A, +A ) . +(A, +A, cos2a)(B, -B,cos2a)-A, B, sin'2n y=o,sin2N

cosQ'++& sine s (13)
X = —p, sina++2 cosa,

are the components of the vector F in the twisted
system, then instead of (8) we obtain the equations

d}{
2

—2 —+a,++8 pcos2Q. =0,dc dc

with constants A„A„B„and B,.
%e can obtain a simpler equation by assuming

the medium to be locally uniaxial. This means
that in the local coordinate system ($, ri, f) two
of the three dielectric constants will be equal.
Therefore in the following calculations we assume

(12)

p and g, given by

I

the functional equation

y(n + v) = cy(a) = e""y( a),

where e is an appropriate constant O=e"". More-
over, there exists in general a system of linearly
independent solutions of the form

y, (a)=e'"&"P(a), j=1,2, 3, 4

where the P~(a) are periodic functions with period

P,(a+ v) =P,(a) .
To show elis, we assume a fundamental 8y8tem of
solutions yz,

q~=y, (n), j=1,2, 3, 4,
of the differential equation {15)which satisfy the
initial conditions

d'y dc'
dn' de+2 —+5 g Q+sin2& =0

2

or the equivalent fourth-order equation:

&"y(a,)
d&n j, n+& &

j=l, 2, 3, 4,

s =0, 1, 2, 3, 0 ~ n, ~ v. (20)

~ +(a+a, cos2a) 2
—(6a, sin2a)

d

+(5+da cos2a)y=0, (15)

Thet), „are the Kronecker symbols.
Since the coefficients of the differential equation

have the period s, this means that if y~(a) is a
solution, then y~(a+ v) is also a solution, which
can be represented by the constants u, ~ in the
following way:

a=4+a +5, , b=e, b, , d=b, -s,
y„(a+v)=Q a„,y,(n). (21)

g, =—, 1+P-0.5m1,e(1+p},i)
A,p

b, = ~ 1-P-0.5m~ e(1 p)-, i)
(15b)

Similar equations hoM for the first, second, and
third derivatives of the functions y„(a). From this
system of equations and the initial conditions (20)
we obtain for co=0 the relations

s'y„{w) = a„„,; n = I, 2, 3, 4, l =0, 1, 2, 3 . (22)

The system of equations (14) is identical with ex-
pressions given by Oseen. ~

Equation {14)is a system of second-order linear
homogeneous differential equations with periodic
coefficients. According to Floquet'8 theorem'
there exists at least one solution y(a) which obeys

y(a) = Q H, y, (a}. (23)

The y, are linearly independent because of the
different initial conditions. From (16) and (21) we
get

If there exists a solution with the property (16), it
must then be possible to describe it in terms of
constants H, (i =1, 2, 3, 4}by
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There exists a nontrivial solution only when the
determinant of coefficients vanishes:

(24)

&,(() ) =& "'"e,(o). (25)

The characteristic equation (24) can be put into a
simpler form. The symmetry of the differential
equation (15) is such that if p is a characteristic
exponent, -p. is also a characteristic exponent.
Therefore Eq. (24) has the form

(r4+ acr'+ bo'+ ao+I =0, (26)

where the constants a and b are given by the real
quantities a, ~ of Eq. (24). The solutions o~=e""s,
j=1-4, of Eq. (26) can be given in closed form.

It is possible to make a further simplification by
combining two solutions which have the same ab-
solute value of the characteristic exponents to ob-
tain cosv)), . Equation (26) becomes a quadratic
equation in cosw p. with real coefficients. This
equation does not determine the characteristic
exponents p, uniquely, but only gives them modulo
some integer:

We have shown above that P(c() (we omit the sub-
script in the following treatment) is periodic and
therefore this function can be expanded in a Fou-
rier series:

P(ci}—g c e2(nlx (2V)

Likewise y(a) is given by the series

(()(~) Q c e((mit+)i ) ix (28}

This is the characteristic equation for the dif-
ferential equation {15). In general, there will be
four different solutions c, =e""~and, correspond-
ingly, four linearly independent solutions y~(().')
which satisfy Eqs. (16). From this it immediately
follows that the P, in (1V) are periodic with a
period w:

(3o)

(31)

8 =f (z)„exp i+{i——x+~ -z)
f~(z)

(33)

The functions f;(z}, j,'(z), and g;(z) are periodic
with period P:

f,(z+P) =y, (z) .
They still have twice the period of the structure
even though we have assumed a nonpolar ordering
so that the structure repeats itself after a twist
angle of (). = v. X is the wavelength in vacuum and
~ the frequency. p. and m are constants; p, is de-
termined by the structure parameters ~„&„and
P and also by the constant m, as mill be shomn
later. For fixed parameters there will exist four
characteristic exponents p. which can be grouped
into two conjugate pairs of opposite sign.

It can be shown that the boundary conditions at
the isotropic to twisted dielectric interface can be
fulfilled by the two waves whose characteristic
exponents have different absolute values. We are
therefore able to completely describe the light
transmission and reflection properties of a uni-
formly twisted dielectric.

Here we have introduced the following notations:

o!~=(2k+y, )~ —s(2k+)), } +I),

P~ =-,'a [d - 6(2k+ p) —{2k+)),)'],
y, =-,'a, [d+6(2k+ p, }-(2k+ p, )'],

2i(2k+ p)
b, - ( 2k +p)

'

1
2i 5, —(2k+ad)

'

a, 5, d, b„and a, are given by Eq. (15). If one
coefficient, say c„ is fixed all the other e„and
also the d„are completely determined.

Now we can evaluate the electric field from Eqs.
(V) and (13). For each of the partial waves belong-
ing to one of the four different characteristic ex-
ponents, we obtain a solution of the form

and with the same characteristic e:anent,

e((mii+)i ) a

Inserting into Eqs. (14) we obtain the following
recursion relationships for the coefficients c„
and d„:

(29)

PROPERTIES OF THE NORMAL WAVES

Equation (33) shows that wave propagation in a
twisted dielectric differs from that in an ordinary
anistropic medium. Depending on whether the
characteristic exponent p, is real or complex, the
corresponding normal wave (33) can propagate
(stable wave) or is damped (unstable wave). This
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and, from (35),

(38)

Since p. is determined only up to an additive inte-
ger, however, the condition for the limits for
wave propagation becomes

property results directly from the periodicity of
the structure and is completely determined by the
characteristic exponent.

The stable waves propagate formally as ordinary
plane waves in a medium with refractive index vg
at an angle 0 with respect to the twist axis:

Wg = [m'+ il(z/p)']'~',

0 =arcsin (m/vg).

The velocity c, = e/+ depends on the frequency &u

and the parameter m. The physical meaning of m
is now clear. In Fig. 2 the twisted dielectric is
assumed to fiQ the space z &0, the space z& 0
being filled by an isotropic medium (e.g., glass)
with refractive index n,, =~e, . For a plane wave
in the isotropic medium with an angle of incidence
g to the twisted structure, the same phase relation
must hold along the entire interface z =0:

m = sg] sill/ = (e/egt) sill t/J.

e,~ is the velocity of light in the isotropic medium.
From Eq. (36) we see that m is essentially given
by the sine of the angle of incidence g.

If we introduce the quantities g and 0 into Eq.
(30) we get

(veg, )sing=(&g)sinQ, nwl =Mes, (3&)

which is the usual form of Snell's law. ~g ls an
effective refractive index and Q is a "propagation"
angle in the twisted medium.

Similar to the case when light passes from a
dense to a less dense medium there will be total
reflection when g«„. The condition for total re-
flection is then

Here p, =ip is an imaginary number. The solu-
tion el'"P(tw) tends to infinity or zero for o.-~
corresponding to the sign of p, that is to say it is
unstable.

(iii) coswp. &-1 ~

Here one concludes ip, = p -i and the solutions
are unstable as in case (ii).

(iv} coswp, =+1 ~

In this case p =2n or p =2n+1 (n =0, ~1, +2, . . .)
according to the positive or negative sign. A
basic system of solutions no longer is given by (17)
because the characteristic equation has degenerate
roots. However, in analogy to Mathieu's function,
there do exist periodic solutions.

(v) coswp =1p, + p, .
Here p. is also complex and the corresponding

solutions are therefore unstable. %e see that fox
cases (ii), (iii), and (v) we have unstable solutions,
whereas for case (i) the solutions are stable.
Thus coswp = +1 or p, =n (n =0, +I, +2, . . .} gives
the boundary between stable and unstable solu-
tions.

NUMERICAL CALCULATION OF
CHARACTERISTIC EXPONENTS AND

REFLECTION SANDS

For the calculation of the characteristic expo-
nent it is practical to use Eq. (31). There we have
an infinite system of linear homogeneous equations
for the coefficients c,. Since the series (2V) con-
verges, the c~ and c, tend to zero for k-. For
an approximation the series may be truncated by
omitting all c~ for A & n, where n is some positive
integer.

There exist unique solutions when the determi-
nant of the coefficients c„ is zero. This gives in
the nth approximation the equation

p. =n, n=0, +1, +2, . . . .
This striking result follows directly from the char-
acteristic equation (26), which we adopt to be
written in terms of cosmp, . Five different cases
are to be distinguished:

(i)- 1 & cosw p. & + 1 ~

P2 e~ Yo

&o 'Y).

Po &~ &2

=0.

It follows that p. = p, where p is real and 0 & p & l.
Since e'~=1 and P(n) is bounded, the solution
e'~"P(n) of Eq. (15) is bounded. We have a stable
solution. For p =j/0, with integer j, 0 and 0 v1;
lt ls periodic with period 2k'.

(ii) coswp &+1 ~

This relation is an implicit equation for the char-
acteristic exponent p, . It involves the parameters
e, P, A.» and m. For integer p, and e, P fixed,
Eq. (39) gives the characteristic curves which
limit the regions of reflection inclusively total
reflection.

If n is fixed, not all the characteristic curves
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coverglass (ngl)

2
2

n

chol. liqu. cryst.

z=g

FIG. 2. Sample geometry. The boundary of the liquid
crystal is assumed to be normal to the helical axis. The
plane of incidence is the xz plane.

00 02 0.4 06 0.8 la ) p

1-
g-

1-g

The gk are given by

he ].y A

k
k -1

1-g„
(39')

a» P„and p~ are taken from Eq. (32).

CHART OF STABILITY

The characteristic exponent p. is determined by

the material parameters e, P, and P and by the
reduced wavelength X~ and the angle of incidence

g, which is related to m. For a given material

s, P, and P are fixed and the stability is deter
mined by X~ and m only. We have shown that the
boundaries between regions of stability and in-
stability are characterized by integer character-
istic exponents. In a X~, m diagram, therefore,
the characteristic curves

are obtained from Eq. (39). The reason is that we

have lost the periodicity in p, of the determinant
by truncating it. In practice a series of integers
has therefore to be inserted. An exact closed ex-
pression for the starting points of the character-
istic curves is derived below (Eq. 42) which helps
to decide which integer number has to be taken to
get a desired curve. For computer calculations
another form of the characteristic equation (39)
may be useful. The infinite determinant is equiva-
lent to a chain fraction. Therefore if we confine
again to the truncated form we get, instead of Eq.
(39),

go

FIG. 3. Chart of stability. The periodic structure of
cholesteric liquid crystals gives rise to "forbidden bands"
(regions of instability; shaded regions in the figure).
One of the normal waves is not allowed to propagate for
given frequency and wave vector. For the dotted regions
both normal waves are forbidden to propagate. ~ = (~ /
i e ) sin g gives the direction of the incident wave and de-
fines the wave vector of the normal waves in the liquid
crystal; n+, refractive index of the boundary isotropic
medium;, Q is the reduced wavelength, A& Alp&a=

where P is the pitch of the helicoidal structure. The
figure was computed for e =2.27, e —e =0.48.1 2

G„(A~, m ) =0, p =0, +I, +2, ... (40b)

separate regions of stable waves from those of
unstable solutions: We get a chart of stability.
Such a chart is shown in Fig. 3 for ~=2.27,
6=~, -~, =0.48, respectively P=0.1057. These
parameters are assumed to be independent
of wavelength. The shaded and dotted regions in-
dicate the regions where the solutions are unstable.
For all other parameters the waves are stable.

A wave incident to a twisted structure will, in

general, excite two normal waves which are
usually transmitted. However, if the wavelength
falls into a "forbidden" region (region of insta-
bility) the wave will be damped out, and since we
neglect absorption, it will be totally reflected.
For parameters in the shaded regions, only one
normal wave is reflected, the other being trans-
mitted. In the dotted region both waves will be
totally reflected. Figure 4 shows the situation for

or

p. (X~, m ) = n, n =0, +1, +2, .. . (40a)
HG. 4. Enlarged segment of the chart of stability

given in Fig. 3.
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m~
mn
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0.6
Ill

i 4

0$
m'I
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0.2 02

0
0 0.2 0.4 0.6 0.8

0
O O.2 O~ O.6 O.e

FIG. 5. Chart of stability for a cholesteric liquid
crystal having e =2.27, e& -F2=0.16.

The corresponding wave travels perpendicular to
the helical axis with the dielectric vector parallel
to the z axis. This can easily be verified by in-
troducing m = c,/e into Eqs. (7)and(8). The other
boundary curve of total reflection is dependent on

It starts at m=(e, /e)' ', P.2=0, corresponding
to a critical angle g, given by

n„sing, =v ~, , (41b)

and decreases rapidly with increasing A~ to m =1,
corresponding to a critical angle given by

tlat) sin $ (41c)

In the limiting case X~-0 the critical angles of
total reflection are related to ~, and e„respec-
tively [see Eqs. (41a)and (41b)]. If the pitch is

m -1 where the characteristic curves pile up. We
see that each region of reflection consists of two
noncrossing parts. The long-wavelength branches
end on the m axis at the point mi, whereas the
short-wavelength branches end at mzz. Each short-
wavelength branch is crossed by the long-wave-
length branches of all the reflection bands of high-
er order.

The chart of stability of Fig. 3 shows a series
of curves that can be divided into two groups.
Those of the one group are infinite in number and
all depart from the abscissa and end in one of the
two points, m~= (e,/e)' ' and mz(=(e /e)' ' on the
ordinate (see also Fig. 5 and Fig. 6). We have
only indicated those for the longer wavelengths.
These curves separate the regions of selective
reflection, caused by the helical structure, from
those of transmittance. In other words, they
border bandpasses or bandstops. The other group
consists of only two curves. For very large A~

they are parallel to the A.~ axis. These curves
give the ordinary total reflection for light passing
from an optically dense to a less dense medium.
One of these two curves is the straight line
m =(e2/e)' '. Using Eq. (36) we see that it corre-
sponds to a critical angle g, given by

n& sing, =&22. (41a}

g (a) (e,e2}'/2
Ie'(1+k')we[a'(1+k')'-(k'-1} e, e2]' 'I' '

(k =0, 1, 2, . . .). (42)

For k =0 we get the boundaries of the region of
reflection (in agreement with de Vries):

(0) (~ /~)1/2 )( (0) (~ /0)1/2 (43)

For oblique incidence we find additional regions of
reflection which are not given by the de Vries
theory. Eq. (42) shows that the other points
)(2(2) (k 110) pile up at X2=0. For very large k Eq.
(42) approximately gives

'=1/k (k=integer). (44)

This relation indicates that the additional reflec-
tion bands correspond to higher-order harmonics.

In contrast to (44), which gives only one value
of X2 for each k, the exact relation (42), however,
gives two neighboring points, except for the case
of the main reflection band. This is shown in
Table I, where the A& values are given for k =0
up to k=9 (a=2.27, 5 =0.16 or P =0.03524).

As pointed out by Oseen' and later by de Vries~
there exists only one reflection band for m =0 (nor-
mal incidence). This is the region between )(2 andPl

For all the other points of the )(2 axis (m =0)&II
the waves are stable and no reflection occurs.
The higher-order reflection bands have vanishing
width at normal incidence. This is a special fea-
ture of helical structures.

Another chart of stability is given by Fig. 5.
For computation we used the same dielectric con-

FIG. 6. Chart of stability for a cholesteric liquid
crystal with oblate local dielectric tensor ellipsoid;
E'= 2.27, Eg —e2 = —0.16.

comparable or small compared to the wavelength,
the angles of total reflection are determined by
the dielectric constants e2 and e [ see Eqs. (4la)
and (41c)]. This result is important for measure-
ments of the refractive indices of cholesteric
liquid crystals by total reflection.

From Eq. (39) we see that the starting points
A~" of the first group of curves on the A~ axis
(m =0) are given by the simple equation
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TABLE I. Intercepts A, &(~~ of the boundary curves of
the first nine reflection bands at the A.

&
axis for e&

= 2.35 and e& =2.19. k =0 gives the wavelength limits of
the main reflection band for normal incidence. For
A = 2 the value about 1 represents the point at the A,

&

axis from which the splitting of the main band for
oblique incidence originates. All other X&

~~ values cor-
respond to the intersections of the two boundary curves
which border one branch of the higher reflection bands.

0.982221
1.017468
0.499689

0.333100
1.000077
0.249793
0.500103
0.199806
0.333449

0.166481
0.250124
0.142676
0.200129
0.124823
0.166799
0.110937
0.142992
0.099828
0.125137

stant as before (e =2.27) but the dielectric aniso-
tropy being one-third of the preceding example
(5 =0.16; P=0.03524). As a consequence the re-
flection bands are much narrower than before.

For the examples shown in Figs. 3 and 5 we
assumed s, & ss (p& 0). If e, & es (p& 0) a different
stability chart results because Eq. (15) is not sym-
metrical in ~, and c~. Figure 6 shows such a
diagram for a=2.27, P=-0.03524 with the same P
as in Fig. 5 but of opposite sign (negative dielec-
tric anisotropy). The broad and the narrow
branches of the regions of reflection have changed
their positions: For a prolate dielectric ellipsoid,
the narrow branch is on the short-wavelength side
and for an oblate ellipsoid it is at the long-wave-
length side. Therefore a measurement of the re-
flectivity at larger angles of incidence gives
directly the relative values of the dielectric con-
stants (the absolute values could be evaluated
from the normal incidence).

p(e —r4 sin' g)'/s. (45}

Here it is assumed that light is incident from an
isotropic medium with refractive index n, ] onto
a system of reflection planes with the distance
—,P and which are embedded in a dielectric with
dielectric constant e.' An analogous relationship
can be derived in our formalism. It can be easily
shown that Eq. (39) is satisfied by 5, =0, i.e.,

X =p(es -ns, sins g)'~s. (46)

This relation holds exactly and not only in the
approximation of Eq. (39).

In a chart of stability Eq. (46) gives one of the
characteristic curves: It limits the first-order
reflection band on the short-wavelength side if
fl & E'g. For higher-order reflection bands this
analytic expression can no longer be applied. The
simple Bragg reflection formula, therefore, only
holds at one of the boundaries of the first-order
reflection band.
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ANALOGY BETWEEN CHOLESTERIC SELECTIVE
REFLECTION AND BRAGG REFLECTION

Selective reflection has been compared to Bragg
reflection (see Ref. 1) and we have supported this
analogy by giving the approximate equation (44):

X s=(1/k)A e (Xe=P&e, k=1, 2, 3, 4, ...}
for the center of the reflection bands at nearly
normal incidence. It shall be emphasized, how-
ever, that for normal incidence (propagation
parallel to the helical axis) only one reflection
band exists. According to Bragg's law for oblique
incidence the wavelength ~ of the reflected light
and the angle of incidence g are connected by
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