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total emitted intensities through identical slits in
the parallel and perpendicular directions. Rota-
tion of the field direction through 90° relative to
the slits and photon counters would eliminate
many systematic errors. Since R is independent
of field strength in lowest order, nonuniformities
in the field strength are not important, provided
that the field direction remains well defined
throughout the observation region. A small un-
certainty 6R in the measured value of R produces

an uncertainty (AE;) in the Lamb shift given ap-
proximately by 6(AE;)/AE,~8R/R. It would also
be of interest to verify that both the parallel and
perpendicular intensity components decay with the
same time constant.
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Measurement of a system’s Compton profile makes possible, in principle, the calculation
of its electronic radial momentum distribution. From this quantity, the expectation values
{(p™) and the total energy may be obtained. The feasibility of using Compton-scattering data
in this way is examined in view of the limitations imposed by (i) random experimental errors
on the measured profile, and (ii) restriction of the profile data to a finite range of momenta.
It is concluded that while present techniques may be adequate for a few systems, improved
experimental methods are required before Compton scattering becomes a useful source of

atomic and molecular energies.

I. INTRODUCTION

Recent years have seen a tremendous revival
of interest in Compton scattering as a tool for
studying electronic momentum distributions in
atoms, molecules, and solids.! Significant exper-
imental advances have occured in both x-ray®*?
and y-ray*'® techniques. Compton profiles. over a
broad range of momenta and accurate to a fraction
of a percent at the peak may now be obtained in a

matter of days, even for relatively heavy elements.®

Compton-scattering measurements yield, at
least in principle, a full one -dimensional (or, in
the case of anisotropic systems, three-dimension-
al) momentum distribution for the scatterer. It
should therefore be possible to calculate from
Compton data expectation values of operators
which are functions of momentum. In particular,
one should be able to obtain the quantities

@) = [T 0"1®) dp, M
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where I(p) is the (normalized) radial momentum
distribution function. The value 2= 2 in Eq. (1)

is of special interest, since 3 (¢? gives the elec-
tronic kinetic energy and, by application of the
virial theorem, the total energy of the scattering
system.

The possibility of obtaining atomic and molecular
total energies would seem to make Compton
scattering an extremely attractive technique,
particularly since these energies are generally
derived from spectroscopic and/or thermodynam -
ic quantities which are often difficult or impos-
sible to measure to high accuracy. In view of both
the crucial role played by the variational principle
in molecular quantum mechanics and the many
recent efforts to calculate correlation energies,®
it would be extremely desirable to have another
experimental source of atomic and molecular
energy values.

To our knowledge, the literature contains no
calculations of total energies or momentum ex-
pectation values other than (™% from experi-
mental Compton-scattering data. There exist
at least three major obstacles to the accurate
measurement of {($? and related quantities by
Compton scattering.

First, the momentum distribution which appears
in Eq. (1) is not measured directly. One mea-
sures the Compton profile J(g) and then obtains
I(p) by numerical differentiation of the profile.
The relationship between J(g) and I(p) is well de-
fined and many workers” have used their results
to obtain radial momentum| distributions. However,
numerical differentiation of experimental data is
an undesirable procedure, because it tends to
magnify the errors in the data points. A quanti-
tative consideration of this problem in Compton
scattering has been given by Cheng, Williams,
and Cooper.® In Sec. II we show how the numer-
ical differentiation procedure usually used to
obtain I(p) may be replaced by an integration
which yields (p”) directly, thereby minimizing the
introduction of numerical inaccuracies.

A second difficulty is that the measured Compton
profile, and hence the momentum distribution, is
obtained over a limited set of momenta. One can
measure the Compton-scattered intensity only
over a finite range of wavelengths. The effects
of this truncation of the momentum distribution on
the calculation of expectation values are consid-
ered in Sec. II.

Even if one could measure Compton profiles
over an arbitrarily large range of momenta and
even if one could eliminate errors from numerical
procedures, one would still be left with the sta-
tistical and other errors on the individual data
points. In Sec. IV an attempt is made to assess

CALCULATION OF ATOMIC AND MOLECULAR MOMENTUM ... 161

the effects of experimental error on the calcula-
tion of (" .

In Sec. V, we consider the implications of the
problems discussed above. We suggest some ways
in which experimental conditions might be selected
to facilitate the measurement of the quantities
{p"™ and we look at the feasibility of obtaining
accurate values with present techniques.

II. GENERAL THEORY

Most Compton -scattering studies employ the
impulse approximation (IA) to relate the Compton
profile and the radial momentum distribution. In
the IA one assumes'that the time of interaction
between the photon and the electron is sufficiently
short that the electron’s potential energy remains
essentially unchanged during the interaction. An
alternative statement of the IA is that the binding
energy of the electron is negligible with respect
to the energy transferred to it by the photon. If
the IA holds, then the relationship of the Compton
profile J(p, ) along a particular direction of scat-
tering to the three -dimensional momentum distri-
bution I(p, , p,, p,) is given by®’*°

J(pz)=fp, fpy I(pxspyypl) dpx dpy (2)
For an isotropic system, (2) reduces to

I@)=% [0, [10)/p] ap, (3)
where

1(p)=4n [p*1(H)dSK,.

The intensity of Compton-scattered radiation at
“reduced wavelength” g is proportional to J(q).
The observed wavelength A of the scattered pho-
tons is given by

X =2, =(2h/mc) sin®*3 ¢
2, sinz ¢ ’

g=mc

where A, is the incident photon wavelength, ¢ is
the angle of scattering, and 2kh/mc is the Compton
wavelength. Equation (3) is easily inverted to
yield

10)= -2 22 (p>0). @

Eisenberger and Platzmann'! have analyzed the
accuracy of the impulse approximation and have
obtained exact non-IA Compton profiles for elec-
trons in hydrogenlike 1s orbitals. Currat et al.'?
have calculated numerical non-IA profiles for 2s
and 2p electrons. It does not appear possible,
however, to invert these results to obtain momen-
tum distributions from measured profiles. Thus
we are left with Eq. (4). Fortunately, the situa-
tion is far from bleak. In reviewing the validity
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of the IA, Cooper concludes that even for x-ray
experiments “the simple interpretative procedure
of the impulse approximation is valid for (the vast
majority of) ex?eriments of the accuracy at pres-
ent attained.”®®’ The recent development of
v-ray Compton scattering makes it likely that
future experiments will be performed at photon
energies which make the IA nearly exact.’

Let us assume, then, that we may work within
the framework of the IA. Combining Eqs. (1) and
(4), we have

@)= [T HEL

Integration by parts gives
0 = -2p""1 J@)T+ 20+ 1) [Cp" () dp. (5)

In order for the integral to converge, J(p) must go
to zero as p— < faster than p~**V | If this is the
case, then the first term in Eq. (5) vanishes for
all non-negative n, and we have simply

@ =20+1) [Tp" IP) dp  (n>0). (8)

Equation (6) enables us to calculate {(p™ directly
from the experimental data without the intermedi-
ate step of numerical differentiation via Eq. (4).

It also facilitates analysis of the various contribu-
tions to the error in ("), as we shall see in the
following sections.

III. EFFECTS OF TRUNCATION
OF MOMENTUM RANGE

There are a number of factors which determine
the range of momenta over which a Compton pro-
file is to be measured. In x-ray experiments one
is limited by the small signal-to-noise values
obtainable at high ¢, by difficulties in determining
a background of questionable linearity, and by the
overlap of peaks from other orders of reflection
and from other x-ray lines. Iny-ray Compton
scattering there is a single, relatively narrow
line and a much lower, easier-to-measure back-
ground. No problems arise from other orders of
reflection, since one uses a solid -state detector
and multichannel analyzer in place of the analyz-
ing crystal. The limiting factors in a y-ray ex-
periment are thus the energy range of the detector,
the number of channels available, and the design
of the experiment, i.e., the choice of whether to
measure the profile at closely spaced points over
a shorter range or to take more widely spaced
readings over a broader range. y-ray meausre -
ments of J(g) for krypton over a range of 30 a.u.
have recently been reported.®

In practice, most experiments appear to be
designed to provide the smallest interval between
profile points consistent with the requirement that

|oo

there be sufficient high-momentum data to give
the correct normalization integral (% . The
question that we ask here is whether such experi-
ments can be expected to yield reliable values for
(p?) and for other quantities of interest. Aside
from the total energy, the other observable di-
rectly available from the Compton profile is (p~
which, from Eq. (3), is seen to be equal to half
the peak height of the profile, 3J(0). It may
prove possible to correlate {p), the average mag-
nitude of the current density, with some molec-
ular property such as the nuclear magnetic reso-
nance spectrum, but such a relationship remains
to be developed. Relativistic energy corrections
are proportional to {p%) .

It is clear that the accuracy of {p~* depends
only upon the normalization of the profile and
hence only upon the condition that {(p% =1 per
electron. However, (p), (p?, and higher powers
of the momentum operator weight the high-momen-
tum region of the distribution more heavily and
may be poorly described by data sufficient to give
accurate normalization. We now undertake a
calculation to assess the accuracy attainable for
the quantity (p") as a function of the highest mo-
mentum at which the Compton profile is measured,
by .
Consider the quantity

»,
(0" = -203 1 I(ps) + 2n+ 1) [ $"I(p) dp
(n>0). (7)

Since J(p) is a non-negative function of p, it is
clear from Eqs. (5) and (6) that (p"), represents
the contribution to {p") from that part of the mo-
mentum distribution with p <p,, and that

@ <202+ 1) [ 5" J(p) dp
<2n+ 1)fo°°p"J(p) dp=(p") .

That is, given the Compton profile over a momen-
tum range from 0 to p,, the integral on the right-
hand side of Eq. (7) represents a better estimate
of {p") than does the integral in Eq. (1) over the
same range of integration. We therefore define
the nth partial expectation value p"(p,) as

P'o)=20+ D [P IG) dp  (n20).  (8)

We note that p" (p, ) increases monotonically, and
that

lim p" ()= (P")
For wave functions composed of Slater- or
Gaussian-type atomic orbitals (STOs or GTOs)
one may calculate the quantities I(p), J(p), and

b"(p,) analytically.”® Since atoms and molecules
may be described in terms of minimal basis sets

as pp = .
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TABLE 1. Properties of 1s and 2p STOs with orbital exponent a.

1s 2p a
lP(‘Y) (a3/1r)’/2e"" (a 5/3“-) i/2,re 'der(o’ (P)
x(2) (8a%/7HVa?+p %2 (1282 /31 V2™ 1p @2+ p)3Y 1,1 (6,, @)
I(p) (32a5/‘II'X>2((12+1)2)"1 (512a7/31r)p4(a2+p2)'°
J) (8a°%/3m)(@?+pH (32a7/15m) @2+ 5p H(a?+p?) S

2 The functions Yym(6, ¢) are normalized so that delYf,,,(o, PV 1m? (0, @) =475, 1.

of STOs with well -characterized orbital exponents,
we shall confine our discussion here to the STO
case. Computations with GTOs are somewhat
simpler, but questions involving the number of
orbitals and choice of orbital exponents necessary
to describe a particular system make GTOs less
desirable for application to the question at hand.
We investigate the behavior of p"(p,) for 1s and
2p STOs. The relevant properties of such orbitals
are shown in Table I. The orbitals are first con-
verted from the position to the momentum repre -
sentation ¥(X)— x(p) by a Fourier transform. The
quantities I(p) are then obtained by squaring the
momentum wave function and integrating over the
momentum space angular variables. Equation (3)
yields the Compton profile J(p), which is then
inserted into Eq. (8). Since for large p, J(p)
~ p'm +°), where ! is the angular quantum number,
the integral in Eq. (8) converges only for
n<21l+4. Thus for s orbitals, we are limited to
the range 0 sz <4. On performing the calculation,
we find that all the quantities p"(p,) have the form

P"(by) = a"p" (b, /a), (9)

where a is the orbital exponent.’®* We may there -
fore express the partial expectation values in
terms of the dimensionless parameter s = p, /a.
The orbital exponent a simply acts as a scaling
factor.

Exact expressions for the p"(s), 0 <mn <4, are
given in Table II for 1s and 2p STOs. A more con-
venient quantity for determing the desired range of

momenta for a particular experiment is the rel-
ative truncation error in (p" , defined by

A"(s)=1-p"(s)/p™ . (10)

The behavior of A"(s) is shown in Figs. 1 and 2
for 1s and 2p STOs, respectively. Suppose that
one wished to measure {p*) for H, to 1% accuracy
by Compton scattering. The condition to be met
is that A3(s) be less than or equal to 0.01. The
hydrogen molecule is well described by 1s STOs
with exponent ~1.2. From Fig. 1, A3(s)= 0.01 for
s~14.2. Thus one should be able to obtain 1%
accuracy in {p%) for p, >14.2(1.2)= 17.0 a.u.

Several qualitative features emerge from Figs.
1and 2. First, highly accurate values (better
than 1%) will be exceedingly difficult to obtain,
particularly for 1s orbitals of heavier elements
(for 1s orbitals a is slightly less than the atomic
number). The situation appears more fortuitous
for 2p, and also for 2s, 3d, and other orbitals,
not only because the A"(s) curves reach small
values at lower momentum, but also because the
orbital exponents are smaller for orbitals of
higher principle quantum number.!®

One might expect the slow convergence of {p"
for 1s orbitals to be somewhat less important
for heavier elements, since the 1s electrons
would constitute a smaller fraction of the atom.
However, it must be borne in mind that (p"
varies as a” or, for 1s orbitals, roughly as the
nth power of the atomic number. Thus even for
argon (Z = 18), the two 1s electrons contribute

TABLE II. Partial expectation values p"(s) for STOs with orbital exponent a.

n 1s 2p

0 (2/3m)[(3s2+5s)(1+s9) 2+ 3tan"1s] (1/15m)[ (30s7 +110s 5+ 14653 + 34s5)(1 +s2) "4+ 30 tan"Is]

1 (8a/3m)1-(1+s)7] (64a/45m[2 - (552+2)(1+sH)~4]

2 (2a?/m)[(s?—s)(1+s?) 2 +tan"1s] @?/15m)[(30s" +110s*— 46s% - 30s)(1+s9) "4+ 30tan"s]
3 (16a°%/3m)[s4(1+s%~2) (64a%/15m)[1 — (554 +4s2+1)(1+s?)~4

4 (10a*/3m) —(5s%+3s)(1+s)~2+3tan"1s) (128a4/91r)[(2].s7—83ss—77s3—2ls)(1+32)"+-§} tan™1s]
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about 59% of the total {p? . For values of »
greater than 1, we expect then that (™ will be
most readily measurable for the lightest elements.
Our analysis has been carried out in terms of
one -parameter atomic orbitals. Nevertheless,
the success of wave functions composed of linear
combinations of such orbitals in describing a
wide range of molecular properties suggests that
the results obtained here should provide reason-
able estimates of the relative truncation errors
and hence of the momentum range required for a
given accuracy in (p" for any system of interest.

IV. EFFECTS OF EXPERIMENTAL ERROR

Suppose that a Compton profile has been mea-
sured over a momentum range sufficiently large
that the truncation error is negligible. There
still remains the problem that no data point is
measured exactly. Each point has associated
with it a random and possibly a systematic error.
The question is what effect the errors on individual
profile points will have on the value of (¢") calcu-
lated by the methods described above.

From Eq. (8), we see that an error €(q) in the
profile J(q) will give rise to an error in p"(p,) of
the form

10°

10!

a'(s)

102

103

-4 L L
10 0o 10 20 30

FIG. 1. Relative truncation error A%(s) in (p") for
Slater-type 1s orbitals (s =p,/a, where a is the orbital
exponent).

er=2n+1) [ q"elq) dg. (a1

Which expectation value will be most affected will,
of course, depend on the exact form of €(q). In
principle, one should be able to use Eq. (11) in
conjunction with calculated values of {p" to search
for systematic errors in the data.

The problem of random, statistical errors
requires a somewhat more detailed analysis. Con-
sider a Compton profile J(g) measured at points
0=4qq, 4,, ..., 4= D, and suppose that ¢, counts
are collected at g; . Then the variance of the
random variable J(g,) is given by

02=Jd3% /c,, (12)

where J; is the exact value of the Compton profile
at g;. If we define quantities

G; =Jd(g;)-J; (§=0,1,...,m), (13)

then G; is a normally distributed random variable
with mean zero and variance o;2. Since G, are
independent, the (m + 1)-dimensional vector which
they form constitutes an (m + 1)-variate normal
distribution with probability density function

¢(G)= Cexp(-$GTM,1G), (14)

10° T T

o'(s)

'o~4 I )y 1

o 10 20 30

FIG. 2. Relative truncation error A"%(s) in {p") for
Slater-type 2p orbitals.
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where C is a normalization constant, GT denotes
the transpose of G, and M, is the variance -co-
variance matrix of the distribution. In this case

M,)y = 0,255, (15)

with 0, given by Eq. (12).'®
What we seeliis the form of the distribution
for the vector F defined by

FC = <P‘> "<p’>exact’ (16)

where the first expectation value is that obtained
from the experimental J(g;) via numerical inte-
gration of Eq. (8) and the “exact” value is cal-
culated in the same way but with the true values
J Jj . To obtain the probability density function for
F, we make use of the following result.!”

If two vectors of random variables, F and G
each have zero mean and are linearly related such
that

F=T-G (17)
and if the variance -covariance matrix of G is IVI,,
then the variance -covariance matrix of Fis given
by

M, =T-M,-T". (18)
In the special case where Gis normally distributed
with a density function of the form shown in Eq.
(15), F is normally distributed with density func -
tion

o(F=C exp(- }FTM; - F), (19)
where C’ is a normalization conatant and f\71, is
obtained from M, by use of Eq. (18).

Suppose that the numerical integration scheme

employed to obtain {(p” from Eq. (8) is defined by
a set of weights w,, j = 0,1,---, m. That is,

£ da= 2w, f@;). (20)

Combining Eqgs. (8), (13), (16), and (20), we may
write

=2(¢ + 1) E quj [J(qj ‘Jj]

—a(i+1) 2 w, 4, G, . (21)
i=o

Thus the matrix Tin Eq. (17) is defined by
'f‘“ =2(i + 1) w; q,}, (22)

where the w, specify a particular integration scheme
according to Eq. (20). Inserting Eqgs. (15) and (22)
into Eq. (18), we find that

(Mg)yy =4(i +1) (5 + 1),8%;01%% ‘Jk 02,

and hence the variance in {p%) is just'®
m
s2=(My),, =4(i + 12 2 w,2g,% 0,2. (23)
k=0

In most Compton-scattering experiments, the
data points are equally spaced, so that g, = kA,
where A is the spacing between profile points.

If one assumes for the sake of computational con-

venience that all the points have the same variance
o2 (i.e., ¢, =d2/02 i=0,1,..., m), then Eq. (23)
becomes

m
5;2= 4(i + 1)%02A% ijo w2k .

The sum over k depends only upon the integra-
tion scheme and the number of profile points. If
we make the further simplifying assumption of
equal weights, i.e., thatw, = mA/m+ 1,
k=0,1,..., m—to satisfy the normalization con-
dition

a .
fom dq= Z"l:owg =qm—
then we have

$;2=4(i + 1) (mrz

m
1>2 Az 2 ) gt
k=0

The sum over k is now just a polynominal in m of
degree 2%+ 1. Thus, under these cond1t10ns, s;?
is roughly proportional to (z * 1)2 g2 AH* 22t 2
or, equivalently, to (i + 1)® 0f p, 2"' 'A. That is,
the variance in {p*) increases as the (27 + 1)th
power of the momentum range for a fixed spacing
of profile points and decreases only linearly with
the spacing for fixed range. We therefore expect
that for ¢ = 3, 4, and possibly 2, lowering the
truncation error by increasing p, may lead to a
vastly increased statistical uncertainty in (p%) .%°

The actual situation is somewhat more promis-
ing than that outlined above. The assumed con-
dition of equal variance at each profile point is
unnecessarily pessimistic. The standard proce -
dure, especially in y-ray Compton-scattering
experiments in which the entire profile is measured
at once, is to count for the same period of time
at each point. Under these conditions, we have

02=02d,/dy, (j=0,1,...,m). (24)

The points at high momentum now have lower
variances and hence make a smaller contribution
to s;2. Although an exact expression can no longer
be obtained, the dependence on p, is now closer
to p,* than to p,2**!, as it was in the case of equal
o;’ s.

In order to estimate the magnitude of the statis-
tical error to be expected in a typical Compton-
scattering experiment, model calculations were
carried out for the hydrogen atom, for which
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J(g) and {p*) are known exactly. The conditions
assumed were (a) equally spaced points separated
by 0.1 or 0.01 a.u., and (b) variances of the form
(24), with 0,= 1072, i.e., equal counting times
with 10* counts accumulated at the peak. The
integration was carried out with the trapezoidal
rule Wo=w,=38,w; =A, j=1,2,..., m-1). The
results, shown in Table III, are encouraging. The
s; increase relatively slowly with p,, while a
pronounced decrease in standard deviation with
decreased point spacing is observed. The values
for A and p, used in the calculations are consist-
ent with those employed in most experiments.
Also, peak accumulations of 50000 or more
counts are frequently reported. There is no doubt
that the relatively small increase of s; with p, is
due in large measure to the rapid falloff of J(q) for
the hydrogen atom. We would expect the s; values
for 1s electrons of heavier elements to be consid-
erably greater at large p,. As in the case of
truncation error, the 2p and other orbitals of
principal quantum number greater than 1 give
narrower profiles and hence should give smaller
contributions than the 1s orbital to s; .

V. CONCLUSIONS

It appears that accurate measurement of (p~9,
(P, and {p) is possible for most of the light
elements (atomic number less than 10) with pres-
ent y-ray techniques. It may also be feasible to
measure {p? for a few very light elements to an
accuracy on the order of 1%. Obtaining reliable
values for higher expectation values or more
accurate estimates of {p? will require improve-
ments in one or more aspects of experimental
technique and design.

Since the energy differences between chemical
species or between different calculations often
amount to only a fraction of 1% of the total energy,
it seems worth considering how improved accuracy
in ($®» might be obtained. The problem of trunca-

tion error can only be resolved by increasing the
range of momenta in the profile. While the pres-
ent limit of p = 30 can probably be increased
considerably, it is unlikely that it can be raised
by as much as an order of magnitude without a
major technological advance. Also, given a
fixed number of analyzing channels, increasing
P, must also increase the spacing between points,
thereby leading to greater statistical and numer-
ical (integration) errors.

The statistical error may be lowered either by
increasing the number of counts taken at each
point or by decreasing the spacing between the
points. Since the standard deviation in (" is
proportional to the standard deviation of the in-
dividual profile points, halving the standard
deviation requires increasing the time of the
experiment fourfold. ¥ rays give much greater
Compton-scattered intensity than x rays.® A
considerable increase in the total number of
counts in a given experiment should therefore
be feasible. It appears that the y-ray experiment
has not yet been pushed to the limits of instrumen-
tal stability, since the aim has been to obtain 1%
or better accuracy in J(g) rather than, for exam-
ple, 1072% accuracy in {p?. Nonetheless, it
seems unlikely that more than an order of mag-
nitude in accuracy can be gained here. As the
results in Table I indicate, there may be much
to be gained from taking data at very closely
spaced profile points. The limitations here are
the channel width and the number of channels
available.

Another approach to the problem of statistical
error is to take more or more accurate data at
high momentum than at low momentum. For ex-
ample, one might obtain a fixed number of counts
at each point instead of counting for a fixed time.
In the example p, = 15.0, A= 0.1 of Table I,
accumulation of 10* counts at all points leads to a
24-fold decrease in s, and a 60-fold decrease in
s, compared with the values obtained when 10*

TABLE III. Relative standard deviations S;/{p?) for the hydrogen atom.?

P ab 0 1 2 3 4

3.0 0.1 4.2x1078 8.8x1073 2.1x1072 3.9x10"2 2.4x 1072
3.0 0.01 1.4x 103 2.8x1073 6.8x 1073 8.9x 1074 1.0x 1073
15.0 0.1 4.4x1078 1.8x1072 1.7x 107! 3.4x 1071 8.1x 1071
15.0 0.01 1.4x1073 5.6x 1073 1.8x1072 1.2x 1071 4.8x10°
30.0 0.1 4.4x 1073 2.1x10"2 3.7x10"1 5.0x 10~1 4.8x10°
30.0 0.01 1.4x 1073 6.7x 103 1.9x1072 3.7x 1072 4.7x10"!

2 Calculated from Eqgs. (23) and (24) assuming 10% ®Ina.u.

counts accumulated at ¢ =0 (0y/J(=10"?).
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counts are measured at the peak and all points are
counted for the same time. A related approach
would be to count all points for a fixed time, but

to design the experiment so that the density of
points increased with the momentum. Alterna-
tively, one might choose the profile points to give
optimal integration accuracy, e.g., as the points
for a Gaussian integration scheme.

It seems clear, then, that the best systems to
which to apply the methods discussed here are
those containing only very light elements. A
y-ray repetition of Eisenberger’s*® x-ray experi-
ments on H, and He with more counts, a broader
momentum range, and more closely spaced pro-
file points should provide an ideal set of condi-
tions. Other systems of interest might be Li,
LiH, and Be (although for these, anisotropy in
the profile may be significant), and perhaps the
boron hydrides.

Since the main difficulties in calculating expec -
tation values for heavier elements arise from the
truncation error in the 1s orbital, it should be
possible to obtain at least some information about
the valence electrons alone. Many Compton-scat-
tering experiments report data for valence elec -
trons only, obtained under the assumption that the
core electrons are not affected by chemical bond-
ing, by subtracting profiles calculated from atomic
Hartree-Fock wave functions.?! Currat ef al .12
have suggested an approach for experimentally
separating the valence and core contributions to
the profile. Although such procedures must give
rise to additional errors, they may prove useful
in providing at least crude estimates of (p" for
heavier elements.
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APPENDIX

When Slater -type atomic orbitals are employed,
the integrals in Egs. (7) and (8) are all of the form

I,™a,b)= [} p"/(a*+ p*)" dp, (A1)

where b may be infinite. The functions I,” in Eq.
(A1) are directly related to the C and S functions
used to compute matrix elements of momentum
operators over STOs centered on different atoms.??

Differentiating (A1) with respect to a yields the
relation

m 1 d
I1,,,™a,b)= _%Elnm(a’b)' (A2)

To obtain a recursion relation for the index m,

we integrate (A1) by parts to obtain

ma by —L_ (L7 |
In (a;b)‘m+1<(a2+p2)n

+2n ".M) (A3)
0 (a2+p2)n+1

0

or, recognizing that the second term on the rfght-
hand side of (A3) is just 2nI ,,,""%(a, b), we have

I,,.™2%(a,b)=(1/2n)(m+1) I,™a,b)
_bm+1/(a2 + b2)n] X (A4)
All convergent integrals (2z —m> 1) of the form

(A1) may be obtained from Eqs. (A2) and (A4)
and the integrals

1,°=(1/a)tan™%(b/a),

I'=1/2(1-n)(@®+ b*)" ™1 (n=2).

'For recent reviews, see (a) M. J. Cooper, Adv. Phys. 20, 453
(1971); and (b) I. R. Epstein, Accts. Chem. Research 6, 145
(1973).

2M. J. Cooper and J. A. Leake, Philos. Mag. 15, 1201 (1967).

SW. C. Phillips and R. J. Weiss, Phys. Rev. 171, 790 (1968).

*T. Fukamachi, S. Hosoya, Y. Hosokawa, and H. Hirata, Phys.
Status Solidi A 10, 437 (1972).

P, Eisenberger and W. A. Reed, Phys. Rev. A 5, 2085 (1972).

SFor a brief review and list of references, see A. C. Wahl and
G. Das, Adv. Quantum Chem. 5, 261 (1970).

"For example, (a) R. J. Weiss, J. Chem. Phys. 52, 2237 (1970);
(b) T. Fukamachi and S. Hosoya, J. Phys. Soc. Jap. 28, 161
(1970).

8R. Cheng, B. G. Williams, and M. J. Cooper, Philos. Mag.
23, 115 (1971).

°J. W. M. Dumond, Phys. Rev. 33, 643 (1929).

G. E. Kilby, Proc. Phys. Soc. Lond. 86, 1037 (1965).

P, Eisenberger and P. M. Platzman, Phys. Rev. A 2, 415
(1970).

2R. Currat, P. D. Decicco, and R. J. Weiss, Phys. Rev. B
4, 4256 (1971).

A discussion of the integrals involved in the STO case
appears in the Appendix.

“The question of momentum expectation values calculated with
GTOs has been considered by B. Tsapline [Chem. Phys.
Lett. 11, 75 (1971)].

SAlthough accurate values of @ may be obtained by variational
calculations, the rules for estimating a given by J. C. Slater

[Phys. Rev. 36, 57 (1930)] provide values of sufficient

accuracy for our present purposes.
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$Note that ¢(G) is simply a product of the normal
distributions associated with each of the (independent) points
in the profile. W(G) = MT'_ Jo;(27)'"?]~!
Xexpl —(J (q;) — J)*/2071.

"W, C. Hamilton, Statististics in Physical Science (Ronald, New
York, 1964), pp. 149-150.

3If one preserves the term — 2pX*! j(p,) and uses Eq. (7)
rather than Eq. (8) to estimate (p"), the results obtained
are s? =437 _, (gL o [ + 1) w, — 87,,.])% That is, only
the mth term in the sum is affected. Since, for example, for
1s orbitals J(p,) = J(po)/(1 + s?> the difference between

joo

Eqgs. (7) and (8) is generally small, even for i = 3 or 4.

“Although this behavior may appear counter intuitive, the
explanation lies in the fact that the higher expectation values
weight heavily high momentum points for which (under the
assumed condition of constant absolute variance) the relative
variance is quite large.

2P, Eisenberger, Phys. Rev. A 2, 1678 (1970).

ZIR. J. Weiss, A. Harvey, and W. C. Phillips, Philos. Mag.
17, 241 (1968).
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Three new autodetaching states of O~ have been found and an electron configuration has been
assigned one of two previously observed transitions. This gives a total of five known autodetaching
states of O~. Transitions from these states appear as peaks in the spectrum of electrons produced in
collisions of O~ ions with a helium target. These peaks lie at 9.50, 10.11, 10.87, 12.12, and
13.714-0.02 eV. The electron spectrum produced by collisions of neutral O with helium shows four
autoionizing series of oxygen lying just above the first ionization potential.

INTRODUCTION

The autodetaching states of negative ions have
been observed in both electron-scattering exper-
iments!'? and in collisional excitation experi-
ments.® These states usually take the form of
doubly excited configurations which decay by a
radiationless transition into a neutral atom and
a free electron. The Kkinetic energy of the free
electron is equal to the difference between the
excitation energy of the excited ion and that of
the remaining neutral atom. In collisional exci-
tation experiments these autodetaching electrons
appear as peaks in the energy spectrum of elec-
trons freed by collisions of fast negative ions with
target gases.

Collisions of O~ ions with He atoms populate
five autodetaching states of O-. Four are doubly
excited states and the other is reached by a 2s - 2p
inner-shell excitation. The four doubly excited
states of O~ have been identified theoretically by
Matese, Rountree, and Henry (MRH),  and our
assignment of the inner-shell excitation config-
uration has been verified by the recent calculations
of Chase and Kelly (CK).5 The good agreement
between theory and experiment should remove
the unspecified doubts raised by Smith® about the
acceptableness of the experimental data.

In collisions of H* ions with O,, Rudd and Smith’

were able to produce several series of autoionizing
atomic-oxygen states which lie just above the first
ionization potential of oxygen. We have produced
these same series by colliding neutral oxygen
atoms with helium.

EXPERIMENTAL PROCEDURE

The O~-ion beam is formed in a duoplasmatron
ion source® using either hydrogen or argon as the
discharge gas. The oxygen which forms the nega-
tive ions comes, presumably, from the oxide-
coated filament of the source. The mass 16 O~
beam is easily separated from the mass 17 OH~
beam by an analyzing magnet placed along the
beam path.

The negative ions from the discharge are accel-
erated (500 eV to 5 keV), momentum-analyzed
by deflecting the ions through 45° with a magnet,
and focused into a differentially pumped chamber
containing a target gas. The target-gas pressure
is usually 1-2 m Torr. The beam is collected
in a Faraday cup after traversing the collision
region and monitored with a beam integrator and
microammeter. The method used to record data
is shown schematically in Fig. 1.

The electrons leaving the collision region are
energy-analyzed using a simple parallel-plate
analyzer® with a resolution of about 1%, and de-



