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Photon-Scattering Theory of the Quenching of Hydrogenic Metastables
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The quenching of hydrogenic metastables is formulated as a near-resonant photon-scattering problem,
and a complete analysis of the polarization and angular distribution of the emitted radiation is
presented. The contribution from np states with n &2 is calculated, and an alternative method of
measuring the Lamb shift is suggested.

I. INTRODUCTION relativistic electric-dipole approximation by

Precise theoretical calculations are now avail-
able for the 2s„,-2P„, Lamb shift of hydrogenic
ions up to large values of the nuclear charge Z. '
In several recent experiments, ' ' the Lamb shift
for hydrogenic ions such as Li", C", and 0"
has been deduced from the measured electric
field quench rate of the metastable 2sy/2 state.
The well-known Bethe-Lamb (BL) phenomenologi-
cal quenching theory' with corrections for mixing
with the 2p3~, state ' is used to interpret the mea-
surements. The BL theory is quite adequate for
low values of Z, but relativistic corrections and
contributions from the nP, /2 ~ 3/2 states with & 2
became increasingly important with increasing
Z and should eventually be included in making
precision comparisons between theoretical and
experimental Lamb shifts in highly ionized atoms.
In this paper, the emission of quench radiation is
regarded as a near-resonant photon-scattering
process and the contribution from nP states with
n & 2 is calculated. In addition, a complete anal-
ysis of the polarization and angular distribution
of the quench radiation is presented, and an al-
ternative method of measuring the Lamb shift is
suggested.

II. THEORY

where
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(2)
in atomic units.

The first term of (1}corresponds to singly stim-
ulated two-photon emission and the second term to
anti-Stokes Raman scattering. In analogy with
resonant scattering theories, the energies E„are
understood to include the radiation shifts 4E„and
level widths I'„so that E„=E„+&E„-&iI„. In the
limit of zero frequency, the two terms of (1}con-
tribute coherently and should be added before
squaring. Also 877&yy + as 4p, -0, where I" is
the electric field strength.

For the 2syg2 1syg2 transition of hydrogen, the
summation over intermediate states can be divided
into a contribution from the nP„, states and a con-
tribution from the np3/2 states. After averaging
over the 2s», -state degeneracy and summing over
the 1s„,-state degeneracy, the differential tran-
sition rate is proportional to the sum of terms in
(1) of the form

The quenching of a metastable hydrogenic ion
by a static electric field can be regarded as the
zero-frequency limit of two-photon-scattering pro-
cesses with a resonance near zero frequency. The
theory then closely resembles that for other reso-
nant scattering phenomena near a level crossi~,
such as the Hanle effect. The static electric field
may be thought of as a beam of very-low-frequency
photons polarized in the external field direction.
If there are N, incident photons of frequency y
and polarization 0, per unit volume, then the dif-
ferential transition rate for the emission of a
photon of frequency ~', = E& —Eq + ~, and polariza-
tion e, into solid angle dO, is given in the non-

with

A =A„~((u,)+A,/, ((v~)+2A3/2(/d, )+2A3/2(/d, ), (4)

A' =A„,((u,) -A, /, (//}, ) -A3/2(/d, ) +A3/g((u, ), (5)

, p &1slzlnp&&splz I2s&
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for J =-,' and Z= —,'. The matrix elements in (6) are
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the simple hydrogenic transition integrals without
spin coupling. The first term of (3) specifies the
same angular and frequency dependence as fox the
2 'S0-1 'So transition of helium, while the second
term is the same as that for the 2'S,-1 'S, two-
photon transition of helium. ' In common with the
helium results, A is a maximum and A'=0 when

For large frequencies w y + ~2 + 1s much
smaller than A, but for frequencies ~,S4E~,
where 4E~ is the Lamb shift, A' and A are of
roughly equal magnitude.

Equation (3) completely specifies the statistical
relationship between the polarization vectors of
the two photons. Each polarization vector can
take two linearly independent directions perpen-
dicular to the direction of propagation. For ex-
ample, if the polarization & is observed in the
plane perpendicular to 8, (e, is the electric field
direction in a quenching experiment), then it fol-
lows immediately from (3) that

I-I,
I, +I, jaj'+ jX'j' ' (f)

where It~ and I~ are the emitted intensities pola-
rized parallel and perpendicular to e,. The above
is in agreement with the result derived by Ott,
Kauppila, and Fite, ' except for the contribution
from states of higher n.

If Eq. (3) is summed over the two linearly in-
dependent directions fox' photon 2, then

P j g((a„(u,) j' = —,
' jA j '(a,'+a'() cos'8)

factor B=(Ir))-Ir, )/(Irk+I») is

j&'j'- Aj'
3jx j'+ Wj''

If the Lamb shift vanishes, then &'-A and 8-0.
The value of It is independent of the field strength,
provided that higher-order perturbation correc-
tions are negligible. Since a measurement of 8
involves only counting the total numbers of pho-
tons emitted in the parallel and perpendicular di-
rections, it may provide a convenient method of
obtaining Lamb shifts. No time resolution is re-
quired provided that all intensity components de-
cay with the same time constant.

Finally, averaging over 0, and summing over
e, results in

P j g((()»4),}j
' =, jA j '(1+cos'8}

'x ~ 'a

+, jA' j'(3 -cos'8),

which is the factor correlating the directions of
the, photon propagation vectors if neither polariza-
tion is observed. Integration over angles yields

In the limit of zero fx equency for photon 1, the
quench rate is given in terms of the field strength
Eby

+ —,
' jA. 'j'[a', +a'))(1+sin'8)], (6) 4&v'5'

s)«= ', (jAj'+3jA'j'). (13)
where a and u jj are the polarization vector ampli-
tudes for photon 1 perpendicular and parallel to
the scattering plane and 6) is the angle between the
two-photon propagation vectors. For the static
field quenching case, assume for definiteness
that an electric field in the z direction is produced
by a polarized low-frequency photon beam in the
x direction and the quench radiation summed over
both polarizations is observed in the ya plane.
Then e=&m, a~~=cosy, and a, =sing, where q is
the angle between the direction of observation
and the electric field direction, and (8) becomes

g jfL)((()» (()2) j =-'(jAj + jA'j ) cos (p'+-jA'j sin q.

The result depends only on q and is invariant with
respect to rotations of the observation direction
about the electric field direction. Defining I~ ~~

and I~& to be the total intensities per unit solid
angle emitted in directions parallel and perpen-
dicular to the electric field, then the anisotropy

For the Stark quenching of hydrogen, the terms
involving &(), in (4) and (5) are very small and the
quench rate is well approximated by

(14)

in agreement with the BL result when only the
m=2 term is retained in the summation over in-
termediate nP states in (6). The cross terms be-
tween the 2P», and 2P», states vanish when aver-
aged over polarizations and directions of emis-
sion. ' On the other hand, if all the np», and nP3f2
states are taken to be degenerate, then 4' =0 and
A = 3[4,~,(~,) +&»,(tu, )]. The quench rate given by
(13) is then formally identical with that derived
previously for the 1s2s 'So state of helium '0

The spontaneous two-photon decay rate is

dw((() „&(),) =(, , j Q (~, ar, ) j '(&o,((),)'d&u, dQ, dA, .1

(15)
Using the foregoing results to sum over both
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polarization vectors and integrate over angles,
the averaged decay rate reduces to

dw((o„(o,)=, (u),(u, )'((A('+2(A'(')da),

per unit frequency interval. The contribution
from the A. ' term, although small for small val-
ues of Z, has not been included in calculations of
the two-photon decay rate. " However, a careful
analysis is required since the relativistic and
retardation effects are of equal importance.

IH. CONTRNUTION FROM HIGHER np STATES

To a good approximation, we ean take the &P»a
and nP„a states with n &2 to be degenerate and
write

"(»Iz
I 2P&(@(z(»&,B

82', —&as,]a

.g (1s(z(nP&(nP(z(2s}
E„p —Ea~

,+ (1s(z(nP&(nP(z(2e}
&.u —&zs

(20)

N

g„= g a;'"'r'e "~'F',(i) . (21)

The a;" are determined by the conditions

One of the P„ is then the exact 2P eigenfunction,
mhile the remaining N —1 linearly independent
functions form a variational approximation to the
orthogonal complement in Hilbert space. The re-

The above equations give the values of A~(v, ) and
A~(&u, ) evaluated at e, =0 and ~, =B„„, E„„,. -
The quantities A and A' are then calculated from
(4) and (5). The BL results are obtained by set-
ting B = 0 and C =0.

The summations over intermediate states can be
calculated by the implicit summation technique
introduced by Sehwartz and Tieman'"" and uti-
lized by Zernik. " This technique requires the
numerical integration of a first-order differential
equation. An alternative technique capable of very
high accuracy is to represent the complete set of
nP states (including the continuum) by a discrete
Sturmian basis set generated by diagonalizing the
Hamiltonian H in a basis set constructed from
functions of the form

suits obtained in this may with a ten-term basis
set are

B=12.415592' ' a.u. , C = -3.476366Z a.u.

TABLE I. Values of the polarization P and anisotropy
B. These values frere calculated arith the 2s~&2-2p»,
and 2s&&2-2p3&2 energy differences tabulated by Garcia
and Mack (H,ef. 15), and 1 (2p) = 4.699 x 108g4 s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
1S
19
20

-0.32862
-0.267 44
-0.232 52
-0.209 88
-0.192 06
-0;17S11
-0.164 87
-0.156 16
-0.147 60
-0.140 87
-0.13436
-0.128 73
-0.12331
-0.11868
-0.11414
-0.11006
-0.10631
-0.102 70
-0.102 64
-0.099 19

0,14112
0.11795
0.104 15
0.094 97
0.087 62
0.081 77
0.076 16
0.072 42
0.068 73
0.065 80
0.062 95
0.06047
0.058 07
0.056 02
0,053 99
0.052 16
0.05047
0.04S 84
0.048 82
0.047 25

correct to the figures quoted. The choice of
phases is such that (1s ( z ( 2P&(PP ( z (2s) = -2'(v 2)/3'.
As a check, the same basis set yields the non-
relativistic spontaneous two-photon decay rate
so&I =8.2292Z' s ', in exact agreement mith
Klarsfeld's" result mhen the revised value of
n '= 137.03602 is used. Since the first term of
(17) decreases as Z ', the corrections B and C
become increasingly important with increasing
nuclear charge. For example, at 2=20, the quan-
tities I' and It in (7) and (9) are decreased by
about 0.1%, and the total quench rate (13) in-
creased by about 0.005%. Approximate values of
& and 8 calculated from the energy levels tabu-
lated by Garcia and Mack" are given in Table I.

The calculation presented here is entirely non-
relativistic, except for the phenomenological in-
troduction of the Lamb shift and level midth. There
are further important relativistic and retardation
effects which mill be discussed in a future publi-
cation. The additional small corrections due to
hyperfine structure" for nuclei with nonzero spin
should also be considered.

An experiment to measure the anisotropy 8
mould involve passing a beam of hydrogenic meta-
stable ions through an electric field as in conven-
tional quenching experiments, and measuring the
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total emitted intensities through identical slits in
the parallel and perpendicular directions. Rota-
tion of the field direction through 90' relative to
the slits and photon counters would eliminate
many systematic errors. Since A is independent
of field strength in lowest order, nonuniformities
in the field strength are not important, provided
that the field direction remains well defined

throughout the observation region. A small un-
certainty 6R in the measured value of R produces

an uncertainty 5(&E~} in the Lamb shift given ap-
proximately by 5(D,E~)/aE~~ 5R/R. It would also
be of interest to verify that both the parallel and
perpendicular intensity components decay with the
same time constant.
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Measurement of a system's Compton profile makes possible, in principle, the calculation
of its electronic radial momentum distribution. From this quantity, the expectation values
(P") and the total energy may be obtained. The feasibility of using Compton-scattering data
in this way is examined in view of the limitations imposed by (i) random experimental errors
on the measured profile, and (ii) restriction of the profile data to a finite range of momenta.
It is concluded that while present techniques may be adequate for a few systems, improved
experimental methods are required before Compton scattering becomes a useful source of
atomic and molecular energies.

I. INTRODUCTION

Recent years have seen a tremendous revival
of interest in Compton scattering as a tool for
studying electronic momentum distributions in

atoms, molecules, and solids. ' Significant exper-
imental advances have occured in both x-ray"
and y-ray" techniques. Compton profiles. over a
broad range of momenta and accurate to a fraction
of a percent at the peak may now be obtained in a
matter of days, even for relatively heavy elements. '

Compton-scattering measurements yield, at
least in principle, a full one&imensional (or, in
the case of anisotropic systems, three-dimension-
al) momentum distribution for the scatterer. It
should therefore be possible to calculate from
Compton data expectation values of operators
which are functions of momentum. In particular,
one should be able to obtain the quantities

(p") =1"p"1(p) dp,


