
PHYSICAL REVIE%' A VOLUME 8, NUMBER 3 SEPTEMBER 1973

Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System*

Spotswood D. Stoddard and Joseph Ford
School of Physics, Georgia lnstitlte of Technology, Atlanta, Georgia 30992

(Received 18 May 1973)

It is known that the hard-sphere gas exhibits strongly stochastic properties. For it, most
initially close phase-space-trajectory pairs separate exponentially with time, and Sinai has
used this so-called C-system behavior to develop a rigorous proof of ergodicity and mixing
in the hard-sphere gas. In this paper we numerically integrate the equations of motion for
a Lennard -Jones gas, which has attractive as well as repulsive interparticle forces, and
we demonstrate that this exponential separation of initially close trajectory pairs persists
even in the presence of attractive forces over a fairly wide range of particle densities. In
our calculations, this range extends from the dilute-gas region up to densities at which
three-body and four-body collisions become significant. Moreover for this density range,
we show that an expression for the trajectory-pair rate of exponential separation, rather
crudely derived for a hard-sphere gas, fits the empirical Lennard- Jones data quite nicely.
Our evidence thus indicates that a gas system with attractive forces can exhibit C-system
behavior similar to that of the hard-sphere gas. Finally we point out that the exponential
separation of trajectories as empirically observed here involves an unusual type of corre-
lated collision sequence.

I. INTRODUCTION

Boltzmann and Gibbs, in an act of faith, founded~

their theories of statistical mechanics on the as-
sumption that the phase-space trajectories for iso-
lated mechanical systems are extremely wild and

erratic paths wandering freely over the energy
surface and spending equal times in equal hyper-
areas of this surface. To an extent their faith has
recently been justified by Sinai, who rigorously
proves' that the hard-sphere gas is an unstables
system in the sense that almost every initially
close trajectory pair separates exponentially with
time. In particular Sinai proves'+ that this expo-
nential instability is sufficient to guarantee ergo-
dicity and mixing for the hard-sphere gas.

Although the extension of Sinai's results to sys-
tems having purely repulsive interparticle forces
is expected~ to be straightforward, mathematicians
anticipate severe problems4 in extending the proof
to systems having attractive as well as repulsive
interparticle forces. It is conjectured that the
inclusion of attractive forces will cause a break-
down of ergodicgty on at least some energy surfaces.
In particular, if the system energy is sufficiently
low or the system density snHI ciently high, one
anticipates Qnding energy surfaces which contain
nonergodic subregions of Kolmogorov-Arnold -Moser
(KAM) stability embedded in perhaps an otherwise
"ergodic sea"; indeed a number of empirical com-
puter studies support this conjecture. Despite all
these conjectures, we here suggest that the antic-
ipated difficulties may, in a sense, be largely
mathematical rather than physical. For example,

even were stable KAM regions to exist at all en-
ergies, nothing now known precludes their being
so small as to be physically irrelevant —except
perhaps for questions regarding metastability-
while nonetheless remaining mathematically
troublesome. Equally, nothing precludes the
existence of a critical energy, ' depending perhaps
on various system parameters, above which sys-
tems with attractive forces are no less ergodic
than the hard-sphere gas. In order to provide
empirical support for these latter possibilities,
we have conducted the numerical experiments de-
scribed herein.

In this paper, we consider a Lennard&ones gas
which has an attractive as well as a repulsive term
in the interparticle potential, and we demonstrate
that this gas system continues to exhibit exponen-
tially separating trajectory pairs for densities up
to about 15% of the liquid density for the case of
neon. Indeed although three-body and four -body
collisions become significant at the higher densities,
we show that a theoretical expression for the tra-
jectory exponentiation rate, crudely derived for a
hard-sphere gas, actually fits the Lennard-Jones
data xather nicely over the density range studied.
In short, the Lennard-Jones gas appears to exhibit
the same type unstable C-system behaviors as does
the hard-sphere gas, at least for the densities
considered here. Clearly, our computer calcula-
tions do not rule out the existence of regions of
KAM stability, although we found none; obviously
we can say nothing as yet about the system behavior
as the liquid density is more closely approached.
Our conclusions are thus quite tentative and we
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of which we set V-=0. In particular we used the
cutoff Lennard-Jones potential U(r) given by

U(r) = 4e( [ (o/r) —(o/r)']

+ [e(o/r, ) —3(o/r, )'] (r/r, )'

—'f(o/~. )"+ 4(o/~. )') (2)

for r &r„and U(r) =-0 for r )r, . Clearly Etl. (2)
and Eg. (1) differ only slightly provided r, is taken
several times the size of e. In our numerical
experiments, we set r, = So; the potential of Eq. (2)
is plotted in Fig. 1. The virtue of Eq. (2) for cal-
culative purposes is that both U and dU/dr go
continuously to zero as x approaches r, from
below; thus there are no discontinuous forces to
contend with and any particle outside the r, range
of all others moves as a free particle. To further
ease the computer calculation, we expressed
distance in units of 0; energy in units of 4&, and
mass in units of the single-particle mass; in these
units, Eq. (2) may be written

FIG. 1. Graph of the cut off Lennard- Jones interpar-
tical potential U as a function of interparticle distance
r. Here 0' and & are the standard Lennard-Jones param-
eters.

present them as only a crude signpost to guide
subsequent investigators capable of greater math-
ematical rigor than ourselves.

II. DISCUSSION OF THE LENNARD- JONES
MODEL AND INTRODUCTION TO THE

EXPERIMENTAL PROCEDURES

The Lennard &ones pair potential V(r) may be
written in the starMiard form

where r denotes interparticle distance and where
e &0 and a) 0 denote tabulateds Lennard&ones pa-
rameters having the units of energy and distance,
respectively. For convenience in the computer
calculations, we modified the potential of Eq. (1)
slightly by introducing a cutoff radius r, outside

U(r) = [(1/r") —(1/r')] + [(6/r, ~) —(3/r, e)] (r/x, )I

—(7/r, )+ (4/~, ') . (3)

For comparison with a real gas, we list in Table I
the relationship between our computer units and
the mks units for neon; here m.u., l.u., t.u., and
e.u. stand for computer units of mass, length,
time, and energy, respectively. Finally then the
Hamiltonian for our model system may be written

(4)

where P& is the magnitude of the vector momentum
of particle i, U is given by Eq. (3), and t, &

is the
scalar magnitude of the distance between particles
labeled i and j.

Since we are here interested in demonstrating
that Hamiltonian (4) has at least certain charac-
teristics of a C system, which latter is known to
be ergodic and mixing, we briefly discuss those
properties of C systems germane to our calcula-
tions; for precise mathematical definitions, the

TABLE I. Conversion bebveen computer and mks units for neon.

Quantity
Computer

units
mks
units

Mass
Length
Time
Energy
k ~ (Boltzmann constant)

m (particle mass)

E'

1 m.u.
1 l.u.
1 t.u.
1 e.u.

0.00690,'K particle
1m. u.
1 l.u.
0.25 e.u.

3.34 x
2.74x
1.12x
2.00x
1.38 x

3.34 x
2.74x
5.0Q x

10
10-f0

10-12

10
10

10
1Q 22

kg
m
sec
J J
'K particle
kg
m
J
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reader is referred to the text byArnold andAvez. '
Let us consider small elements of hyperarea on an
energy surface for Hamiltonian (4) and consider
the Qow of these areas generated by Hamiltonian
(4) in time. This system is said to be a C system
(at the given energy) provided that every small
hyperarea can be divided into precisely two sub-
spaces, called the dilating and contracting sub-
spaces, such that any two points in the dilating
space separate exponentially with time while any
two points in the contracting space approach each
other exponentially. Mathematically if by(t) is the
instantaneous Cartesian phase -space distance be-
tween two points, we require that

by(t) &ae" by(0), t &0

by(t) &be " by(0), t &0

for by(0) in the dilating space, and

by(t) &be "6y(-0), t &O

by(t) &ae 'by(0), t &0

(5a)

(5b)

(6a)

(6b)

)) ())= Z( '())-~ ()))'I",

)),()) =IX(ug'()) -('g ()))' ",
(7)

where we use a prime to distinguish one point from
the other Rnd where r, and p, denote the vector
position Rnd momentum of particle i . Obviously
if D, Rnd D~ separately grow exponentially, then
so does the full phase-space distance D = (D, '
+ Di, ')'~'. In every case investigated, the dimen-
sionally homogeneous distances D, and D~ both
exhibited an exponential growth indicative of C-
system behavior. Clearly this result does not
prove that Hamiltonian (4) is a C system because,
R81de from the obvious fRet Ulat not Rll trRjeet01 y
pairs were integrated Rnd shown to satisfy Eqs.
(5) and (6), the two subspaces were not isolated

for by(0) in the contracting space, where the con-
stants &, a, andbmustbeindependentof t and by(0).

We further require that the dimension of each
subspace be unity or gxeater and that the sum of
their dimensions be one less than that of the energy
surface itself. Since the two subspaees each are
of measure zero on the energy surface, we note
that the distance between two initially close,
arbitrary points on the energy surface will almost
always be dominated by E(I. (5a) for t -~, and by
E(l. (6b) for t --~. In our calculations, we forward-
integrated Hamiltonian (4) for a host of initially
close phase-space points and, rather than the full
phase -space distance, we separately computed
the dimensionally homogeneous distances

and the correctness of their dimensionality veri-
fied. Actually a computer could in principle be
used to determine these subspaces and their prop-
erties as Froeschle' has recently demonstrated
for certain area-preserving mappings; however,
his procedures mould require more computer
time than was available to us.

In order to verify the exponential growth of the
distances defined by E(ls. (7) and (8), we actually
calculated logxo & and logio D~ as a function of
time. Aside from Quctuations explicable on dynam-
ic grounds, as expected these two quantities on
the average grew linearly with time and we fitted
the data with straight lines using a least-squares
method. The slopes A,, Rnd A~ of these lines,
given by

X, = d(log, oD, ) /dt, X~= d(log, oD~) /dt, (9)

where the angular brackets indicate a least-squares-
derived quantity, provide the average rate of ex-
ponential growth for D, and D~. We evaluated A,,
and X~ for a 100-particle Lennard-Jones gas whose
particles moved in the same two dimensional box
having periodic boundary conditions. Confining the
system particles to move in only two dimensions
yields a tremendous saving in computer time with-
out any expected loss in generality since the two-
dimensional hard-sphere gas in ergodic and mix-
ing. ' Periodic boundary conditions remove the
spuriously large jumps in D, and &~ which occur
when two or more particles simultaneously collide
with each other and with a fixed, reQecting wall.
Such jumps correspond to surface effects which
dominate in the relatively small system we treat,
and we may avoid this effect by using periodic
boundary conditions.

A fourth-order, variable step size, Runga-Kutta
method" was used in all numerical integrations of
Hamiltonian (4). Accuracy was monitored by reg-
ularly checking for the constancy of the known
constants of the motion which remained constant
to within about one part in 10' for all our runs.
In addition, various highly accurate runs were
time reversed and integrated backward, quite
accurately recovering the initial (r„P,) state.
Derived quantities such as A., Rnd X& were computed
for these highly accurate runs as well as for less
accurate runs starting from the same initial states.
We thereby determined that we could reliably com-
pute the needed derived quantities without neces-
sarily being able to very accurately recover the
initial state. '~ A single run, in our terminology,
consists of integrating Hamilton's equations of
motion simultaneously for two distinct trajectories.
The two representative system points in phase
space were initially separated by only a very small
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distance —on the order of 10 ' in the units of Eq. (3).
The equations of motion were then integrated until
this distance grew by several orders of magnitude.
Two groups of such runs were made. For the
first and by far the largest group, the density was
varied at approximately constant temperature. For
the much smaller second group, the temperature
was varied at constant density.

With these preliminaries completed, we may
now embed an overview of our results in a further
discussion of computational detail.

III. SUMMARY OF RESULTS

In order to determine with any degree of cer-
tainty that most trajectory pairs on an energy
surface separate exponentially, one needs a rea-
sonable sampling of that surface, and here the
sampling must be repeated for a set of energy
surfaces generated by varying the density or the
temperature. On the other hand, an exhaustive

sampling of these energy surfaces for a 100-par-
ticle system would be prohibitively time consuming
even on a high speed computer. Thus for each
energy surface, we selected several sets of ran-
dom initial conditions using a table of random
numbers. Runs were started from each set of
these initial conditions and, occasionally during
each run, the coordinates and momenta as they
existed at that time for one of the trajectories in
the pair were saved for subsequent use as initial
conditions in later runs. In turn, runs started
from the "saved" data were used to similarly pro-
duce new runs, and so on. In view of the fact that,
starting from the random initial sets of data, each
trajectory pair was observed to be freely "expo-
nentiating" over the energy surface while "gener-
ating" new runs of exponentially separating trajec-
tory pairs, and so on, we concluded that the to-
tality of our data represents at least a reasonable
sampling of each energy surface. Additionally,
the integration error introduced at each step of

TABLE II. Quantitative results of the numerical experiments at approximately constant temperature.

Run
No. liq. p T ('K) 2B 3B 4B W Yexpt

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32

0.1200
0.1000
0.0800
0.0800
0.0600
0.0600
0.0600
0.0400
0.0400
0.0200

0.0200
0.0100
0.0080
0.0080
0.0060
0.0060
0.0040
0.0040
0.0040
0.0020

0.0010
0.0008
0.0008
0.0008
0.0004
0.0004
0.0004
0.0002
0.0002
0.0001

0.0001
0.0001

14.8
12.3
9.84
9.84
7.38
7.38
7.38
4.92
4.92
2.46

2.46
1.23
0.984
0.984
0.738
0.738
0.492
0.492
0.492
0.246

0.123
0.098
0.098
0.098
0.049
0.049
0.049
0.025
0.025
0.012

0.012
0.012

327
312
310
303
300
300
305
297
290
294

295
290
290
290
290
290
290
290
289
290

290
290
290
290
290
290
290
290
290
290

290
290

0.935
0.857
0.705
0.666
0.690
0,646
0.791
0.501
0.504
0.353

0.557
0.252
0.203
0.200
0.177
0.232
0.157
0.112
0.146
0.102

0.052
0.056
0.080
0.051
0.040
0.038
0.018
0.055
0.025
0.025

0.014
0.019

1.09
0.882
0.704
0.685
0.705
0.675
0.830
0.522
0.507
0.358

0.559
0.257
0.206
0.200
0.183
0.232
0.162
0.119
0.157
0.102

0.054
0.065
0.087
0.056
0.042
0.046
0.022
0.059
0.027
0.030

0.015
0.020

1.01
0.870
0.704
0.676
0.697
0,660
0.810
0.511
0.505
0.355

0.558
0.255
0.205
0.200
0.180
0.232
0.159
0.116
0.152
0.102

0.053
0.060
0.084
0.053
0.041
0.042
0.020
0.057
0.026
0.027

0.014
0.019

64 9
148 19
182 10
178 17
91 5

130 7
123 7
136 7
129

76 2

64 2
40 0
62 0
72 0
50 1
52 0
48 0
49 0
42 0
36 0

28
23
16
23
12
12
14
10
19
4

5
13

88 2.14
192 6.20
202 9.84
215 9.56
101 6.15
144 8.70
140 7.15
150 14.0
139 13.9

80 18.6

68 13.9
40 16.0
62 33.8
72 35.2
52 36.2
55 32.4
51 43.5
49 56.4
42 44.7
36 68.0

28 100
23 98.0
16 69.0
23 112
12 100
12 100
14 172
10 99.6
19 214
4 99.7

5 315
13 269

1.22
1.62
2.44
2.22
3.05
3.02
2.55
4.67
5.00

11.6

10.2
20.0
27.3
24.4
34.8
29.5
42.7
57.6
53.2
94.4

179
213
216
245
418
418
616
498
562
1247

3150
1036

2.83
3.23
3.95
3.46
4.89
4.59
4.76
5.49
5.82
9.51

13.1
11.7
12.8
11.3
14.4
15.7
15.6
15.3
18.6
22.1

21.9
29.4
41.5
29.9
39.1
40.0
28.2
65.2
33.8
78.7

104
46.2
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the integration process itself subsequently in-
creases exponentially, increasing the randomness
of the total set of initial data over each energy
surface.

Turning now to the runs themselves, all runs
were processed in the same way whether the source
of initial conditions was random numbers or a pre-
vious run. A given set of initial conditions were
taken to be the unprimed variables of Eqs. (7) and

(8). The given particle coordinates were then
uniformly scaled to reach the desired system
density, and any particles closer together than
(0.9)o were separated to this distance. The total
linear momentum was reduced to zero by subtrac-
ting (1/N) times the total system momentum from
the momentum of each particle, where N is the
number of particles in the system. The angular
velocity of the system was found by applying the
inverse of the inertia tensor to the total angular
momentum, and the angular momentum was then
reduced to zero by adding the negative of this an-
gular velocity to the system as a whole. Last, the
linear momenta were uniformly scaled to attain the
desired total system energy (temperature). At
this point if the initial conditions were derived
from random numbers, the system was integrated
until an approximately Maxwellian velocity distri-
bution was obtained, ensuring that the subsequently
computed A., and ~~ were characteristic of thermody-
namics equilibrium states. Finally, the initial
conditions for the primed variables in Eqs. (7) and

(8) were obtained by making small displacements
in the unprimed system variables of about 10 '
per particle in units of Eq. (3). Although, as
mentioned earlier, the error in D, and && itself
grows exponentially, we could nonetheless detect
the exponential growth of D, and && by choosing
their initial values to be significantly larger than
the initial error. ~

Typical experimental results obtained by varying
the density at approximately constant temperature
for an isolated, 100-particle system are presented
in Table II. A number of distinct runs having the
same density and temperature are presented in
order to reveal the typical fluctuations of X which
were observed in our calculations. With the ex-
ception of the temperature, all tabulated quantities
are specified in computer units. The data for each
run appears as a row in Table II and the first
column lists for easy reference the number of the
run. The second column lists the number density
p of particles per unit area. For comparison with
a real gas, the third column of Table II lists the
fraction (p/pz, ) in percentage, where pz, is the
liquid density of neon. The fourth column tabulates
the system temperature T in degrees Kelvin. Here
T represents the time average of the instantaneous

kinetic temperature defined by

(10)

-1
LaJ

K
I—

3'

7, , yP

0.00 1.03 2.07 3.10 4.13 5.17 6.20

TIME (COMPUTER UNITS}

FIG. 2. Graph of loggpDp and log«D~, labeled log, p

(separation distance), versus time for run 2 in Table II.
Here and in the following two figures log&pD& and its
straight-line least-squares fit are solid curves while
log~p B+ and its associated line are dashed curves.

where N is total particle number, k& is the
Boltzmann constant, m is the particle mass, and

v, is the speed of particle i . Because our system
is isolated, the total system energy remains con-
stant while the temperature fluctuates"; nonethe-
less, the instantaneous temperature fluctuations
for our system were observed to be essentially
negligible. The time-average temperature for
each run in Table 0 is approximately the same.

The next two columns list the experimentally
observed values of A., and A~. As mentioned
earlier, these numbers are the slopes of the
straight lines resulting from a least-squares fit
of the logypa~ and logypDp versus time data. In
Figs. 2-4, we show some typical examples of
logypa and logyp+p plotted versus time. In these
figures, logyp+p and its fitted line are solid curves
while logypa and its line are the broken curves.
In every case examined, we found an average
linear growth of logypD and logyp+p indicating
C-system behavior. As expected both X, and A~

increase with increasing system density. More-
over, as might be anticipated on intuitive grounds,
since at any instant the growth of D, depends on
the change in D~ during the previous collision and
vice versa, we found X, to always very nearly
equal A~. Thus, in column seven, we list an over-
all average rate of exponential growth A., where X

is the arithmetic mean of X, and A~; we henceforth
drop the distinction between X, and X~, always
using the mean value A. .

The next four columns in the table, labeled 2B,
3B, 4B, and W, list the number of two-body, three-
body, and four-body collisions followed by a
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0.00 )2.00

T1ME (COMPUTER UNiTS)

FIG. 3. Graph of ].og)OD~ and log(OB~, labeled loggo
(separation distance}, versus time for run 12 in Table II.

~6.60 38,20 49.60 66.40 83.00 O'%60

TiME(coMpuTER uNns)

FIG. 4 ~ Graph of loggoDp and loggoB~, labeled log)0
(separation distance}, versus time for run 28 in Table II.

meighted sum %' of these collisions. No collisions
simultaneously involving more than four particles
were observed to occur. Here an n-body collision
is defined as the formation and subsequent dissolu-
tion of a group of n particles, where each member
of the group was within a distance o [see Eci. (2)]
of at least one other member of the group. A
collision mas counted mhen the first particle left
the group, but not when successive particles did,
unless a new particle joined the group before its
complete dissolution. In this latter case, a nem
collision w'as counted when the first particle left
the nem group, and so on. In the weighted total
W three-body and four-body collisions mere given
the weights of tmo and three binary collisions.
These weights represent the simplest sequences of
binary collisions that mould replace the multiple
ones mere thi.s a hard-sphere gas, as me shall
assume it to be in Sec. IV on theory, rather than
a Lennard-Jones gas. Thus S'is the total number
of "equivalent" binary collisions which occurred in
each run.

The column following the collision data i.n Table
II lists the time duration t„of each run. Express-
ing t„ in real time units using Table I, one notes
that our longest runs were of extremely short
duration on a macroscopic scale-a few tenths of
a nonosecond at most. Using t„and 8', me can
calculate the effective mean time & betw'een equiv-
alent binary collisions for a single particle using

~ = Qrt, /2W) . (11)

The value of v for each run is listed in column 13
of Table II. In order to explain the last column in
Table II, let us note that on the average both B,
or D~ grow exponentially according to the equation

D(t) =D(0)10"

Into Eq. (12) let us insert t = nr, where n is the
average number of equivalent binary collisions
for a single particle which have occurred up to the
time t. We then may write Eg. (12) as

D(n) =D(0)e~',

where y = (Xv) 1n(10) is the average rate of exponen-
tial growth per single -particle equivalent binary
collision. The last column in Table II, labeled
y ~„tabulates the experimentally observed value
of y which mill be compared with a theoretically
derived value of y in Sec. IV.

Finally, in Table ID, me conclude the presenta-
tion of our experimental results by listing the data
for a fern runs made at constant density but differ-
ent temperatures. We defer discussion of this
table until Sec. IV.

IV. COMPARISON OF EMPIRICAL RESULTS TO
THEORETICAL CALCULATIONS FOR A

HARD-SPHERE GAS

For a hard-sphere gas, the total system energy
is purely kinetic; thus the system energy E and

TABLE III. Quantitative results of the numerical experiments at constant density. The first line of this table is
copied from Table II, run 12.

28 3B 4B 8" Vexpt

0.0100
0.0100
0.0100
0.0100

1.23
1.23
1.23
1.23

290
435
580
725

0.252
0.420
0.460
0.410

0.257
0.440
0.400
0.430

0.255
0.430
0.430
0.420

40
40
23
40

40
40
23
40

16.0
10.1
6.00
11.3

20.0
12.6
13.0
14.1

11.7
12.5
12.9
13.7
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the temperature T are both constants of the motion
with E =NO&T. Now consider two energy surfaces
with the associated temperatures T, and T,
(T,& T,) and two trajectory pairs, with one pair
on each surface. Suppose that initially the two
trajectory pairs have the same eonfi. guration-
space coordinates, (r,) for one trajectory of each
pair and (r, ') for the other member of each pair;
however, let the initial vector momenta jp, j and

fP, ') of the trajectory pair on the lower energy
surface be uniformly scaled up to( (T,/T, )~~'p, ) and

((T /T )~~2p&'j, yielding the initial momenta of
the higher-energy trajectory pair. Here the tem-
perature is different for each trajectory pair but
the particle density is the same.

With these initial conditions, the two configura-
tion-space trajectories for the lower-temperature
pair are identical to those of the higher-tempera-
ture pair; in particular, the representative system
points for the higher-temperature pair merely
traverse the same configuration-space trajectories
as the lomer-temperature pair but at a more rapid
rate. Consequently, using Eg. (18), we see that
D, (0), &, (s), and y, are identical for the two tra-
jectory pairs; moreover, since D~(0) and D~(s) for
the two energy surfaces differ only by the scale
factor (T,/T, )' ', the momenta y~ are the same for
the two trajectory pairs also. In addition, as we
shall discuss shortly, y, =y» and we drop the sub-
script on y. Finally then, for the hard-sphere gas,
we conclude that y is independent of temperature
for fixed density, although y may vary over a
specified energy surface. Now examining Table
III, we note that y for our Lennard-Jones system
is also rather insensitive to varying the temper-
ature while holding the density constant, indicat-
ing that the Lennard-Jones gas here behaves much
like the hard-sphere gas. In Table III, the initial
conditions of the trajectory pairs on the various
energy surfaces were not "scaled" as discussed
above; the computer values of y are nonetheless
approximately constant, indicating that y may de-
pend less sensitively than X on energy-surface
position.

Emboldened by this success in relating hard-
sphere-gas behavior to that of ttie Lennard-Jones
gas at least over the density range considered, we
then derived an analytic expression for y using
hard -sphere -gas dynamics. This derivation, which
is tediously long and which includes many plausi-
bility arguments, is presented in detail else-
where. '~ Here me shall only write down the final
expression for y and justify it only in terms of
plausibility arguments. Finally, me shall compare
this hard-sphere -gas expression for y with the

y,„,of Table I.
The derived expression for y is

y =P(cosh '[I+ (I 'ur/2' 'Pd)] -1n(4)}, (14)

where u is the average single-particle speed, &

is the mean time between binary collisions, d is
the hard-sphere diameter, and P is a parameter
depending only on total system particle number
N. In Eq. (14), the dependence of y on the product
u&, which equals the mean free path between bi-
nary collisions, is quite reasonable. As the mean
free path between collisions increases, the two
system trajectories have increasing time to stream
apart in configuration space causing a larger in-
crease in D, per collision. Additionally, this in-
creased stxeaming creates increasingly diffexent
"initial" collision parameters for each binary
collision thereby increasing &» per collision.
Lastly this mean-free -path dependence of y implies,
in agreement with our previous argument, that
y varies with density but not with temperature.

The explanation of the functional dependence
y- (cosh ') in Eg. (14) is also relatively straight-
forward. Roughly speaking, the momentum sepa-
ration distance and the position separation distance
after n+ 1 binary collisions are each related by
a linear, first-order difference equation to the
same quantities after n collisions. Indeed, these
quantities were both found to satisfy independently
the same linear, second-order difference equation
which could be reduced to the form

A~2+ 2'„+i+A„=O,
where the parameter C is greater than unity. An

equation of this type has the growing exponential
solutionA„-e"", where y=cosh C; this then is
the source of (cosh ~) in Eg. (14). Moreover, since
both the momentum sepaxation distance and the
position separation distance satisfy the same dif-
ference equation, one has y, =y» =y in agreement
with our empirical results. Finah&y the constant
term (ln4) in Eq. (14) was introduced to transform
the original second-order difference equation into
Eq. (15).

The factor P in Eq. (14) accounts for the some-
what unexpected type of collision sequences which
were observed to dominate and determine &, (n)
and D~ (n). Initially we anticipated that the single-
particle differences S, or 5p, in Egs. (I) and (8)
would each have the same exponential growth on
the average and mould each therefore contribute
equally to the sums in D, or D». In short we an-
ticipated that each S, or 6p, mould grow exponen-
tially oming to uncorre1ated binax'y collisions.
However, this was found not to be the case and,
indeed, a rather unusual type of correlation be-
tween collisions was observed in the empirical
data. After starting a calculation with the S

&
and

6P& approximately equal in magnitude, it was
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D(n) =D(0)e ~ " . (17)

Comparing Eq. (17) and Eq. (13), we see that
y =Py*. In Eq. (14), the expression for y* appears
inside the curly bracket, while the exterior multi-
plicative factor P merely reflects the change from
n*to n. Using t =n r*=nv=Pnv*, we see that
T*=T/P; consequently, in Eq. (14), the factor
(r/P) gives the "effective" mean time between col-
lisions. Finally, using an extremely crude argu-
ment, "we estimated that P=lnÃ.

Having presented these intuitive arguments
supporting the general analytic form of y, let us
now compare this theoretical equation with exper-
iment. In Fig. 5 we graph y vs v; here the
dots are empirical points for the Lennard&ones
gas at constant temperature taken from Table D,
while the solid line is a plot of Eq. (14). Except
at large T, the agreement between theory and ex-
periment is surprisingly good; however, the dis-
agreement at large 7 is easily explained. Here
two initially close trajectories stream far apart
in configuration space before very many binary
collisions occur, as can be seen in Fig. 4, for
example. In particular not enough binary collisions
occur in the whole system to initiate a dominant
collisions sequence as required for the validity of
our theory. Consequently Fig. 5 provides relatively
strong evidence for C-system behavior in the
Lennard-Jones gas over the density range con-
sidered. Indeed, ignoring the theoretical deriva-
tion of Eq. (14) and regarding it only as an empir-
ical formula derived by curve fitting, we note that
an analytical curve w'hich nicely fits the relatively
low-density region corresponding to T =10 to 100
also fits equally well the higher-density region

empirically observed that very quickly (about ten
binary collisions in the whole system) some one
term (5r, ) in Eq. (7) and the corresponding term
(&P,) in Eq. (8) dominate the sums in these equa-
tions. These maximum 8, and 6P, were then
observed to propagate via binary collisions from
particle to particle, growing exponentially with
each collision. As a consequence, D, and D~
actually depend not on the average number n of
binary collisions for a single particle, nor on the
average mean time s between collisions, but on
the number n~ of binary collisions in the maximum
sequences and on the mean time v* between binary
collisions in this dominant sequence. In order to
express D, and D~ in terms of the more easily
measuredquantities n and r, we beganwith Eq. (13)
written as

D(n*) =D(0)e" " (16)

We then defined P via n* = Pn, writing

corresponding to & =1 to 10. Because of this
smooth extrapolation from lower to higher density,
we conclude that over the density range studied
here most trajectory pairs for the Lennard-Jones
gas indeed separate exponentially just as do those
of a hard-sphere gas; in particular, regions of
KAM stability, if they exist, appear to be of neg-
ligible size.

V. SUMMARY
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FIG. 5. Comparison of theoretical (solid curve) and
experimental (small circles) values for the exponentia-
tion rate per collision y as a function of mean time be-
tween binary collisions &.

Although the hard-sphere ga,s is known to be
ergodic and mixing, the extent to which this be-
havior persists for systems having attractive as
well as repulsive forces is unclear. In this in-
vestigation we numeri ally integrated the equations
of motion for a Lennard-Jones gas and showed
that, over a fairly wide density range, this system
mimics that essential hard-sphere-gas behavior
which is required for proving ergodicity and mix-
ing, namely, an exponential separation with time
of most initially close phase-space trajectories.
Certainly our studies cannot rule out stable,
nonergodic phase -space regions; however, they
do indicate that such regions, if they exist, are
likely to be quite small at least over the density
range studied. In terms of neon, our investigation
covered the density range from very dilute, ideal-
gas densities up to 15/o of the liquid density. In
more absolute terms, the low-density system
exhibited only binary collisions while three -body
and four-body collisions were frequent at the
higher densities.

In addition to demonstrating that the Lennard-
Jones gas possesses exponentially separating
trajectories, we numerically determined the rate
of exponential separation as a function of density.
Using very crude arguments involving an empir-
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ically observed dominant collision sequence, we
calculated an expression for this exponentiation
rate for a hard-sphere gas; the resulting theoret-
ical curve fit the Lennard-Jones-gas data quite
well over most of the density range investigated.
Moreover, the exponentation rate of the Lennard-
Jones gas was empirically observed to be quite
insensitive to varying the temperature, another
fact predicted using hard-sphere-gas dynamics.
Thus the combined evidence presented here pro-
vides strong empirical support in favor of ergo-

dicity and mixing for even a relatively dense
Lennard -Jones gas.
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