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Correlation-function expressions are derived for the linearized Burnett and super-Burnett-coe5cients for

a fluid. The results involve higher spatial moments of correlation functions such as occur in the

Green-Kubo theory for the Navier-Stokes transport coeflicients. The investigation is stimulated primarily

by indications that the Burnett coefficients might actually be infinite, but this problem is not discussed

here.

I. INTRODUCTION

The hydrodynamic equations for a gas can be
derived from the Boltzmann equation by the
Chapman-Enskog' approximation method, which
in the first approximation gives the Euler equa-
tions for an ideal Quid, and in the second approxi-
mation the Navier-Stokes equations. The third
approximation has been worked out by Burnett. '

To describe Burnett s equations, we write the
equation of continuity, energy equation, and
equation of motion as
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Here p is the mass density, u the fluid velocity,
E the thermodynamic energy density, p the
density of enthalpy, and P the pressure. In
addition, s~ is the heat flux, and g,*,. the viscous
part of the pressure tensor.

In the first approximation, a*=0, t~~=0,
resulting in Euler's equations. In the next,
or Naviex -Stokes, approximation,
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where ~ is the thermal conductivity, q the shear
viscosity, and j~ the bulk viscosity. (Actually
for a Iow-density monatomic gas, ji=0.) In
Burnett's approximation, there are additional
contributions, ~a* and ~t,*,, to be added to the
above which are given by"

BD . BT
4s$ XIV Qg +%2 +E3Diy

Bx) Bxy

BT BT BP
+K~A. )~ +K5D +ASD]~

Bxg 8x) Bxg

tit* =K --,'6 V'T +. K ——--,'5 (VT)'8 T , 2 BT BT
' BxBx '" ' BxBxi j

8 P , 1 ' BP BP
+K, —mti,. v I'- — — ——.'a (vp)'

Bx]Bxg P Bxg Bxg

Ijjr sp sT' sp
+K~0 — + — —35) VTVP

Bx, Bx, Bx, ax,

+K„DD,, K, [D; D, — 5,jD,D,j

13 l iE+jr jKAiE +i' jK 3 ii4i Ei]

Here we have introduced the abbreviations

, (su, au)

D=D„=V-u,

The E's are higher-order transport coefficients
which can be evaluated, for a given interatomic
force law, in much the same way as A. and q.

There are two kinds of terms in hs,.* and

bt, ~, those which are quadratic in first derivatives,
and those which are linear in second derivatives.
The linear terms are important for small-ampli-
tude, but rapidly varying, processes, such as
high-frequency sound. These terms, as well as
linear terms occurring in still higher orders
(super-Burnett), have been extensively analyzed
and compared with the data on sound propagation
by Uhlenbeck and Foch. ' Their theory is in
excellent agreement with experi;ment, and is
clearly superior to the Navier-Stokes approxi-
mation.

The nonlinear terms have apparently not been
observed directly in experiments on gases, but
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similar terms describe effects which are observed
in more complex systems. As an example, con-
sider a shear Qow with velocity in the g direction,
varying in the y direction. One finds contribu-
tions to the pressure tensor as follows:

(f&12 Pals)
SIC

b,t,*,=- (~E„+E„)
8$

Thus a shear flow sets up normal stresses. Such
normal stresses are responsible for, for example,
the Weissenberg effect: If a rod standing in a
container of liquid is set into rotation, the re-
sulting shear Qow can push the liquid up the
rod. 4

Here the method of correlation functions will
be applied to the linearized Burnett coefficients,
to obtain formulas analogous to the Green-Kubo
expressions for the Navier-Stokes transport co-
efficients. The motivation for this study stems
primarily from the slow decay of a time-dependent
correlation function, first observed in self-
diffusion by Alder and Wainwright. 5'6 This slow
decay (which is not included in the Boltzmann
equation) contradicts the usual assumption of
widely separated time scales for hydrodynamics
and microscopic relaxation, and so raises a
question as to the proper description of hydro-
dynamics. In particular, the Navt, er-Stokes
coefficients for two-dimensional systems have
been shown to be infinite. ' In three dimensions
Ernst and Dorfman' have obtained a nonanalytic
dependence of the hydrodynamic frequencies on
the wave number, which is such as to imply
that the Burnett coefficients are infinite. This
of course also implies that the Chapman-Enskog
expansion, used below, is invalid, but the result
ing correlation functions might stiD be interesting
objects of study.

where q denotes the initial position of the particle,
q, is its position at time t, and the brackets
denote an average over an equilibrium ensemble.
It is convenient to make a Fourier transform,

G(R t)= Jd'xe'" "G'(x t) =&e'k'~~&. (6)

Here dq denotes the displacement of the particle
in time t, and we have assumed the particle to
occupy unit volume. According to Onsager's
assumption on the regression of Quctuations,
G(x, t) satisfies the diffusion equation for long
times, that is,

G(k f) e-P(k)t

where p(E) is obtained by Fourier transformation
of the diffusion equation,

p(R) = D,k' —D2k'+ ~ ~ ~

( $2}tl
n= 1

We can obtain p(k) from C(fc, t} by

P(k) = -lim —1nV(%, f) .t~ I'

On the other hand, G(k, t) is the generating function
for the random variable ~q, and its cumulant
expansion is

inC(k, t) =Q C„(aq),
" (ik)"

n=l

where C„(~}is the nth-order cumulant, and

~ now denotes the component of the displacement
along%. The odd-order cumulants vanish be-
cause of spherical symmetry, while

Thus, we can express the diffusion constants
D„ in terms of the cumulants:

D„=,lim —C„(~).
1 . 1

2n!, t

II. SELF-DIFFUSION

Consider first the case of self-diffusion
(or Brownian motion). ' The hydrodynamic equa-
tion is the diffusion equation, augmented by
Burnett-type terms:

—=D V n+D V V n+Sn

at 2

The diffusion process can be described by the
corr elation function

G(x, t) = &5(q) t}(q, —x)&,

For D, the above formula is just the Einstein
expression

D, = lim —&(hq)'& .1

t~ 2t

An equivalent formula is

where )t,(t) is the second-order velocity auto-
correlation

~(t) = &v(0)v(t)& .
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Here v(t} is the velocity of the particle at time
t, or rather its component along k.

For D„we find

D, =—lim —(((~)4) —3[((dq)2) j') .

This can be expressed in terms of the fourth-
order velocity autocorrelation )t,(t„t„t,},
defined by

)t4(t, t, t ) = (v(0)v(t, )v(t, )v(t, ))

—(v(0)v(t, ))(v(t, )v(t, ))

—(v(0)v(t, ))(v(t, )v(t, ))

—(v(0)v(t, ))(v(t, )v(t, )) .
We obtain immediately

1 1 t Pt .t
D2 Iim dt~ I dt2 dt~

41 g~~ t p 4p ~p

x dt4)t4(t, —t4, t, —t4y f3 t4)
4p

which can be manipulated into

D, = f, dt, f 'dt, f, 'dt, )t,(t„t„ t, ) .

III. SIMPLE FLUID

(10)

in place of the first term of ~s,*. However, it is
only the divergence of ~s,*which occurs in the
hydrodynamic equations, and so only the sum
n = a, + n, has significance.

There are five conserved quantities, cor-
responding to conservation of mass, energy,
and momentum. Let g, a = 1, . . . , 5, denote
densities of the conserved quantities and y'
their fluxes; the conservation laws are

eau +~V'a 0
8t 8x,

In place of the correlation function G(x, t) of
Sec. II, we must now consider the matrix
G(x, t) with elements

G„s(x, t) = (g„(x, t)gs(0)) —(P )(t}Is) .

In addition, introduce the matrices G' and G'f

with elements

G' s(x, &) =(y'(x, ~)ts(0)) —(p')(4s)

G"s(x, &) = (y' (x, t)y's(0)) —((p' )(y's) .
Their Fourier transforms will be denoted by
G, V, C'f; for example,

G(k, t) = fd'x e'" "G(x, t') .

The conservation laws imply the relations

In this section, correlation-function expres-
sions for other higher-order transport coef-
ficients will be derived. In the general case, the
correlation functions which occur cannot be
expressed in the simple form (6) of a generating
function, and so the method to be used differs
from that of Sec. II. However, it can be verified
that both methods yield the same result for the
case of self-diffusion.

To identify the coefficients under discussion,
we rewrite the earlier equations for 6s,*, b, t,*&,

including only linear terms (and with a slight
change in notation}:

2 8P 2 8T6s*= nV'u +pV' +A, V'
8x, ' 8x, '

(11)
+( +2'glV Dgf +Kg 5gfV D

ax( 8xf 8x48x

Actually the terms with coefficients P, Ay 'Qy Icy

(as well as the higher-order diffusion constants
of Sec. II) correspond to a super-Burnett
approximation. Regarding the terms containing
seconD derivatives, we could have included ad-
ditional terms by writing, for example,

8
~eVu, +n, V-u

8x)

—-ik 0 =08G
8t

8G' —ikfG'f =0.
8t

(12)

In addition, introduce

8$
Pn8 JIBE (13)

where the p~ are differential operators, or
after Fourier transforming, functions of k.
Through fourth order in k, the p 8 can be
determined from the constitutive equations (11).

If an initial distribution of local equilibrium
is assumed, the y (R, t) can be related to their

g„s(k) C=s(k0),,

h„'s(k) = 6' s(k, 0) .

The k dependence of g and h' will be neglected,
as it is due only to the short-range equilibrium
fluctuations. For k =0, g and lg' can be expressed
in terms of standard thermodynamic functions.
We will find it convenient to choose a representa-
tion for the p such that g„s ——6~.

Let g„denote the average of the g„. The
linearized hydrodynamic equations, written
in terms of g, will take the form
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initial values by'

g(k, t) = G{k, t)g y(k, 0) .
Hence,

8/(k, t) 86(%, t}

Again, following Onsager, we assume that for
large times the above correlation-function
equation becomes identical to the hydrodynamic
equation (13); hence,

p= -lim —g G g.8G
et

This equation is analogous to Eq. (8), except
that p and G are now matrices.

To make the k expansion, it is convenient to
utilize Eqs. (12) to write

p = -limik, [k'+ik„f dt, 0'"(k, t, )]

x[1+ik, f dt, G'(k, t,)] ', (15)

D, = f dt G*'(0, t),

, s'C**(k, t,}

+'G"*(o, t, ) I dt,2 ek

The first of these is essentially the Green-Kubo

where we have assumed the representation g= 1.
It is next necessary to expand 0& and C' in
powers of k.

Before proceeding with the general case, it is
instructive to first consider the simple situation
which occurs if a single hydrodynamic mode can
be decoupled and treated independently of the
others. As a specific example, consider thermal
conduction in a material with negligible coef-
ficient of thermal expansion. (The self-diffusion
of Sec. II provides another example. ) Let e
denote the energy density and s, its flux, and
put

y = ~/Tv C, y' = s, /TWC,

where C is the specific heat and 7 the Kelvin
temperature (in units such that Boitzmann's
constant is equal to 1}. For the case under con-
sideration, spherical symmetry implies that
h' vanishes, G' is odd ink, and G'~ is even in
k. One then finds, with the notation of Eq. (7},
and again with k in the g direction,

formula for the thermal conductivity. The second
can be written

D, = (1/C T') lim f, dt, f d'x [2x'(s, (x, t)s„(0))f~
—D, (t)z(s, (x, t,)s(0))],

where

D,(t)=f dt, C*(o, t, )

=(1/CT') f 'dt, f d'x(s, (x, t, )s,(0)).
The results of Sec. D can be recovered by

making the substitutions e= 6(x —q), s, = v, 5(x —q),
CT'= 1. Then one finds

D, =lim f, dt, {-,'(v(0)v(t, )[th,q(t, )]')t~
—D,(t) (v(0)aq(t, ))],

D, (t)= f, dt, q, (t,).
This expression can then be reduced to the
previous formula (9) for D, .

We now return to the problem with five hydro-
dynamic modes: A convenient choice for the

is

y, = p/p(TE„)'~',

p T(pC„)' ',
Bp

g =g./(pT)~', y, =g„/(pT)'~', q, =g,/(pT)'~'.

Here E~ is the isothermal compressibility, C„
the specific heat (per unit mass} at constant
volume, p the mass density, & the energy
density, and g the momentum density. With this
choice, the matrix g~ reduces to the unit matrix,

g 8=&~

The fluxes q~ are

q l =a/p(T&r)~'

T(PC.}~'

q'=t /{pT}'~', y,'=t„,/{pT}'~', q'=t /(pT)'~'

where p, z is the momentum Qux and s, the energy
flux.

With k in the g direction, the transverse modes
g„and g, decouple and can be treated separately.
The hydrodynamic equations, with the expres-
sions (11}for hs,*, ht,*& included, reduce to

8g1tg" = -[vk'+ v,k']g„

where v=q/p is the kinematic viscosity, and

vi =ni/p.
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1

( 1)iso

1

(r —1)'~),
0

(0 0 0
A, = 0 A./pC„O

0 0 g'p

The correlation-function expressions for g gy

can be obtained in the same way as Eq. (16);
the results are

q= —
J

ch Jd xo'„o)t„(&t)), ,
0

t
q, = lim — ds I d'x(=,'x'(t„(x, s)t„(0))

t~~ T

+ v(t) x(t,„(x,s)g, (0))],
where

v(t) = (1/pT) f ds f d x (t,„(x,s)t,„(0)).
The first of these is the Green-Kubo formula for
the shear viscosity.

For the remaining longitudinal modes, it is
straightforward to obtain the matrix p of Eq. (13).
The result can be expressed as an expansion in
powers of k as

p = ikA, +k'A, + jk A3 +k A,

q, = lim (1/T) f dt, fd'x(v(t)x(t„(x, t, )g, (0))

—-', x'(t„(x, t,') t,',(0))),

A., = lim (1/T') f dt, f d x(Dr(t)x(s,'(x, t, )e'(0))t~
——,'x'(s, (x, t, )s,'(0))] .

Here

Pq

s' = s —(h/p)g,

Dr(t) = (1/pC„T') f, dt, f d'x (s,'(x, t, )s„'(0)),

v(t) =(1/pT) f, dt, fd'x(t„(x, t,)t„(0)).
Expressions having a resemblance to the above

have been obtained previously" by a method which
allowed for dependence on frequency and wave
number separately. The resemblance is, how-
ever, only superficial, since the Burnett co-
efficients as obtained above are defined by an
expansion (the Chapman-Enskog expansion) which
in effect requires a specific relation between
frequency and wave number.
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Here r = Cv/C„, q' = &@+ s, and g,
' = &g, + x, .

It is now necessary to expand the right-hand
side of Eq. (15) in powers of k. The transport
coefficients are then determined by comparing
the coefficients of this expansion with those
in the expansion for p. The calculations are
straightforward but tedious, and we simply list
the results:

n=(1/T) f dt f d'xx(t, „(», t)s,'(0)),

P = lim (1/pT) f, dt, f d'x(Dr(t)x(e'(x, t, )g,(0))t~
——,'x'(s,'(x, t, }g,(0))},

( = (1/T') f dt f d'xx(t,', (x, t)s, (0)),

g=(1/pT) f, dt fd'xx(t,', (x, t)g, (0)),

APPENDIX

The general expressions from which Burnett's
coefficients for a low-density gas can be
determined are not given by Burnett or Chapman
and Cowling, and so will be listed for reference.

Let I denote the linearized collision operator,
defined by

ll=f d vifo(vi)gdo[4+4i 0 4(]~

where fo is the Maxwellian

f =(I/2sT)+'e

dg is the differential cross section, and the nota-
tion otherwise follows that of Chapman and
Cowling. In addition, define the bilinear func-
tional J(g, q),

Z(y& y) = —,
' f'd'v, fo(v, )gdo[~, + Ay —q'rp', —rKq '].

The average over a Maxwellian will be denoted by
angular brackets,
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(0) = f d'v f.g.
Introduce the abbreviations

t(g = m (v(vg —
g 5~)v }~

1 2 5s, = (—,m v' —,T)v;—.

Let T,~
denote that solution to the integral

equation

which satisfies the conditions

Similarly, let S, denote that solution to

IS, =s,

which satisfies

(S,g ) =0.
Then the thermal conductivity and viscosity
are given by

X = —,(s,S,), q= —(t,„T„).
1 1

The Burnett coefficients are given by

K, =(S,v T„)/P,
K, = (S„[v,T„—2S,])/3P,

K~ = (2/PT')(S, [-TS,+ s T,„+Tv„BS,/sv,

+ T'v, 8T,./8T —2J(S„T„,)]),
K, = (K, —3K,)/T,

K, = (1/3PT)(S, [8S„—2TBS,/BT —5v, BS,/Bv, )),
K, = -(2/pP)(T„BS, /Bv, ),
K, =2K,/T,

K, = (2/PT')(T„[s,S, —Tv,S, + T'v, BS,/8T

-Z(S„S,)]),

K, = (2-/pP)(T, .T,.),
K, = (1/-PT)[K, —'P(K— —K )],
E„=(2/3P)(T„[T„2T—aT„/aT)),

K,2
= (3/pT)(T„[~TT~, + t,„T„—2Tv, BT„/8v„

—J(T„,T„)]),
K3=—13 9 ~

The dimensionless parameters 8„.. . , 8, and

~ ~ (L)e defined in Chapman and Cowling are
given in terms of the K's by

8, = (pT/g')(K, +-',K,),
8 = (pT/2q')K, ,

8, = (pP/q')K„

8, = (2p/rP}K,

8, = (pT/q') (K, +K,),
& =(P/n')(Kii -~ pKQ)

~2 = -(pP/AK. ,

(d3= 84~

(u, = -(8, + 8,),
Ops = (pT /g )Ks,

(u, = (P/rP }(K„—3pK,}.

E, =)(/2, K~=2y, KQ= -$/p.

Numerical values for the 8's and co's have been
worked out for Maxwellian molecules and for
hard spheres, and are given in Chapman and

Cowling, and in Wang Chang and Uhlenbeck. "
Expressions similar to those above have

been given by Ernst, "for the linearized Burnett
coefficients. We note the following relations with
the coefficients )(, y, and $ of Ernst:
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